Entering Link 1 = C:\G09W\l1.exe PID= 1004. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: IA32W-G09RevB.01 12-Aug-2010 11-Feb-2011 ****************************************** %chk=Z:\Module 3\boat_ts4_opt_mr308.chk %mem=6MW %nprocshared=1 Will use up to 1 processors via shared memory. ----------------------------------------------------------- # opt=(calcfc,qst2,noeigen) freq hf/3-21g geom=connectivity ----------------------------------------------------------- 1/5=1,10=4,11=1,18=20,27=202,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=5,11=9,16=1,25=1,30=1,71=2/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,7=6,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,11=1,18=20,27=202/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,11=1,18=20,27=202/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------ boat_ts4_opt_mr308 ------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. C 0. 0. 1.33351 C 1.22795 0. 2.20228 C 1.02618 -1.33886 2.95294 C -0.26986 -1.79065 2.33747 C -0.4384 -2.90901 1.63099 H -0.92296 -0.00694 -0.57387 H -0.95501 -0.01348 1.86261 H -1.12252 -1.12494 2.48578 H 0.3819 -3.60258 1.4551 H -1.40097 -3.17879 1.20448 H 0.92655 0.01146 -0.57118 H 1.22625 0.88918 2.84935 H 2.12612 0.06937 1.57459 H 1.89399 -1.99009 2.78461 H 0.99595 -1.12662 4.03154 ------------------ boat_ts3_opt_mr308 ------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 0. 0. C 0. 0. 1.5042 C 1.08861 0. 2.27439 C -0.49605 -2.90901 1.69028 C -0.97544 -1.79065 1.14466 C -0.72933 -1.33886 -0.26883 H -0.57445 0.80616 -0.47903 H -0.98351 -0.01348 1.97824 H -1.58897 -1.12494 1.75507 H -0.15175 -2.10215 -0.80671 H -1.68727 -1.23668 -0.79919 H 0.9858 -0.01391 -0.48324 H 1.02403 -0.00694 3.35928 H 2.09003 0.01146 1.84789 H 0.12131 -3.60258 1.12222 H -0.70381 -3.17879 2.7224 Iteration 1 RMS(Cart)= 0.09439485 RMS(Int)= 0.24276094 Iteration 2 RMS(Cart)= 0.05379697 RMS(Int)= 0.17996802 Iteration 3 RMS(Cart)= 0.05589359 RMS(Int)= 0.12692756 Iteration 4 RMS(Cart)= 0.06142131 RMS(Int)= 0.08235765 Iteration 5 RMS(Cart)= 0.05325839 RMS(Int)= 0.04506776 Iteration 6 RMS(Cart)= 0.04582214 RMS(Int)= 0.01989445 Iteration 7 RMS(Cart)= 0.00993815 RMS(Int)= 0.01847090 Iteration 8 RMS(Cart)= 0.00007573 RMS(Int)= 0.01847080 Iteration 9 RMS(Cart)= 0.00000105 RMS(Int)= 0.01847080 Iteration 10 RMS(Cart)= 0.00000004 RMS(Int)= 0.01847080 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition TS Reactant Product Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4187 1.3335 1.5042 calculate D2E/DX2 analyti! ! R2 R(1,7) 1.0933 1.0868 1.0997 calculate D2E/DX2 analyti! ! R3 R(1,12) 1.0932 1.0885 1.098 calculate D2E/DX2 analyti! ! R4 R(2,3) 1.419 1.5042 1.3335 calculate D2E/DX2 analyti! ! R5 R(2,8) 1.0919 1.0919 1.0919 calculate D2E/DX2 analyti! ! R6 R(3,4) 2.4559 1.5481 3.3637 calculate D2E/DX2 analyti! ! R7 R(3,13) 1.0933 1.0997 1.0868 calculate D2E/DX2 analyti! ! R8 R(3,14) 1.0932 1.098 1.0885 calculate D2E/DX2 analyti! ! R9 R(4,5) 1.4187 1.5042 1.3335 calculate D2E/DX2 analyti! ! R10 R(4,15) 1.0932 1.098 1.0885 calculate D2E/DX2 analyti! ! R11 R(4,16) 1.0933 1.0997 1.0868 calculate D2E/DX2 analyti! ! R12 R(5,6) 1.419 1.3335 1.5042 calculate D2E/DX2 analyti! ! R13 R(5,9) 1.0919 1.0919 1.0919 calculate D2E/DX2 analyti! ! R14 R(6,10) 1.0932 1.0885 1.098 calculate D2E/DX2 analyti! ! R15 R(6,11) 1.0933 1.0868 1.0997 calculate D2E/DX2 analyti! ! R16 R(1,6) 2.4559 3.3637 1.5481 calculate D2E/DX2 analyti! ! A1 A(2,1,7) 121.802 121.8716 115.8234 calculate D2E/DX2 analyti! ! A2 A(2,1,12) 120.3234 121.6501 116.1121 calculate D2E/DX2 analyti! ! A3 A(7,1,12) 112.5644 116.4778 106.6526 calculate D2E/DX2 analyti! ! A4 A(1,2,3) 125.2264 125.2791 125.2791 calculate D2E/DX2 analyti! ! A5 A(1,2,8) 117.3844 118.9851 115.7312 calculate D2E/DX2 analyti! ! A6 A(3,2,8) 117.385 115.7312 118.9851 calculate D2E/DX2 analyti! ! A7 A(2,3,4) 80.574 100.0 60.9957 calculate D2E/DX2 analyti! ! A8 A(2,3,13) 119.8103 109.7899 121.8716 calculate D2E/DX2 analyti! ! A9 A(2,3,14) 118.2019 109.7316 121.6501 calculate D2E/DX2 analyti! ! A10 A(4,3,13) 105.028 114.4411 98.0374 calculate D2E/DX2 analyti! ! A11 A(4,3,14) 113.3231 116.0053 111.9917 calculate D2E/DX2 analyti! ! A12 A(13,3,14) 113.7546 106.6526 116.4778 calculate D2E/DX2 analyti! ! A13 A(3,4,5) 80.799 100.0 60.9957 calculate D2E/DX2 analyti! ! A14 A(3,4,15) 110.6935 109.6088 111.9917 calculate D2E/DX2 analyti! ! A15 A(3,4,16) 102.4413 108.1945 98.0374 calculate D2E/DX2 analyti! ! A16 A(5,4,15) 120.3234 116.1121 121.6501 calculate D2E/DX2 analyti! ! A17 A(5,4,16) 121.802 115.8234 121.8716 calculate D2E/DX2 analyti! ! A18 A(15,4,16) 112.5644 106.6526 116.4778 calculate D2E/DX2 analyti! ! A19 A(4,5,6) 125.2264 125.2791 125.2791 calculate D2E/DX2 analyti! ! A20 A(4,5,9) 117.3844 115.7312 118.9851 calculate D2E/DX2 analyti! ! A21 A(6,5,9) 117.385 118.9851 115.7312 calculate D2E/DX2 analyti! ! A22 A(5,6,10) 118.2019 121.6501 109.7316 calculate D2E/DX2 analyti! ! A23 A(5,6,11) 119.8103 121.8716 109.7899 calculate D2E/DX2 analyti! ! A24 A(10,6,11) 113.7546 116.4778 106.6526 calculate D2E/DX2 analyti! ! A25 A(2,1,6) 80.799 60.9957 100.0 calculate D2E/DX2 analyti! ! A26 A(6,1,7) 102.4413 98.0374 108.1945 calculate D2E/DX2 analyti! ! A27 A(6,1,12) 110.6935 111.9917 109.6088 calculate D2E/DX2 analyti! ! A28 A(1,6,5) 80.574 60.9957 100.0 calculate D2E/DX2 analyti! ! A29 A(1,6,10) 113.3231 111.9917 116.0053 calculate D2E/DX2 analyti! ! A30 A(1,6,11) 105.028 98.0374 114.4411 calculate D2E/DX2 analyti! ! D1 D(7,1,2,3) -152.5131 179.5691 -125.4726 calculate D2E/DX2 analyti! ! D2 D(7,1,2,8) 28.2516 0.3778 55.3127 calculate D2E/DX2 analyti! ! D3 D(12,1,2,3) -0.1697 -0.7086 0.8082 calculate D2E/DX2 analyti! ! D4 D(12,1,2,8) -179.405 -179.8998 -178.4065 calculate D2E/DX2 analyti! ! D5 D(1,2,3,4) -108.419 -118.5789 -98.5703 calculate D2E/DX2 analyti! ! D6 D(1,2,3,13) 149.5872 120.76 -179.5691 calculate D2E/DX2 analyti! ! D7 D(1,2,3,14) 3.073 3.8486 0.7086 calculate D2E/DX2 analyti! ! D8 D(8,2,3,4) 70.8163 60.6357 80.621 calculate D2E/DX2 analyti! ! D9 D(8,2,3,13) -31.1776 -60.0253 -0.3778 calculate D2E/DX2 analyti! ! D10 D(8,2,3,14) -177.6917 -176.9367 179.8998 calculate D2E/DX2 analyti! ! D11 D(2,3,4,5) 0.0376 0.0 0.0 calculate D2E/DX2 analyti! ! D12 D(2,3,4,15) 119.0858 122.4966 115.034 calculate D2E/DX2 analyti! ! D13 D(2,3,4,16) -120.6899 -121.5708 -122.1028 calculate D2E/DX2 analyti! ! D14 D(13,3,4,5) 118.5408 117.2436 122.1028 calculate D2E/DX2 analyti! ! D15 D(13,3,4,15) -122.4109 -120.2598 -122.8632 calculate D2E/DX2 analyti! ! D16 D(13,3,4,16) -2.1867 -4.3272 0.0 calculate D2E/DX2 analyti! ! D17 D(14,3,4,5) -116.7125 -117.8697 -115.034 calculate D2E/DX2 analyti! ! D18 D(14,3,4,15) 2.3358 4.6269 0.0 calculate D2E/DX2 analyti! ! D19 D(14,3,4,16) 122.56 120.5595 122.8632 calculate D2E/DX2 analyti! ! D20 D(3,4,5,6) 108.4913 118.5789 98.5703 calculate D2E/DX2 analyti! ! D21 D(3,4,5,9) -70.744 -60.6357 -80.621 calculate D2E/DX2 analyti! ! D22 D(15,4,5,6) -0.1697 0.8082 -0.7086 calculate D2E/DX2 analyti! ! D23 D(15,4,5,9) -179.405 -178.4065 -179.8998 calculate D2E/DX2 analyti! ! D24 D(16,4,5,6) -152.5131 -125.4726 179.5691 calculate D2E/DX2 analyti! ! D25 D(16,4,5,9) 28.2516 55.3127 0.3778 calculate D2E/DX2 analyti! ! D26 D(4,5,6,10) 3.073 0.7086 3.8486 calculate D2E/DX2 analyti! ! D27 D(4,5,6,11) 149.5872 -179.5691 120.76 calculate D2E/DX2 analyti! ! D28 D(9,5,6,10) -177.6917 179.8998 -176.9367 calculate D2E/DX2 analyti! ! D29 D(9,5,6,11) -31.1776 -0.3778 -60.0253 calculate D2E/DX2 analyti! ! D30 D(6,1,2,3) 108.4913 98.5703 118.5789 calculate D2E/DX2 analyti! ! D31 D(6,1,2,8) -70.744 -80.621 -60.6357 calculate D2E/DX2 analyti! ! D32 D(2,1,6,5) 0.0376 0.0 0.0 calculate D2E/DX2 analyti! ! D33 D(2,1,6,10) -116.7125 -115.034 -117.8697 calculate D2E/DX2 analyti! ! D34 D(2,1,6,11) 118.5408 122.1028 117.2436 calculate D2E/DX2 analyti! ! D35 D(7,1,6,5) -120.6899 -122.1028 -121.5708 calculate D2E/DX2 analyti! ! D36 D(7,1,6,10) 122.56 122.8632 120.5595 calculate D2E/DX2 analyti! ! D37 D(7,1,6,11) -2.1867 0.0 -4.3272 calculate D2E/DX2 analyti! ! D38 D(12,1,6,5) 119.0858 115.034 122.4966 calculate D2E/DX2 analyti! ! D39 D(12,1,6,10) 2.3358 0.0 4.6269 calculate D2E/DX2 analyti! ! D40 D(12,1,6,11) -122.4109 -122.8632 -120.2598 calculate D2E/DX2 analyti! ! D41 D(4,5,6,1) -108.419 -98.5703 -118.5789 calculate D2E/DX2 analyti! ! D42 D(9,5,6,1) 70.8163 80.621 60.6357 calculate D2E/DX2 analyti! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 98 maximum allowed number of steps= 100. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.067706 -0.452658 0.084760 2 6 0 0.054576 0.010975 1.419948 3 6 0 1.261207 0.442971 2.029129 4 6 0 0.951795 -1.685588 3.214509 5 6 0 -0.196947 -1.720078 2.382742 6 6 0 -0.375894 -2.581727 1.269540 7 1 0 -1.001956 -0.357213 -0.474984 8 1 0 -0.849926 0.025441 2.031380 9 1 0 -1.002896 -1.019439 2.610189 10 1 0 0.405639 -3.314787 1.052731 11 1 0 -1.380575 -2.915286 0.996408 12 1 0 0.809079 -0.496514 -0.566778 13 1 0 1.232526 1.208557 2.809066 14 1 0 2.167403 0.470424 1.418202 15 1 0 1.791453 -2.359342 3.024229 16 1 0 0.897395 -1.367697 4.259130 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.418673 0.000000 3 C 2.519669 1.419042 0.000000 4 C 3.514944 2.627504 2.455936 0.000000 5 C 2.627504 1.996692 2.632495 1.418673 0.000000 6 C 2.455936 2.632495 3.522197 2.519669 1.419042 7 H 1.093273 2.200588 3.468830 4.381105 3.266808 8 H 2.151691 1.091870 2.152026 2.752020 1.896490 9 H 2.752020 1.896490 2.757251 2.151691 1.091870 10 H 3.058236 3.364340 3.975687 2.761496 2.162206 11 H 2.935859 3.286646 4.395840 3.445589 2.179775 12 H 1.093241 2.184925 2.797460 3.966409 3.347964 13 H 3.445588 2.179775 1.093273 2.935859 3.286646 14 H 2.761496 2.162206 1.093241 3.058236 3.364340 15 H 3.966409 3.347964 3.020652 1.093241 2.184925 16 H 4.381105 3.266808 2.895476 1.093273 2.200588 6 7 8 9 10 6 C 0.000000 7 H 2.895476 0.000000 8 H 2.757251 2.539960 0.000000 9 H 2.152026 3.155446 1.204241 0.000000 10 H 1.093241 3.614205 3.700178 3.110991 0.000000 11 H 1.093273 2.975245 3.162377 2.518167 1.831211 12 H 3.020652 1.818702 3.126525 3.694567 3.275398 13 H 4.395840 4.269605 2.518167 3.162377 4.922305 14 H 3.975687 3.783381 3.110991 3.700178 4.191086 15 H 2.797460 4.904706 3.694567 3.126525 2.592327 16 H 3.468830 5.200043 3.155446 2.539960 3.783381 11 12 13 14 15 11 H 0.000000 12 H 3.617816 0.000000 13 H 5.207697 3.805640 0.000000 14 H 4.922305 2.592327 1.831211 0.000000 15 H 3.805640 4.162994 3.617816 3.275398 0.000000 16 H 4.269605 4.904706 2.975245 3.614205 1.818702 16 16 H 0.000000 Stoichiometry C6H10 Framework group C2[X(C6H10)] Deg. of freedom 22 Full point group C2 NOp 2 Largest Abelian subgroup C2 NOp 2 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.699784 0.446590 0.194065 2 6 0 0.490992 0.869265 -0.416512 3 6 0 -0.490992 1.691270 0.194793 4 6 0 -1.699784 -0.446590 0.194065 5 6 0 -0.490992 -0.869265 -0.416512 6 6 0 0.490992 -1.691270 0.194793 7 1 0 2.591291 0.212890 -0.394021 8 1 0 0.295074 0.524862 -1.433952 9 1 0 -0.295074 -0.524862 -1.433952 10 1 0 0.291231 -2.075207 1.198717 11 1 0 1.098655 -2.360717 -0.419889 12 1 0 1.939717 0.755069 1.215069 13 1 0 -1.098655 2.360717 -0.419889 14 1 0 -0.291231 2.075207 1.198717 15 1 0 -1.939717 -0.755069 1.215069 16 1 0 -2.591291 -0.212890 -0.394021 --------------------------------------------------------------------- Rotational constants (GHZ): 4.2835278 3.7874797 2.3172720 Standard basis: 3-21G (6D, 7F) There are 37 symmetry adapted basis functions of A symmetry. There are 37 symmetry adapted basis functions of B symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 74 basis functions, 120 primitive gaussians, 74 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 226.4907531607 Hartrees. NAtoms= 16 NActive= 16 NUniq= 8 SFac= 4.00D+00 NAtFMM= 50 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 74 RedAO= T NBF= 37 37 NBsUse= 74 1.00D-06 NBFU= 37 37 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 1.83D-01 ExpMax= 1.72D+02 ExpMxC= 1.72D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (B) (A) (A) (B) (B) (A) (A) (B) (B) (A) (A) (B) (A) (B) (B) (A) (A) (B) (A) (A) (B) (B) (B) Virtual (A) (A) (A) (B) (A) (B) (A) (B) (B) (B) (A) (A) (B) (A) (B) (A) (B) (A) (B) (B) (A) (B) (B) (A) (B) (A) (A) (A) (B) (B) (A) (A) (B) (B) (A) (A) (B) (B) (A) (B) (A) (B) (A) (A) (A) (B) (B) (A) (B) (A) (B) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=4687257. SCF Done: E(RHF) = -231.414520131 A.U. after 11 cycles Convg = 0.8975D-08 -V/T = 2.0026 Range of M.O.s used for correlation: 1 74 NBasis= 74 NAE= 23 NBE= 23 NFC= 0 NFV= 0 NROrb= 74 NOA= 23 NOB= 23 NVA= 51 NVB= 51 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 17 centers at a time, making 1 passes doing MaxLOS=1. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. FoFDir/FoFCou used for L=0 through L=1. End of G2Drv Frequency-dependent properties file 721 does not exist. End of G2Drv Frequency-dependent properties file 722 does not exist. IDoAtm=1111111111111111 Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=4652460. There are 27 degrees of freedom in the 1st order CPHF. IDoFFX=4. 24 vectors produced by pass 0 Test12= 4.34D-11 3.70D-07 XBig12= 8.66D-02 1.54D-01. AX will form 24 AO Fock derivatives at one time. 24 vectors produced by pass 1 Test12= 4.34D-11 3.70D-07 XBig12= 6.25D-03 3.07D-02. 24 vectors produced by pass 2 Test12= 4.34D-11 3.70D-07 XBig12= 8.28D-05 3.07D-03. 24 vectors produced by pass 3 Test12= 4.34D-11 3.70D-07 XBig12= 1.07D-06 2.03D-04. 24 vectors produced by pass 4 Test12= 4.34D-11 3.70D-07 XBig12= 1.03D-08 1.95D-05. 10 vectors produced by pass 5 Test12= 4.34D-11 3.70D-07 XBig12= 8.76D-11 1.72D-06. Inverted reduced A of dimension 130 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (B) (A) (A) (B) (B) (A) (A) (B) (B) (A) (A) (B) (A) (B) (B) (A) (A) (B) (A) (A) (B) (B) (B) Virtual (A) (A) (A) (A) (B) (B) (B) (A) (A) (B) (B) (A) (B) (A) (B) (B) (A) (A) (B) (B) (A) (B) (B) (A) (B) (A) (A) (A) (B) (B) (A) (B) (A) (A) (B) (A) (B) (A) (B) (B) (A) (B) (A) (A) (A) (B) (B) (A) (B) (A) (B) The electronic state is 1-A. Alpha occ. eigenvalues -- -11.17905 -11.17802 -11.17690 -11.17653 -11.17598 Alpha occ. eigenvalues -- -11.17572 -1.10863 -1.01532 -0.92288 -0.87829 Alpha occ. eigenvalues -- -0.82530 -0.70959 -0.66422 -0.60790 -0.60157 Alpha occ. eigenvalues -- -0.56699 -0.54010 -0.53482 -0.51165 -0.48756 Alpha occ. eigenvalues -- -0.44065 -0.26340 -0.25375 Alpha virt. eigenvalues -- 0.09325 0.11144 0.23668 0.29276 0.30353 Alpha virt. eigenvalues -- 0.31650 0.34688 0.34761 0.35848 0.35949 Alpha virt. eigenvalues -- 0.36742 0.39187 0.49041 0.50456 0.54122 Alpha virt. eigenvalues -- 0.58111 0.62166 0.83071 0.86461 0.94865 Alpha virt. eigenvalues -- 0.97390 0.97800 1.02903 1.04001 1.04123 Alpha virt. eigenvalues -- 1.04390 1.04901 1.10789 1.14781 1.21667 Alpha virt. eigenvalues -- 1.24719 1.24752 1.25198 1.30191 1.30948 Alpha virt. eigenvalues -- 1.34837 1.34998 1.35657 1.35683 1.36927 Alpha virt. eigenvalues -- 1.43319 1.45593 1.59677 1.61297 1.76061 Alpha virt. eigenvalues -- 1.76339 1.76919 2.05957 2.11165 2.31871 Alpha virt. eigenvalues -- 2.95080 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.256169 0.469531 -0.071163 -0.004161 -0.055110 0.034589 2 C 0.469531 5.856309 0.462004 -0.055110 -0.509290 -0.054104 3 C -0.071163 0.462004 5.260651 0.034589 -0.054104 -0.003533 4 C -0.004161 -0.055110 0.034589 5.256169 0.469531 -0.071163 5 C -0.055110 -0.509290 -0.054104 0.469531 5.856309 0.462004 6 C 0.034589 -0.054104 -0.003533 -0.071163 0.462004 5.260651 7 H 0.388660 -0.046007 0.001782 -0.000019 0.000611 -0.001156 8 H -0.045458 0.424391 -0.045011 0.002327 -0.053836 0.002234 9 H 0.002327 -0.053836 0.002234 -0.045458 0.424391 -0.045011 10 H -0.000375 0.001112 0.000112 0.000247 -0.054098 0.393312 11 H -0.001388 0.000665 -0.000015 0.001929 -0.048968 0.389549 12 H 0.392287 -0.050454 0.000230 0.000119 0.001013 -0.000770 13 H 0.001929 -0.048968 0.389549 -0.001388 0.000665 -0.000015 14 H 0.000247 -0.054098 0.393312 -0.000375 0.001112 0.000112 15 H 0.000119 0.001013 -0.000770 0.392287 -0.050454 0.000230 16 H -0.000019 0.000611 -0.001156 0.388660 -0.046007 0.001782 7 8 9 10 11 12 1 C 0.388660 -0.045458 0.002327 -0.000375 -0.001388 0.392287 2 C -0.046007 0.424391 -0.053836 0.001112 0.000665 -0.050454 3 C 0.001782 -0.045011 0.002234 0.000112 -0.000015 0.000230 4 C -0.000019 0.002327 -0.045458 0.000247 0.001929 0.000119 5 C 0.000611 -0.053836 0.424391 -0.054098 -0.048968 0.001013 6 C -0.001156 0.002234 -0.045011 0.393312 0.389549 -0.000770 7 H 0.469453 -0.001184 0.000149 0.000009 -0.000107 -0.026391 8 H -0.001184 0.505261 -0.030923 -0.000108 0.000147 0.001996 9 H 0.000149 -0.030923 0.505261 0.002159 -0.001497 -0.000106 10 H 0.000009 -0.000108 0.002159 0.475317 -0.025526 -0.000153 11 H -0.000107 0.000147 -0.001497 -0.025526 0.471836 0.000008 12 H -0.026391 0.001996 -0.000106 -0.000153 0.000008 0.473461 13 H -0.000048 -0.001497 0.000147 0.000001 0.000000 0.000007 14 H 0.000011 0.002159 -0.000108 -0.000014 0.000001 0.001602 15 H 0.000001 -0.000106 0.001996 0.001602 0.000007 -0.000015 16 H 0.000000 0.000149 -0.001184 0.000011 -0.000048 0.000001 13 14 15 16 1 C 0.001929 0.000247 0.000119 -0.000019 2 C -0.048968 -0.054098 0.001013 0.000611 3 C 0.389549 0.393312 -0.000770 -0.001156 4 C -0.001388 -0.000375 0.392287 0.388660 5 C 0.000665 0.001112 -0.050454 -0.046007 6 C -0.000015 0.000112 0.000230 0.001782 7 H -0.000048 0.000011 0.000001 0.000000 8 H -0.001497 0.002159 -0.000106 0.000149 9 H 0.000147 -0.000108 0.001996 -0.001184 10 H 0.000001 -0.000014 0.001602 0.000011 11 H 0.000000 0.000001 0.000007 -0.000048 12 H 0.000007 0.001602 -0.000015 0.000001 13 H 0.471836 -0.025526 0.000008 -0.000107 14 H -0.025526 0.475317 -0.000153 0.000009 15 H 0.000008 -0.000153 0.473461 -0.026391 16 H -0.000107 0.000009 -0.026391 0.469453 Mulliken atomic charges: 1 1 C -0.368183 2 C -0.343768 3 C -0.368713 4 C -0.368183 5 C -0.343768 6 C -0.368713 7 H 0.214237 8 H 0.239460 9 H 0.239460 10 H 0.206392 11 H 0.213408 12 H 0.207167 13 H 0.213408 14 H 0.206392 15 H 0.207167 16 H 0.214237 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.053221 2 C -0.104308 3 C 0.051087 4 C 0.053221 5 C -0.104308 6 C 0.051087 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 APT atomic charges: 1 1 C -1.037208 2 C -0.360156 3 C -1.044957 4 C -1.037208 5 C -0.360156 6 C -1.044957 7 H 0.578176 8 H 0.345706 9 H 0.345706 10 H 0.469437 11 H 0.573758 12 H 0.475243 13 H 0.573758 14 H 0.469437 15 H 0.475243 16 H 0.578176 Sum of APT charges= 0.00000 APT Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.016211 2 C -0.014450 3 C -0.001761 4 C 0.016211 5 C -0.014450 6 C -0.001761 7 H 0.000000 8 H 0.000000 9 H 0.000000 10 H 0.000000 11 H 0.000000 12 H 0.000000 13 H 0.000000 14 H 0.000000 15 H 0.000000 16 H 0.000000 Sum of APT charges= 0.00000 Electronic spatial extent (au): = 604.9842 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.3815 Tot= 0.3815 Quadrupole moment (field-independent basis, Debye-Ang): XX= -38.5145 YY= -41.3517 ZZ= -36.9762 XY= -2.5099 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.4330 YY= -2.4042 ZZ= 1.9713 XY= -2.5099 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.2394 XYY= 0.0000 XXY= 0.0000 XXZ= -0.6995 XZZ= 0.0000 YZZ= 0.0000 YYZ= 3.9387 XYZ= 4.5537 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -333.1994 YYYY= -381.0348 ZZZZ= -91.5365 XXXY= -6.4641 XXXZ= 0.0000 YYYX= -32.9290 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -130.6572 XXZZ= -73.4117 YYZZ= -76.0894 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -1.8325 N-N= 2.264907531607D+02 E-N=-9.906415133604D+02 KE= 2.308205984242D+02 Symmetry A KE= 1.135863215658D+02 Symmetry B KE= 1.172342768584D+02 Exact polarizability: 0.000 0.000 0.000 0.000 0.000 0.000 Approx polarizability: 102.180 -15.195 84.457 0.000 0.000 48.676