Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 3412. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 17-Nov-2013 ****************************************** %chk=\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt=tight b3lyp/6-31g(d,p) geom=connectivity int=ultrafine scf=conve r=9 ---------------------------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,6=9,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,6=9,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------- MeMgCl Opt1 ----------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Mg -0.48976 -0.02764 0.01125 Cl 1.44736 0.94399 -0.96039 C -2.25153 0.85603 -0.87243 H -2.71309 1.51401 -0.16607 H -1.97374 1.40839 -1.74572 H -2.9405 0.08345 -1.14324 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.375 estimate D2E/DX2 ! ! R2 R(1,3) 2.16 estimate D2E/DX2 ! ! R3 R(3,4) 1.07 estimate D2E/DX2 ! ! R4 R(3,5) 1.07 estimate D2E/DX2 ! ! R5 R(3,6) 1.07 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.3 estimate D2E/DX2 ! ! A2 A(1,3,4) 109.4712 estimate D2E/DX2 ! ! A3 A(1,3,5) 109.4712 estimate D2E/DX2 ! ! A4 A(1,3,6) 109.4712 estimate D2E/DX2 ! ! A5 A(4,3,5) 109.4713 estimate D2E/DX2 ! ! A6 A(4,3,6) 109.4712 estimate D2E/DX2 ! ! A7 A(5,3,6) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,3,4) -107.0 estimate D2E/DX2 ! ! D2 D(2,1,3,5) 13.0 estimate D2E/DX2 ! ! D3 D(2,1,3,6) 133.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 25 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.489764 -0.027644 0.011251 2 17 0 1.447364 0.943993 -0.960387 3 6 0 -2.251531 0.856035 -0.872428 4 1 0 -2.713087 1.514007 -0.166073 5 1 0 -1.973735 1.408392 -1.745716 6 1 0 -2.940499 0.083453 -1.143244 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.375000 0.000000 3 C 2.160000 3.700987 0.000000 4 H 2.711328 4.273781 1.070000 0.000000 5 H 2.711328 3.540668 1.070000 1.747303 0.000000 6 H 2.711328 4.475188 1.070000 1.747303 1.747303 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.533244 0.869938 0.000000 2 17 0 -1.553087 -0.264896 0.000000 3 6 0 2.134482 -0.579765 0.000000 4 1 0 2.596839 -0.600497 0.964726 5 1 0 1.739168 -1.547819 -0.226932 6 1 0 2.860643 -0.309119 -0.737794 --------------------------------------------------------------------- Rotational constants (GHZ): 17.5812930 3.0684617 2.6547280 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.1697367492 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 1.20D-02 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.238923105 A.U. after 14 cycles NFock= 14 Conv=0.71D-10 -V/T= 2.0039 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -101.47263 -46.86118 -10.15631 -9.38849 -7.14802 Alpha occ. eigenvalues -- -7.14514 -7.14484 -3.14446 -1.89024 -1.88872 Alpha occ. eigenvalues -- -1.88477 -0.73377 -0.66586 -0.38966 -0.38726 Alpha occ. eigenvalues -- -0.31432 -0.26903 -0.26811 -0.24799 Alpha virt. eigenvalues -- -0.10689 -0.02287 0.01619 0.04070 0.09530 Alpha virt. eigenvalues -- 0.13688 0.15774 0.18599 0.19795 0.22599 Alpha virt. eigenvalues -- 0.25815 0.28326 0.28981 0.29713 0.33866 Alpha virt. eigenvalues -- 0.43450 0.53435 0.54300 0.55005 0.60747 Alpha virt. eigenvalues -- 0.64911 0.65760 0.67995 0.83203 0.90122 Alpha virt. eigenvalues -- 0.90620 0.93936 0.93965 0.98292 0.99143 Alpha virt. eigenvalues -- 1.02237 1.19742 1.31472 1.49203 1.50761 Alpha virt. eigenvalues -- 1.94986 2.06078 2.12517 2.12974 2.36336 Alpha virt. eigenvalues -- 2.36920 2.68286 2.88185 2.88251 3.26447 Alpha virt. eigenvalues -- 3.48214 3.48476 4.31825 4.44997 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Mg 10.776383 0.322577 0.354671 -0.024508 -0.017137 -0.027151 2 Cl 0.322577 17.108109 -0.008071 0.000067 -0.000416 0.000160 3 C 0.354671 -0.008071 5.103239 0.372000 0.382886 0.368358 4 H -0.024508 0.000067 0.372000 0.589430 -0.027161 -0.028644 5 H -0.017137 -0.000416 0.382886 -0.027161 0.541921 -0.028070 6 H -0.027151 0.000160 0.368358 -0.028644 -0.028070 0.601797 Mulliken charges: 1 1 Mg 0.615165 2 Cl -0.422427 3 C -0.573083 4 H 0.118816 5 H 0.147978 6 H 0.113550 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Mg 0.615165 2 Cl -0.422427 3 C -0.192739 Electronic spatial extent (au): = 446.7720 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 3.4828 Y= 4.4560 Z= -0.0008 Tot= 5.6556 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.6786 YY= -23.6238 ZZ= -28.6816 XY= 1.6577 XZ= 0.0201 YZ= 0.0257 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -7.6839 YY= 6.3709 ZZ= 1.3131 XY= 1.6577 XZ= 0.0201 YZ= 0.0257 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -1.3138 YYY= 12.7859 ZZZ= 0.2994 XYY= 2.2166 XXY= 2.1961 XXZ= -0.0214 XZZ= 1.1566 YZZ= 3.1529 YYZ= -0.2241 XYZ= -0.1179 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -508.1504 YYYY= -84.8125 ZZZZ= -43.9960 XXXY= 9.0762 XXXZ= -0.5505 YYYX= 8.3157 YYYZ= 0.6575 ZZZX= 0.8077 ZZZY= -0.2550 XXYY= -97.9238 XXZZ= -86.4878 YYZZ= -22.6479 XXYZ= -0.5967 YYXZ= -0.2439 ZZXY= 1.8411 N-N= 1.011697367492D+02 E-N=-1.868064480122D+03 KE= 6.975508183056D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.012368269 0.026998942 -0.026930196 2 17 -0.009689147 -0.013925699 0.013961430 3 6 0.007355000 -0.018752640 0.017502795 4 1 -0.008334093 0.009392713 0.010630080 5 1 0.011883343 0.005711468 -0.010909389 6 1 -0.013583373 -0.009424783 -0.004254720 ------------------------------------------------------------------- Cartesian Forces: Max 0.026998942 RMS 0.014253556 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.047031301 RMS 0.015729958 Search for a local minimum. Step number 1 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12233 R2 0.00000 0.10338 R3 0.00000 0.00000 0.37230 R4 0.00000 0.00000 0.00000 0.37230 R5 0.00000 0.00000 0.00000 0.00000 0.37230 A1 0.00000 0.00000 0.00000 0.00000 0.00000 A2 0.00000 0.00000 0.00000 0.00000 0.00000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A5 0.00000 0.00000 0.00000 0.00000 0.00000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 A7 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 A1 A2 A3 A4 A5 A1 0.25000 A2 0.00000 0.16000 A3 0.00000 0.00000 0.16000 A4 0.00000 0.00000 0.00000 0.16000 A5 0.00000 0.00000 0.00000 0.00000 0.16000 A6 0.00000 0.00000 0.00000 0.00000 0.00000 A7 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 D2 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 A6 A7 D1 D2 D3 A6 0.16000 A7 0.00000 0.16000 D1 0.00000 0.00000 0.00372 D2 0.00000 0.00000 0.00000 0.00372 D3 0.00000 0.00000 0.00000 0.00000 0.00372 ITU= 0 Eigenvalues --- 0.00372 0.09989 0.09989 0.10338 0.12233 Eigenvalues --- 0.16000 0.16000 0.16000 0.25000 0.37230 Eigenvalues --- 0.37230 0.37230 RFO step: Lambda=-1.53238518D-02 EMin= 3.71896735D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.10920361 RMS(Int)= 0.00683667 Iteration 2 RMS(Cart)= 0.00918400 RMS(Int)= 0.00038198 Iteration 3 RMS(Cart)= 0.00001096 RMS(Int)= 0.00038192 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00038192 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.48810 -0.01931 0.00000 -0.14029 -0.14029 4.34781 R2 4.08181 -0.00847 0.00000 -0.07134 -0.07134 4.01047 R3 2.02201 0.01639 0.00000 0.04228 0.04228 2.06429 R4 2.02201 0.01494 0.00000 0.03854 0.03854 2.06054 R5 2.02201 0.01663 0.00000 0.04290 0.04290 2.06490 A1 1.90764 0.04703 0.00000 0.17726 0.17726 2.08490 A2 1.91063 0.00239 0.00000 0.01418 0.01373 1.92436 A3 1.91063 -0.01389 0.00000 -0.08271 -0.08259 1.82804 A4 1.91063 0.00762 0.00000 0.04638 0.04628 1.95691 A5 1.91063 0.00332 0.00000 0.01311 0.01282 1.92345 A6 1.91063 -0.00209 0.00000 -0.00502 -0.00562 1.90502 A7 1.91063 0.00266 0.00000 0.01406 0.01456 1.92519 D1 -1.86750 0.00222 0.00000 0.02079 0.02101 -1.84649 D2 0.22689 -0.00077 0.00000 -0.00511 -0.00445 0.22244 D3 2.32129 -0.00135 0.00000 -0.01015 -0.01103 2.31026 Item Value Threshold Converged? Maximum Force 0.047031 0.000015 NO RMS Force 0.015730 0.000010 NO Maximum Displacement 0.199595 0.000060 NO RMS Displacement 0.104265 0.000040 NO Predicted change in Energy=-8.210939D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.458958 0.076677 -0.094370 2 17 0 1.540306 0.883338 -0.897950 3 6 0 -2.280336 0.846549 -0.864968 4 1 0 -2.748812 1.511074 -0.135437 5 1 0 -1.990348 1.407665 -1.753794 6 1 0 -2.983105 0.052933 -1.130077 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.300760 0.000000 3 C 2.122249 3.820961 0.000000 4 H 2.702334 4.401364 1.092373 0.000000 5 H 2.621139 3.670545 1.090393 1.790263 0.000000 6 H 2.728474 4.604856 1.092700 1.780555 1.791616 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.497572 0.747959 -0.000258 2 17 0 -1.581754 -0.236877 0.000124 3 6 0 2.231756 -0.475374 -0.000497 4 1 0 2.701792 -0.465404 0.985528 5 1 0 1.865524 -1.475752 -0.233035 6 1 0 2.961105 -0.155195 -0.748514 --------------------------------------------------------------------- Rotational constants (GHZ): 23.0598125 2.9117515 2.6282839 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 102.1600637914 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 1.19D-02 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999971 0.000057 0.000016 -0.007611 Ang= 0.87 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.251279350 A.U. after 11 cycles NFock= 11 Conv=0.53D-09 -V/T= 2.0039 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.008242296 0.018010293 -0.017978012 2 17 -0.005608393 -0.009240467 0.009255534 3 6 -0.001252043 -0.012193323 0.011906086 4 1 -0.001542085 0.000967221 -0.001118320 5 1 0.002369650 0.000194327 -0.000709759 6 1 -0.002209424 0.002261949 -0.001355529 ------------------------------------------------------------------- Cartesian Forces: Max 0.018010293 RMS 0.008275050 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.037348904 RMS 0.010387859 Search for a local minimum. Step number 2 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -1.24D-02 DEPred=-8.21D-03 R= 1.50D+00 TightC=F SS= 1.41D+00 RLast= 2.67D-01 DXNew= 5.0454D-01 8.0190D-01 Trust test= 1.50D+00 RLast= 2.67D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.11224 R2 -0.00306 0.10276 R3 -0.00218 -0.00348 0.39710 R4 -0.00085 -0.00255 0.02035 0.38891 R5 -0.00275 -0.00383 0.02624 0.02156 0.40004 A1 0.04056 0.01588 -0.02330 -0.02262 -0.02299 A2 0.00326 0.00148 -0.00365 -0.00326 -0.00374 A3 -0.00420 -0.00039 -0.00880 -0.00676 -0.00952 A4 0.00626 0.00237 -0.00286 -0.00289 -0.00276 A5 -0.00274 -0.00181 0.00814 0.00686 0.00852 A6 -0.00092 -0.00038 0.00067 0.00063 0.00067 A7 -0.00191 -0.00139 0.00684 0.00573 0.00718 D1 -0.00038 -0.00022 0.00087 0.00074 0.00090 D2 0.00062 0.00034 -0.00126 -0.00108 -0.00131 D3 -0.00024 -0.00012 0.00042 0.00036 0.00043 A1 A2 A3 A4 A5 A1 0.12763 A2 -0.00759 0.15970 A3 0.02690 0.00272 0.16071 A4 -0.01982 -0.00130 0.00392 0.15682 A5 -0.00005 -0.00062 -0.00387 0.00025 0.16227 A6 0.00260 0.00015 -0.00066 0.00043 0.00005 A7 -0.00152 -0.00063 -0.00306 -0.00002 0.00199 D1 0.00034 -0.00004 -0.00046 0.00008 0.00022 D2 -0.00073 0.00004 0.00069 -0.00015 -0.00031 D3 0.00035 0.00000 -0.00024 0.00007 0.00010 A6 A7 D1 D2 D3 A6 0.15995 A7 0.00008 0.16172 D1 0.00000 0.00020 0.00374 D2 0.00001 -0.00028 -0.00003 0.00376 D3 -0.00001 0.00009 0.00001 -0.00001 0.00372 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00372 0.06173 0.09836 0.10390 0.10619 Eigenvalues --- 0.14401 0.16000 0.16374 0.17959 0.37226 Eigenvalues --- 0.37230 0.44921 RFO step: Lambda=-6.93936498D-03 EMin= 3.71896869D-03 Quartic linear search produced a step of 1.48294. Iteration 1 RMS(Cart)= 0.10728392 RMS(Int)= 0.05990678 Iteration 2 RMS(Cart)= 0.12497865 RMS(Int)= 0.01045761 Iteration 3 RMS(Cart)= 0.01091170 RMS(Int)= 0.00254243 Iteration 4 RMS(Cart)= 0.00008894 RMS(Int)= 0.00254192 Iteration 5 RMS(Cart)= 0.00000002 RMS(Int)= 0.00254192 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.34781 -0.01135 -0.20805 -0.04848 -0.25653 4.09128 R2 4.01047 -0.00409 -0.10579 -0.00403 -0.10983 3.90064 R3 2.06429 0.00050 0.06270 -0.04216 0.02054 2.08483 R4 2.06054 0.00131 0.05715 -0.03294 0.02421 2.08476 R5 2.06490 0.00011 0.06361 -0.04538 0.01824 2.08314 A1 2.08490 0.03735 0.26287 0.16051 0.42337 2.50828 A2 1.92436 0.00285 0.02036 0.02892 0.04590 1.97026 A3 1.82804 -0.00508 -0.12248 0.01201 -0.10907 1.71897 A4 1.95691 0.00561 0.06863 0.03470 0.10115 2.05806 A5 1.92345 -0.00060 0.01901 -0.03433 -0.01545 1.90800 A6 1.90502 -0.00197 -0.00833 -0.00669 -0.01999 1.88503 A7 1.92519 -0.00088 0.02159 -0.03527 -0.01103 1.91416 D1 -1.84649 0.00186 0.03116 0.01939 0.05382 -1.79266 D2 0.22244 -0.00029 -0.00660 0.00020 -0.00411 0.21833 D3 2.31026 -0.00149 -0.01636 -0.01635 -0.03827 2.27199 Item Value Threshold Converged? Maximum Force 0.037349 0.000015 NO RMS Force 0.010388 0.000010 NO Maximum Displacement 0.451214 0.000060 NO RMS Displacement 0.225102 0.000040 NO Predicted change in Energy=-1.111904D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.386137 0.313622 -0.333143 2 17 0 1.698528 0.730655 -0.742438 3 6 0 -2.317924 0.827236 -0.847965 4 1 0 -2.799964 1.484150 -0.104159 5 1 0 -2.094669 1.408917 -1.758386 6 1 0 -3.021088 0.013657 -1.090507 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.165010 0.000000 3 C 2.064132 4.018999 0.000000 4 H 2.692420 4.605604 1.103243 0.000000 5 H 2.479933 3.985038 1.103205 1.799880 0.000000 6 H 2.757997 4.786441 1.102351 1.784412 1.803071 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.445670 0.453231 -0.000645 2 17 0 -1.633600 -0.150012 0.000275 3 6 0 2.383990 -0.256385 -0.000868 4 1 0 2.864099 -0.193375 0.990429 5 1 0 2.170658 -1.312782 -0.236614 6 1 0 3.084472 0.155894 -0.745535 --------------------------------------------------------------------- Rotational constants (GHZ): 51.4242191 2.6697705 2.5795966 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 104.5829676573 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 1.08D-02 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999955 -0.000102 0.000040 -0.009514 Ang= -1.09 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.263142139 A.U. after 11 cycles NFock= 11 Conv=0.24D-09 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.010023374 0.000994417 -0.001021282 2 17 0.014988708 -0.000302443 0.000364957 3 6 -0.006146606 -0.002599370 0.003930847 4 1 0.002641331 -0.002112039 -0.005438609 5 1 -0.006149682 -0.000920436 0.002431962 6 1 0.004689624 0.004939871 -0.000267876 ------------------------------------------------------------------- Cartesian Forces: Max 0.014988708 RMS 0.005371932 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.018410938 RMS 0.007050227 Search for a local minimum. Step number 3 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -1.19D-02 DEPred=-1.11D-02 R= 1.07D+00 TightC=F SS= 1.41D+00 RLast= 5.36D-01 DXNew= 8.4853D-01 1.6095D+00 Trust test= 1.07D+00 RLast= 5.36D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.14307 R2 0.00688 0.10597 R3 -0.01118 -0.00642 0.39947 R4 -0.00728 -0.00464 0.02213 0.39022 R5 -0.01209 -0.00688 0.02865 0.02341 0.40249 A1 0.03240 0.01373 -0.01742 -0.01975 -0.01631 A2 0.00146 0.00092 -0.00292 -0.00282 -0.00295 A3 0.01114 0.00455 -0.01326 -0.00996 -0.01416 A4 -0.00076 0.00014 -0.00052 -0.00133 -0.00029 A5 -0.00765 -0.00343 0.00932 0.00780 0.00971 A6 0.00144 0.00037 -0.00011 0.00010 -0.00016 A7 -0.00657 -0.00293 0.00792 0.00661 0.00825 D1 -0.00268 -0.00096 0.00152 0.00121 0.00157 D2 0.00066 0.00035 -0.00134 -0.00111 -0.00141 D3 0.00198 0.00060 -0.00014 -0.00007 -0.00013 A1 A2 A3 A4 A5 A1 0.08285 A2 -0.00985 0.15964 A3 0.02270 0.00182 0.16834 A4 -0.02177 -0.00111 0.00042 0.15811 A5 0.00464 -0.00013 -0.00630 0.00164 0.16281 A6 0.00325 0.00008 0.00052 -0.00001 -0.00042 A7 0.00350 -0.00014 -0.00537 0.00134 0.00245 D1 0.00121 0.00011 -0.00160 0.00062 0.00057 D2 0.00023 0.00009 0.00071 -0.00008 -0.00039 D3 -0.00148 -0.00021 0.00086 -0.00054 -0.00017 A6 A7 D1 D2 D3 A6 0.16009 A7 -0.00038 0.16212 D1 -0.00019 0.00052 0.00391 D2 -0.00001 -0.00037 -0.00004 0.00374 D3 0.00020 -0.00014 -0.00015 0.00002 0.00385 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00372 0.05599 0.08982 0.10530 0.10731 Eigenvalues --- 0.14302 0.16001 0.16316 0.18551 0.37227 Eigenvalues --- 0.37231 0.45574 RFO step: Lambda=-4.32298882D-03 EMin= 3.71897481D-03 Quartic linear search produced a step of 0.12346. Iteration 1 RMS(Cart)= 0.11769051 RMS(Int)= 0.00757493 Iteration 2 RMS(Cart)= 0.00849168 RMS(Int)= 0.00034449 Iteration 3 RMS(Cart)= 0.00005333 RMS(Int)= 0.00034283 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00034283 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09128 0.01431 -0.03167 0.08290 0.05123 4.14250 R2 3.90064 0.00431 -0.01356 0.02346 0.00990 3.91054 R3 2.08483 -0.00608 0.00254 -0.00598 -0.00344 2.08138 R4 2.08476 -0.00374 0.00299 0.00006 0.00305 2.08780 R5 2.08314 -0.00658 0.00225 -0.00737 -0.00511 2.07803 A1 2.50828 0.01841 0.05227 0.14049 0.19276 2.70103 A2 1.97026 0.00064 0.00567 0.00832 0.01344 1.98370 A3 1.71897 0.00765 -0.01347 0.02764 0.01423 1.73320 A4 2.05806 -0.00121 0.01249 0.00604 0.01807 2.07613 A5 1.90800 -0.00381 -0.00191 -0.02247 -0.02442 1.88358 A6 1.88503 0.00032 -0.00247 -0.00113 -0.00437 1.88066 A7 1.91416 -0.00377 -0.00136 -0.02111 -0.02233 1.89183 D1 -1.79266 0.00002 0.00665 0.00862 0.01573 -1.77693 D2 0.21833 -0.00001 -0.00051 0.00076 0.00041 0.21874 D3 2.27199 0.00004 -0.00473 -0.00353 -0.00888 2.26311 Item Value Threshold Converged? Maximum Force 0.018411 0.000015 NO RMS Force 0.007050 0.000010 NO Maximum Displacement 0.218269 0.000060 NO RMS Displacement 0.120429 0.000040 NO Predicted change in Energy=-2.420070D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.352794 0.411893 -0.431499 2 17 0 1.814031 0.651175 -0.661701 3 6 0 -2.336626 0.827559 -0.848546 4 1 0 -2.821172 1.469927 -0.096414 5 1 0 -2.204551 1.422939 -1.769797 6 1 0 -3.020142 -0.005257 -1.068641 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.192118 0.000000 3 C 2.069371 4.158603 0.000000 4 H 2.706401 4.740782 1.101420 0.000000 5 H 2.498451 4.239398 1.104818 1.783995 0.000000 6 H 2.773934 4.895481 1.099645 1.777916 1.787890 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.457893 0.324070 -0.000189 2 17 0 -1.691460 -0.106816 0.000058 3 6 0 2.466611 -0.173266 -0.000935 4 1 0 2.945477 -0.079613 0.986507 5 1 0 2.384174 -1.249171 -0.238121 6 1 0 3.130785 0.295412 -0.741497 --------------------------------------------------------------------- Rotational constants (GHZ): 77.8430351 2.4932336 2.4531969 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 103.2052381311 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 1.06D-02 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999998 -0.001085 0.000049 -0.001762 Ang= -0.24 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.266801168 A.U. after 10 cycles NFock= 10 Conv=0.60D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.004937644 0.000766688 -0.000852000 2 17 0.006953663 -0.001211275 0.001246870 3 6 -0.003622223 0.001341461 0.000010266 4 1 0.002629987 -0.001969405 -0.003333694 5 1 -0.005447431 -0.001384609 0.002656326 6 1 0.004423649 0.002457139 0.000272232 ------------------------------------------------------------------- Cartesian Forces: Max 0.006953663 RMS 0.003146660 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.011477008 RMS 0.004698216 Search for a local minimum. Step number 4 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -3.66D-03 DEPred=-2.42D-03 R= 1.51D+00 TightC=F SS= 1.41D+00 RLast= 2.05D-01 DXNew= 1.4270D+00 6.1537D-01 Trust test= 1.51D+00 RLast= 2.05D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12866 R2 0.00200 0.10434 R3 0.00220 -0.00226 0.39234 R4 0.00420 -0.00114 0.01710 0.38705 R5 0.00118 -0.00273 0.02117 0.01798 0.39470 A1 0.00437 0.00476 0.00108 -0.00541 0.00263 A2 0.00594 0.00219 -0.00352 -0.00260 -0.00381 A3 -0.01525 -0.00343 -0.00235 -0.00338 -0.00229 A4 0.01376 0.00439 -0.00443 -0.00271 -0.00489 A5 -0.00176 -0.00154 0.00543 0.00479 0.00573 A6 -0.00267 -0.00081 0.00071 0.00019 0.00089 A7 -0.00107 -0.00117 0.00426 0.00377 0.00451 D1 0.00227 0.00045 0.00063 0.00121 0.00042 D2 -0.00038 0.00004 -0.00105 -0.00100 -0.00107 D3 -0.00192 -0.00051 0.00047 -0.00017 0.00070 A1 A2 A3 A4 A5 A1 0.03901 A2 -0.00620 0.16065 A3 -0.00931 0.00087 0.15492 A4 -0.00715 0.00083 0.00239 0.16084 A5 0.01385 -0.00090 0.00042 -0.00143 0.16087 A6 -0.00049 -0.00066 0.00070 -0.00130 0.00037 A7 0.01214 -0.00087 0.00098 -0.00157 0.00064 D1 0.00556 0.00107 -0.00207 0.00236 -0.00034 D2 -0.00083 -0.00004 0.00055 -0.00026 -0.00017 D3 -0.00478 -0.00103 0.00147 -0.00208 0.00053 A6 A7 D1 D2 D3 A6 0.16062 A7 0.00036 0.16041 D1 -0.00088 -0.00035 0.00481 D2 0.00007 -0.00015 -0.00015 0.00375 D3 0.00080 0.00052 -0.00093 0.00012 0.00452 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00372 0.03500 0.08407 0.10413 0.10585 Eigenvalues --- 0.12185 0.16001 0.16240 0.16932 0.37230 Eigenvalues --- 0.37265 0.43015 RFO step: Lambda=-1.57841110D-03 EMin= 3.71895099D-03 Quartic linear search produced a step of 1.61856. Iteration 1 RMS(Cart)= 0.13836614 RMS(Int)= 0.05110540 Iteration 2 RMS(Cart)= 0.10727653 RMS(Int)= 0.01019730 Iteration 3 RMS(Cart)= 0.00993463 RMS(Int)= 0.00045011 Iteration 4 RMS(Cart)= 0.00018353 RMS(Int)= 0.00035089 Iteration 5 RMS(Cart)= 0.00000011 RMS(Int)= 0.00035089 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.14250 0.00661 0.08291 -0.02772 0.05520 4.19770 R2 3.91054 0.00210 0.01602 -0.01085 0.00517 3.91571 R3 2.08138 -0.00458 -0.00558 -0.00547 -0.01104 2.07034 R4 2.08780 -0.00361 0.00493 -0.00686 -0.00192 2.08588 R5 2.07803 -0.00466 -0.00828 -0.00437 -0.01265 2.06537 A1 2.70103 0.01148 0.31199 0.06701 0.37899 3.08003 A2 1.98370 -0.00077 0.02175 -0.02012 0.00097 1.98467 A3 1.73320 0.00807 0.02303 0.06906 0.09165 1.82485 A4 2.07613 -0.00369 0.02924 -0.04663 -0.01786 2.05826 A5 1.88358 -0.00236 -0.03952 0.00361 -0.03655 1.84703 A6 1.88066 0.00133 -0.00708 0.00286 -0.00480 1.87586 A7 1.89183 -0.00239 -0.03615 0.00141 -0.03495 1.85688 D1 -1.77693 -0.00130 0.02547 -0.02701 -0.00168 -1.77861 D2 0.21874 0.00016 0.00066 0.00788 0.00890 0.22764 D3 2.26311 0.00118 -0.01437 0.03655 0.02195 2.28506 Item Value Threshold Converged? Maximum Force 0.011477 0.000015 NO RMS Force 0.004698 0.000010 NO Maximum Displacement 0.467136 0.000060 NO RMS Displacement 0.238378 0.000040 NO Predicted change in Energy=-2.566277D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.293555 0.622801 -0.640089 2 17 0 1.917839 0.478453 -0.487777 3 6 0 -2.340452 0.848245 -0.870323 4 1 0 -2.811691 1.433541 -0.073047 5 1 0 -2.451749 1.448128 -1.790175 6 1 0 -2.941645 -0.052932 -1.015185 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.221328 0.000000 3 C 2.072106 4.291402 0.000000 4 H 2.705521 4.842793 1.095576 0.000000 5 H 2.581020 4.661524 1.103800 1.754509 0.000000 6 H 2.758567 4.916819 1.092949 1.764685 1.758917 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.470583 0.044443 0.026607 2 17 0 -1.749718 -0.013422 -0.008161 3 6 0 2.541683 -0.010555 -0.007235 4 1 0 2.988677 -0.355494 0.931647 5 1 0 2.786487 -0.781485 -0.758309 6 1 0 3.072955 0.895168 -0.310470 --------------------------------------------------------------------- Rotational constants (GHZ): 159.2192473 2.3362919 2.3358084 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8716288395 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.87D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.961903 -0.273365 0.001113 -0.003594 Ang= -31.73 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.269970559 A.U. after 11 cycles NFock= 11 Conv=0.99D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.000810857 -0.002231423 0.001864146 2 17 -0.000626597 0.000064587 -0.000026381 3 6 -0.002430920 0.006942501 -0.006091898 4 1 0.001481832 -0.000708763 0.001302290 5 1 -0.001695684 -0.001643373 0.002076579 6 1 0.002460512 -0.002423528 0.000875264 ------------------------------------------------------------------- Cartesian Forces: Max 0.006942501 RMS 0.002663584 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.005519574 RMS 0.002346341 Search for a local minimum. Step number 5 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 5 DE= -3.17D-03 DEPred=-2.57D-03 R= 1.24D+00 TightC=F SS= 1.41D+00 RLast= 3.99D-01 DXNew= 1.4270D+00 1.1957D+00 Trust test= 1.24D+00 RLast= 3.99D-01 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.13174 R2 0.00164 0.10395 R3 0.00095 -0.00203 0.39283 R4 0.00734 -0.00012 0.01557 0.38581 R5 -0.00112 -0.00270 0.02216 0.01641 0.39630 A1 0.00582 0.00352 0.00068 -0.00050 0.00092 A2 0.01078 0.00332 -0.00580 -0.00313 -0.00647 A3 -0.02415 -0.00625 0.00197 -0.00007 0.00218 A4 0.02352 0.00679 -0.00903 -0.00415 -0.01019 A5 -0.00627 -0.00237 0.00752 0.00456 0.00834 A6 -0.00226 -0.00058 0.00049 -0.00029 0.00074 A7 -0.00513 -0.00188 0.00613 0.00345 0.00688 D1 0.00169 0.00008 0.00095 0.00204 0.00060 D2 -0.00069 0.00000 -0.00091 -0.00107 -0.00088 D3 -0.00108 -0.00011 0.00004 -0.00090 0.00035 A1 A2 A3 A4 A5 A1 0.03707 A2 0.00030 0.16154 A3 -0.02306 0.00211 0.14612 A4 0.00624 0.00216 0.00593 0.16258 A5 0.00834 -0.00262 0.00128 -0.00453 0.16319 A6 0.00041 -0.00112 0.00203 -0.00232 0.00065 A7 0.00727 -0.00256 0.00206 -0.00464 0.00283 D1 0.00419 0.00190 -0.00434 0.00415 -0.00088 D2 -0.00118 -0.00022 0.00075 -0.00061 0.00005 D3 -0.00317 -0.00165 0.00345 -0.00347 0.00085 A6 A7 D1 D2 D3 A6 0.16049 A7 0.00060 0.16248 D1 -0.00067 -0.00080 0.00447 D2 0.00008 0.00004 -0.00017 0.00377 D3 0.00059 0.00077 -0.00058 0.00012 0.00418 ITU= 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00372 0.03023 0.08246 0.10016 0.10449 Eigenvalues --- 0.11835 0.16001 0.16223 0.18189 0.37230 Eigenvalues --- 0.37423 0.43022 RFO step: Lambda=-6.27772762D-04 EMin= 3.71828173D-03 Quartic linear search produced a step of 0.09230. Iteration 1 RMS(Cart)= 0.04581242 RMS(Int)= 0.00168699 Iteration 2 RMS(Cart)= 0.00133558 RMS(Int)= 0.00044584 Iteration 3 RMS(Cart)= 0.00000714 RMS(Int)= 0.00044570 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00044570 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19770 -0.00063 0.00509 0.00805 0.01314 4.21084 R2 3.91571 0.00062 0.00048 0.01061 0.01109 3.92680 R3 2.07034 -0.00007 -0.00102 -0.00057 -0.00159 2.06875 R4 2.08588 -0.00245 -0.00018 -0.00682 -0.00700 2.07888 R5 2.06537 0.00053 -0.00117 0.00100 -0.00017 2.06520 A1 3.08003 -0.00002 0.03498 0.00154 0.03652 3.11655 A2 1.98467 -0.00211 0.00009 -0.01681 -0.01737 1.96730 A3 1.82485 0.00498 0.00846 0.04161 0.05017 1.87502 A4 2.05826 -0.00552 -0.00165 -0.03987 -0.04195 2.01632 A5 1.84703 0.00089 -0.00337 0.01345 0.00994 1.85698 A6 1.87586 0.00189 -0.00044 0.00120 -0.00020 1.87566 A7 1.85688 0.00081 -0.00323 0.00960 0.00667 1.86355 D1 -1.77861 -0.00253 -0.00016 -0.02762 -0.02719 -1.80580 D2 0.22764 0.00051 0.00082 0.00543 0.00660 0.23424 D3 2.28506 0.00203 0.00203 0.02539 0.02649 2.31155 Item Value Threshold Converged? Maximum Force 0.005520 0.000015 NO RMS Force 0.002346 0.000010 NO Maximum Displacement 0.113773 0.000060 NO RMS Displacement 0.046090 0.000040 NO Predicted change in Energy=-3.335954D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.287365 0.645595 -0.662253 2 17 0 1.923057 0.449871 -0.459870 3 6 0 -2.341466 0.865160 -0.886820 4 1 0 -2.799003 1.425998 -0.065502 5 1 0 -2.511955 1.455860 -1.799083 6 1 0 -2.904521 -0.064247 -1.003069 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.228281 0.000000 3 C 2.077973 4.305916 0.000000 4 H 2.696936 4.837996 1.094734 0.000000 5 H 2.626349 4.740763 1.100099 1.757439 0.000000 6 H 2.733045 4.885171 1.092859 1.763802 1.760247 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.472513 0.010082 0.020033 2 17 0 -1.755581 -0.002820 -0.005822 3 6 0 2.550334 -0.000538 -0.002711 4 1 0 2.976083 -0.784501 0.631782 5 1 0 2.867472 -0.227236 -1.031423 6 1 0 3.029165 0.941918 0.274489 --------------------------------------------------------------------- Rotational constants (GHZ): 161.4762020 2.3213456 2.3212434 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6051807857 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.89D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.958850 -0.283912 0.000690 -0.000625 Ang= -32.99 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270495628 A.U. after 10 cycles NFock= 10 Conv=0.43D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001571700 -0.001674155 0.001312749 2 17 -0.002063273 0.000273045 -0.000237231 3 6 -0.001058404 0.004608455 -0.003945247 4 1 0.000808924 -0.000167742 0.001237051 5 1 -0.000745296 -0.000942920 0.001131262 6 1 0.001486348 -0.002096683 0.000501416 ------------------------------------------------------------------- Cartesian Forces: Max 0.004608455 RMS 0.001842419 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003793413 RMS 0.001603390 Search for a local minimum. Step number 6 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 6 DE= -5.25D-04 DEPred=-3.34D-04 R= 1.57D+00 TightC=F SS= 1.41D+00 RLast= 8.88D-02 DXNew= 2.0109D+00 2.6642D-01 Trust test= 1.57D+00 RLast= 8.88D-02 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.14330 R2 0.00755 0.10604 R3 -0.00413 -0.00417 0.39484 R4 -0.00043 -0.00107 0.01750 0.38125 R5 -0.00549 -0.00512 0.02417 0.01997 0.39791 A1 0.01192 0.00586 -0.00163 -0.00210 -0.00155 A2 0.00660 0.00427 -0.00548 -0.01029 -0.00426 A3 -0.00898 -0.00588 -0.00107 0.01362 -0.00506 A4 0.01249 0.00830 -0.00770 -0.01985 -0.00456 A5 -0.00634 -0.00462 0.00864 0.01177 0.00791 A6 0.00159 0.00108 -0.00105 -0.00186 -0.00078 A7 -0.00593 -0.00393 0.00729 0.00929 0.00685 D1 -0.00448 -0.00250 0.00338 0.00431 0.00305 D2 -0.00017 0.00021 -0.00111 -0.00123 -0.00109 D3 0.00459 0.00226 -0.00220 -0.00301 -0.00190 A1 A2 A3 A4 A5 A1 0.03966 A2 0.00064 0.15289 A3 -0.02116 0.02097 0.10768 A4 0.00633 -0.01741 0.04792 0.11846 A5 0.00647 0.00471 -0.01632 0.01248 0.15794 A6 0.00218 -0.00147 0.00458 -0.00356 -0.00012 A7 0.00549 0.00314 -0.01194 0.00865 -0.00104 D1 0.00141 0.00222 -0.00785 0.00560 0.00053 D2 -0.00095 -0.00021 0.00096 -0.00064 -0.00010 D3 -0.00061 -0.00197 0.00675 -0.00487 -0.00043 A6 A7 D1 D2 D3 A6 0.16167 A7 -0.00023 0.15967 D1 -0.00253 0.00065 0.00740 D2 0.00023 -0.00010 -0.00042 0.00379 D3 0.00230 -0.00055 -0.00329 0.00035 0.00668 ITU= 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00372 0.02725 0.05345 0.09783 0.10492 Eigenvalues --- 0.12060 0.15013 0.16006 0.16551 0.36895 Eigenvalues --- 0.37230 0.43606 RFO step: Lambda=-1.55919922D-04 EMin= 3.71821537D-03 Quartic linear search produced a step of 1.21614. New curvilinear step failed, DQL= 5.40D+00 SP=-3.90D-01. ITry= 1 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.90D-01. ITry= 2 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.89D-01. ITry= 3 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.88D-01. ITry= 4 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.86D-01. ITry= 5 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.85D-01. ITry= 6 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.82D-01. ITry= 7 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.80D-01. ITry= 8 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.77D-01. ITry= 9 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.40D+00 SP=-3.74D-01. ITry=10 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F RedQX1 iteration 1 Try 1 RMS(Cart)= 0.01111206 RMS(Int)= 0.02414589 XScale= 5.00431479 RedQX1 iteration 1 Try 2 RMS(Cart)= 0.01111391 RMS(Int)= 0.01813512 XScale= 2.50311807 RedQX1 iteration 1 Try 3 RMS(Cart)= 0.01112220 RMS(Int)= 0.01215920 XScale= 1.66815656 RedQX1 iteration 1 Try 4 RMS(Cart)= 0.01114608 RMS(Int)= 1.40789318 XScale= 0.02162046 RedQX1 iteration 2 Try 1 RMS(Cart)= 0.00445843 RMS(Int)= 0.00978011 XScale= 1.47198747 RedQX1 iteration 2 Try 2 RMS(Cart)= 0.00446495 RMS(Int)= 0.00740877 XScale= 1.31799387 RedQX1 iteration 2 Try 3 RMS(Cart)= 0.00447532 RMS(Int)= 1.40782184 XScale= 0.02162123 RedQX1 iteration 3 Try 1 RMS(Cart)= 0.00268519 RMS(Int)= 1.40834908 XScale= 0.02161327 RedQX1 iteration 4 Try 1 RMS(Cart)= 0.00053704 RMS(Int)= 0.00713538 XScale= 1.30053231 RedQX1 iteration 4 Try 2 RMS(Cart)= 0.00053722 RMS(Int)= 0.00697984 XScale= 1.28455234 RedQX1 iteration 4 Try 3 RMS(Cart)= 0.00053736 RMS(Int)= 1.40507187 XScale= 0.02162262 RedQX1 iteration 5 Try 1 RMS(Cart)= 0.00049438 RMS(Int)= 1.40497153 XScale= 0.02162419 RedQX1 iteration 6 Try 1 RMS(Cart)= 0.00009888 RMS(Int)= 0.00727648 XScale= 1.27147884 RedQX1 iteration 6 Try 2 RMS(Cart)= 0.00009890 RMS(Int)= 1.09580697 XScale= 0.02754083 RedQX1 iteration 7 Try 1 RMS(Cart)= 0.00009811 RMS(Int)= 0.96286842 XScale= 0.03134323 RedQX1 iteration 8 Try 1 RMS(Cart)= 0.00001962 RMS(Int)= 0.00685155 XScale= 1.27940049 RedQX1 iteration 8 Try 2 RMS(Cart)= 0.00001962 RMS(Int)= 0.00677100 XScale= 1.28078293 RedQX1 iteration 8 Try 3 RMS(Cart)= 0.00001962 RMS(Int)= 0.00675671 XScale= 1.28043228 RedQX1 iteration 8 Try 4 RMS(Cart)= 0.00001962 RMS(Int)= 0.00674869 XScale= 1.27971395 RedQX1 iteration 8 Try 5 RMS(Cart)= 0.00001962 RMS(Int)= 1.40680187 XScale= 0.02163765 RedQX1 iteration 9 Try 1 RMS(Cart)= 0.00001949 RMS(Int)= 1.40663591 XScale= 0.02164025 RedQX1 iteration 10 Try 1 RMS(Cart)= 0.00000390 RMS(Int)= 0.00674548 XScale= 1.27966478 RedQX1 iteration 10 Try 2 RMS(Cart)= 0.00000390 RMS(Int)= 0.00674300 XScale= 1.27957730 RedQX1 iteration 10 Try 3 RMS(Cart)= 0.00000390 RMS(Int)= 0.00674091 XScale= 1.27946613 RedQX1 iteration 10 Try 4 RMS(Cart)= 0.00000390 RMS(Int)= 0.00673890 XScale= 1.27934929 RedQX1 iteration 10 Try 5 RMS(Cart)= 0.00000390 RMS(Int)= 1.40792427 XScale= 0.02162011 RedQX1 iteration 11 Try 1 RMS(Cart)= 0.00000389 RMS(Int)= 1.40792424 XScale= 0.02162011 RedQX1 iteration 12 Try 1 RMS(Cart)= 0.00000078 RMS(Int)= 0.00673846 XScale= 1.27932823 RedQX1 iteration 12 Try 2 RMS(Cart)= 0.00000078 RMS(Int)= 0.00673805 XScale= 1.27930578 RedQX1 iteration 12 Try 3 RMS(Cart)= 0.00000078 RMS(Int)= 0.00673764 XScale= 1.27928282 RedQX1 iteration 12 Try 4 RMS(Cart)= 0.00000078 RMS(Int)= 1.40792581 XScale= 0.02162009 RedQX1 iteration 13 Try 1 RMS(Cart)= 0.00000078 RMS(Int)= 1.40792575 XScale= 0.02162009 RedQX1 iteration 14 Try 1 RMS(Cart)= 0.00000016 RMS(Int)= 0.00673756 XScale= 1.27927835 RedQX1 iteration 14 Try 2 RMS(Cart)= 0.00000016 RMS(Int)= 0.00673748 XScale= 1.27927383 RedQX1 iteration 14 Try 3 RMS(Cart)= 0.00000016 RMS(Int)= 0.00673739 XScale= 1.27926929 RedQX1 iteration 14 Try 4 RMS(Cart)= 0.00000016 RMS(Int)= 0.00673731 XScale= 1.27926472 RedQX1 iteration 14 Try 5 RMS(Cart)= 0.00000016 RMS(Int)= 1.40793054 XScale= 0.02162001 RedQX1 iteration 15 Try 1 RMS(Cart)= 0.00000016 RMS(Int)= 1.40793054 XScale= 0.02162001 RedQX1 iteration 16 Try 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.00673729 XScale= 1.27926381 TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.21084 -0.00209 0.01598 -0.02381 -0.00529 4.20555 R2 3.92680 -0.00022 0.01348 -0.00774 0.00450 3.93130 R3 2.06875 0.00050 -0.00193 0.00212 0.00092 2.06967 R4 2.07888 -0.00133 -0.00851 -0.00136 -0.00607 2.07282 R5 2.06520 0.00096 -0.00021 0.00296 0.00403 2.06924 A1 3.11655 -0.00041 0.04441 -0.01244 0.02505 3.14159 A2 1.96730 -0.00143 -0.02113 -0.00378 -0.02052 1.94678 A3 1.87502 0.00284 0.06101 0.00465 0.05167 1.92669 A4 2.01632 -0.00379 -0.05101 -0.01296 -0.05070 1.96562 A5 1.85698 0.00077 0.01209 0.00611 0.01399 1.87097 A6 1.87566 0.00126 -0.00025 0.00316 -0.00061 1.87504 A7 1.86355 0.00080 0.00811 0.00479 0.01098 1.87453 D1 -1.80580 -0.00151 -0.03307 -0.00725 -0.02990 -1.83570 D2 0.23424 0.00041 0.00803 0.00101 0.00823 0.24247 D3 2.31155 0.00111 0.03221 0.00237 0.02598 2.33752 Item Value Threshold Converged? Maximum Force 0.003793 0.000015 NO RMS Force 0.001603 0.000010 NO Maximum Displacement 0.102656 0.000060 NO RMS Displacement 0.043537 0.000040 NO Predicted change in Energy=-2.951033D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.284840 0.662358 -0.678444 2 17 0 1.914828 0.425578 -0.437256 3 6 0 -2.341060 0.883696 -0.903904 4 1 0 -2.783059 1.419780 -0.057285 5 1 0 -2.566278 1.462862 -1.807788 6 1 0 -2.860843 -0.076037 -0.991920 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225483 0.000000 3 C 2.080352 4.305835 0.000000 4 H 2.683398 4.816945 1.095222 0.000000 5 H 2.668554 4.799440 1.096887 1.764400 0.000000 6 H 2.698015 4.833871 1.094993 1.765520 1.766527 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471171 0.001001 0.000325 2 17 0 -1.754312 -0.000033 -0.000006 3 6 0 2.551523 0.001968 0.000634 4 1 0 2.953684 -0.320390 0.967001 5 1 0 2.934143 -0.692078 -0.757695 6 1 0 2.972278 0.989209 -0.216919 --------------------------------------------------------------------- Rotational constants (GHZ): 160.9052330 2.3233687 2.3233261 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6525666564 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.85D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.964820 0.262909 0.000676 -0.000623 Ang= 30.49 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270800802 A.U. after 10 cycles NFock= 10 Conv=0.37D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001045122 -0.000697685 0.000445269 2 17 -0.001402863 0.000222799 -0.000194679 3 6 -0.000366364 0.001270890 -0.001056924 4 1 0.000204972 0.000028090 0.000321533 5 1 -0.000147172 -0.000452750 0.000464541 6 1 0.000666305 -0.000371343 0.000020261 ------------------------------------------------------------------- Cartesian Forces: Max 0.001402863 RMS 0.000661238 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001431393 RMS 0.000595673 Search for a local minimum. Step number 7 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 4 5 6 7 DE= -3.05D-04 DEPred=-2.95D-04 R= 1.03D+00 TightC=F SS= 1.41D+00 RLast= 9.13D-02 DXNew= 2.0109D+00 2.7404D-01 Trust test= 1.03D+00 RLast= 9.13D-02 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.13368 R2 0.00551 0.10573 R3 0.00001 -0.00327 0.39319 R4 -0.00166 -0.00182 0.01820 0.38330 R5 0.00051 -0.00374 0.02164 0.02022 0.39413 A1 0.00547 0.00396 0.00045 -0.00274 0.00105 A2 0.00187 0.00285 -0.00325 -0.00878 -0.00160 A3 -0.00350 -0.00430 -0.00410 0.01069 -0.00893 A4 0.00265 0.00563 -0.00296 -0.01718 0.00173 A5 -0.00092 -0.00318 0.00625 0.01132 0.00492 A6 0.00155 0.00144 -0.00098 -0.00327 -0.00038 A7 -0.00093 -0.00251 0.00510 0.00859 0.00425 D1 -0.00451 -0.00289 0.00328 0.00588 0.00282 D2 0.00006 0.00036 -0.00119 -0.00156 -0.00109 D3 0.00438 0.00251 -0.00202 -0.00426 -0.00166 A1 A2 A3 A4 A5 A1 0.03678 A2 -0.00187 0.15245 A3 -0.01891 0.02087 0.10762 A4 0.00199 -0.01914 0.05021 0.11225 A5 0.01006 0.00621 -0.01728 0.01571 0.15546 A6 0.00081 -0.00275 0.00609 -0.00556 0.00073 A7 0.00880 0.00421 -0.01219 0.01093 -0.00320 D1 0.00390 0.00343 -0.00846 0.00687 -0.00047 D2 -0.00103 -0.00045 0.00136 -0.00106 -0.00003 D3 -0.00302 -0.00296 0.00696 -0.00574 0.00051 A6 A7 D1 D2 D3 A6 0.16275 A7 0.00080 0.15783 D1 -0.00373 -0.00063 0.00858 D2 0.00053 0.00002 -0.00078 0.00386 D3 0.00321 0.00062 -0.00410 0.00065 0.00719 ITU= 1 1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00372 0.02726 0.05132 0.09646 0.10489 Eigenvalues --- 0.12098 0.13612 0.16003 0.16381 0.36878 Eigenvalues --- 0.37222 0.43192 RFO step: Lambda=-1.55520480D-05 EMin= 3.71825563D-03 Quartic linear search produced a step of 0.37001. SLEqS3 Cycle: 30 Max:0.105411E-01 RMS: 595.484 Conv:0.148343E-02 Iteration 1 RMS(Cart)= 0.01118740 RMS(Int)= 0.00287126 SLEqS3 Cycle: 15 Max:0.102993E-01 RMS: 6.56712 Conv:0.163637E-04 Iteration 2 RMS(Cart)= 0.00002104 RMS(Int)= 0.00287790 SLEqS3 Cycle: 181 Max:0.715650E-03 RMS:0.290061E-03 Conv:0.589942E-06 SLEqS3 Cycle: 181 Max:0.246022E-01 RMS:0.956682E-02 Conv:0.589942E-06 Iteration 3 RMS(Cart)= 0.00529886 RMS(Int)= 0.00652303 SLEqS3 Cycle: 15 Max:0.106014E-01 RMS: 9.35068 Conv:0.232911E-04 Iteration 4 RMS(Cart)= 0.00620990 RMS(Int)= 0.00272009 SLEqS3 Cycle: 36 Max:0.585248E-03 RMS:0.176104E-03 Conv:0.303299E-04 New curvilinear step failed, DQL= 5.44D+00 SP=-2.37D-02. ITry= 1 IFail=1 DXMaxC= 2.88D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 30 Max:0.972898E-02 RMS: 880.968 Conv:0.219462E-02 Iteration 1 RMS(Cart)= 0.01123843 RMS(Int)= 0.00269403 SLEqS3 Cycle: 15 Max:0.949835E-02 RMS: 2.79719 Conv:0.697070E-05 Iteration 2 RMS(Cart)= 0.00000934 RMS(Int)= 0.00269717 SLEqS3 Cycle: 181 Max:0.950068E-02 RMS:0.339856E-02 Conv:0.162629E-06 SLEqS3 Cycle: 181 Max:0.950733E-02 RMS:0.332530E-02 Conv:0.162629E-06 Iteration 3 RMS(Cart)= 0.00018831 RMS(Int)= 0.00263903 SLEqS3 Cycle: 181 Max:0.565500E-03 RMS:0.216445E-03 Conv:0.190494E-06 SLEqS3 Cycle: 181 Max:0.950825E-02 RMS:0.325332E-02 Conv:0.190494E-06 Iteration 4 RMS(Cart)= 0.00017246 RMS(Int)= 0.00259514 SLEqS3 Cycle: 181 Max:0.948766E-02 RMS:0.337750E-02 Conv:0.188793E-06 SLEqS3 Cycle: 181 Max:0.948920E-02 RMS:0.336015E-02 Conv:0.188793E-06 Iteration 5 RMS(Cart)= 0.00024579 RMS(Int)= 0.00266054 SLEqS3 Cycle: 15 Max:0.949980E-02 RMS:0.100784 Conv:0.249821E-06 Iteration 6 RMS(Cart)= 0.00005509 RMS(Int)= 0.00264429 SLEqS3 Cycle: 181 Max:0.557334E-03 RMS:0.215198E-03 Conv:0.153334E-06 SLEqS3 Cycle: 181 Max:0.950560E-02 RMS:0.326955E-02 Conv:0.153334E-06 Iteration 7 RMS(Cart)= 0.00014917 RMS(Int)= 0.00260492 SLEqS3 Cycle: 181 Max:0.554372E-03 RMS:0.205067E-03 Conv:0.148421E-06 SLEqS3 Cycle: 181 Max:0.950588E-02 RMS:0.322673E-02 Conv:0.148421E-06 Iteration 8 RMS(Cart)= 0.00011944 RMS(Int)= 0.00257842 SLEqS3 Cycle: 181 Max:0.508133E-03 RMS:0.182575E-03 Conv:0.149131E-06 SLEqS3 Cycle: 181 Max:0.949503E-02 RMS:0.328359E-02 Conv:0.149131E-06 Iteration 9 RMS(Cart)= 0.00015711 RMS(Int)= 0.00261426 SLEqS3 Cycle: 181 Max:0.951535E-02 RMS:0.319019E-02 Conv:0.531774E-06 SLEqS3 Cycle: 181 Max:0.951582E-02 RMS:0.318782E-02 Conv:0.531774E-06 Iteration 10 RMS(Cart)= 0.00029875 RMS(Int)= 0.00255305 SLEqS3 Cycle: 181 Max:0.507391E-03 RMS:0.171758E-03 Conv:0.952206E-06 SLEqS3 Cycle: 181 Max:0.955311E-02 RMS:0.334706E-02 Conv:0.952206E-06 Iteration 11 RMS(Cart)= 0.00115266 RMS(Int)= 0.00260294 SLEqS3 Cycle: 181 Max:0.950871E-02 RMS:0.345273E-02 Conv:0.142662E-06 SLEqS3 Cycle: 181 Max:0.950774E-02 RMS:0.344044E-02 Conv:0.142662E-06 Iteration 12 RMS(Cart)= 0.00018517 RMS(Int)= 0.00265218 SLEqS3 Cycle: 181 Max:0.848453E-03 RMS:0.323537E-03 Conv:0.150914E-06 SLEqS3 Cycle: 181 Max:0.949374E-02 RMS:0.335872E-02 Conv:0.150914E-06 Iteration 13 RMS(Cart)= 0.00015506 RMS(Int)= 0.00261028 SLEqS3 Cycle: 181 Max:0.750065E-03 RMS:0.294152E-03 Conv:0.136310E-06 SLEqS3 Cycle: 181 Max:0.949382E-02 RMS:0.330234E-02 Conv:0.136310E-06 Iteration 14 RMS(Cart)= 0.00011813 RMS(Int)= 0.00258332 SLEqS3 Cycle: 181 Max:0.710453E-03 RMS:0.281850E-03 Conv:0.183273E-06 SLEqS3 Cycle: 181 Max:0.951143E-02 RMS:0.341776E-02 Conv:0.183273E-06 Iteration 15 RMS(Cart)= 0.00022977 RMS(Int)= 0.00263982 SLEqS3 Cycle: 181 Max:0.870417E-03 RMS:0.321543E-03 Conv:0.420441E-06 SLEqS3 Cycle: 181 Max:0.985791E-02 RMS:0.476811E-02 Conv:0.420441E-06 Iteration 16 RMS(Cart)= 0.00158095 RMS(Int)= 0.00339098 SLEqS3 Cycle: 29 Max:0.938372E-02 RMS:0.316306E-02 Conv:0.334653E-05 Iteration 17 RMS(Cart)= 0.00250797 RMS(Int)= 0.00251962 SLEqS3 Cycle: 181 Max:0.467417E-03 RMS:0.179264E-03 Conv:0.190375E-04 SLEqS3 Cycle: 181 Max:0.469653E-03 RMS:0.180603E-03 Conv:0.190375E-04 New curvilinear step failed, DQL= 5.44D+00 SP=-7.34D-03. ITry= 2 IFail=1 DXMaxC= 2.86D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 38 Max:0.504659E-02 RMS: 1166.45 Conv:0.290581E-02 New curvilinear step failed, DQL= 5.43D+00 SP=-3.75D-01. ITry= 3 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 39 Max:0.490409E-02 RMS: 1451.94 Conv:0.361699E-02 New curvilinear step failed, DQL= 5.43D+00 SP=-3.72D-01. ITry= 4 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 53 Max:0.475145E-02 RMS: 1737.42 Conv:0.432818E-02 New curvilinear step failed, DQL= 5.43D+00 SP=-3.71D-01. ITry= 5 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.43D+00 SP=-3.85D-01. ITry= 6 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.43D+00 SP=-3.87D-01. ITry= 7 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.01156970 RMS(Int)= 0.00234237 SLEqS3 Cycle: 15 Max:0.581427E-02 RMS: 15.5648 Conv:0.387890E-04 Iteration 2 RMS(Cart)= 0.00018620 RMS(Int)= 0.00227350 SLEqS3 Cycle: 181 Max:0.236661E-02 RMS:0.865534E-03 Conv:0.260608E-05 SLEqS3 Cycle: 181 Max:0.590480E-02 RMS:0.190764E-02 Conv:0.260608E-05 Iteration 3 RMS(Cart)= 0.00065688 RMS(Int)= 0.00213138 SLEqS3 Cycle: 181 Max:0.227493E-02 RMS:0.889513E-03 Conv:0.728091E-06 SLEqS3 Cycle: 181 Max:0.595351E-02 RMS:0.199785E-02 Conv:0.728091E-06 Iteration 4 RMS(Cart)= 0.00037128 RMS(Int)= 0.00212750 SLEqS3 Cycle: 181 Max:0.220384E-02 RMS:0.905218E-03 Conv:0.695344E-06 SLEqS3 Cycle: 181 Max:0.594268E-02 RMS:0.194681E-02 Conv:0.695344E-06 Iteration 5 RMS(Cart)= 0.00009235 RMS(Int)= 0.00212302 SLEqS3 Cycle: 181 Max:0.592466E-02 RMS:0.190656E-02 Conv:0.547932E-06 SLEqS3 Cycle: 181 Max:0.220139E-02 RMS:0.894344E-03 Conv:0.547932E-06 New curvilinear step failed, DQL= 5.44D+00 SP=-2.23D-02. ITry= 8 IFail=1 DXMaxC= 3.03D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.01162995 RMS(Int)= 0.00242520 SLEqS3 Cycle: 15 Max:0.529444E-02 RMS: 24.4861 Conv:0.610244E-04 Iteration 2 RMS(Cart)= 0.00038424 RMS(Int)= 0.00229974 SLEqS3 Cycle: 181 Max:0.258311E-02 RMS:0.968736E-03 Conv:0.729252E-06 SLEqS3 Cycle: 181 Max:0.533340E-02 RMS:0.174979E-02 Conv:0.729252E-06 Iteration 3 RMS(Cart)= 0.00040133 RMS(Int)= 0.00222541 SLEqS3 Cycle: 181 Max:0.265241E-02 RMS:0.103476E-02 Conv:0.811661E-06 SLEqS3 Cycle: 181 Max:0.538020E-02 RMS:0.178908E-02 Conv:0.811661E-06 Iteration 4 RMS(Cart)= 0.00016693 RMS(Int)= 0.00221263 SLEqS3 Cycle: 181 Max:0.252875E-02 RMS:0.101112E-02 Conv:0.767310E-07 SLEqS3 Cycle: 181 Max:0.536666E-02 RMS:0.176647E-02 Conv:0.767310E-07 Iteration 5 RMS(Cart)= 0.00002756 RMS(Int)= 0.00221398 SLEqS3 Cycle: 181 Max:0.259236E-02 RMS:0.103400E-02 Conv:0.557511E-07 SLEqS3 Cycle: 181 Max:0.537876E-02 RMS:0.177754E-02 Conv:0.557511E-07 Iteration 6 RMS(Cart)= 0.00002313 RMS(Int)= 0.00221535 SLEqS3 Cycle: 181 Max:0.534813E-02 RMS:0.174781E-02 Conv:0.534489E-08 SLEqS3 Cycle: 181 Max:0.534810E-02 RMS:0.174775E-02 Conv:0.534489E-08 Iteration 7 RMS(Cart)= 0.00000029 RMS(Int)= 0.00221537 ITry= 9 IFail=0 DXMaxC= 3.01D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20555 -0.00143 -0.00196 -0.00842 0.00002 4.20558 R2 3.93130 -0.00028 0.00166 -0.00214 0.00002 3.93132 R3 2.06967 0.00018 0.00034 0.00021 0.00036 2.07003 R4 2.07282 -0.00059 -0.00225 -0.00085 -0.00217 2.07065 R5 2.06924 0.00001 0.00149 -0.00088 0.00121 2.07044 A1 3.14159 -0.00034 0.00927 -0.00849 0.00000 3.14159 A2 1.94678 -0.00030 -0.00759 0.00156 -0.00751 1.93927 A3 1.92669 0.00077 0.01912 -0.00221 0.01850 1.94519 A4 1.96562 -0.00124 -0.01876 -0.00094 -0.01890 1.94672 A5 1.87097 0.00022 0.00518 0.00073 0.00506 1.87603 A6 1.87504 0.00046 -0.00023 0.00192 -0.00033 1.87471 A7 1.87453 0.00017 0.00406 -0.00097 0.00394 1.87847 D1 -1.83570 -0.00036 -0.01106 0.00039 -0.01037 -1.84607 D2 0.24247 0.00022 0.00305 0.00085 0.00335 0.24582 D3 2.33752 0.00014 0.00961 -0.00256 0.00835 2.34587 Item Value Threshold Converged? Maximum Force 0.001431 0.000015 NO RMS Force 0.000596 0.000010 NO Maximum Displacement 0.030142 0.000060 NO RMS Displacement 0.012479 0.000040 NO Predicted change in Energy=-2.458035D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286025 0.663139 -0.679199 2 17 0 1.912415 0.420362 -0.432718 3 6 0 -2.341097 0.890083 -0.909606 4 1 0 -2.777956 1.418430 -0.055243 5 1 0 -2.582229 1.465050 -1.810669 6 1 0 -2.846362 -0.078827 -0.989161 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225495 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.677593 4.810218 1.095414 0.000000 5 H 2.682506 4.815801 1.095740 1.766919 0.000000 6 H 2.683638 4.817133 1.095631 1.765973 1.768671 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471385 -0.000039 -0.000251 2 17 0 -1.754110 0.000019 0.000021 3 6 0 2.551748 -0.000093 -0.000505 4 1 0 2.946437 0.179729 1.005386 5 1 0 2.952400 -0.960126 -0.344686 6 1 0 2.953925 0.781106 -0.655020 --------------------------------------------------------------------- Rotational constants (GHZ): 160.5716617 2.3238595 2.3237991 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6601722953 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.970347 0.241715 0.000078 -0.000261 Ang= 27.98 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270824916 A.U. after 9 cycles NFock= 9 Conv=0.10D-08 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001248879 -0.000225131 0.000037249 2 17 -0.001395840 0.000164709 -0.000143931 3 6 -0.000084051 0.000063695 0.000092105 4 1 -0.000047191 0.000091045 -0.000009940 5 1 0.000064708 -0.000257310 0.000189747 6 1 0.000213496 0.000162993 -0.000165228 ------------------------------------------------------------------- Cartesian Forces: Max 0.001395840 RMS 0.000462124 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001412779 RMS 0.000392596 Search for a local minimum. Step number 8 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 DE= -2.41D-05 DEPred=-2.46D-05 R= 9.81D-01 TightC=F SS= 1.41D+00 RLast= 3.15D-02 DXNew= 2.0109D+00 9.4488D-02 Trust test= 9.81D-01 RLast= 3.15D-02 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12846 R2 0.00393 0.10510 R3 0.00269 -0.00234 0.39187 R4 0.00021 -0.00145 0.01706 0.38330 R5 0.00376 -0.00250 0.02004 0.01873 0.39216 A1 0.00224 0.00256 0.00180 -0.00100 0.00271 A2 0.00145 0.00243 -0.00326 -0.00767 -0.00175 A3 -0.00396 -0.00358 -0.00393 0.01042 -0.00891 A4 0.00078 0.00417 -0.00222 -0.01516 0.00259 A5 0.00062 -0.00275 0.00575 0.00992 0.00457 A6 0.00044 0.00142 -0.00026 -0.00353 0.00052 A7 0.00022 -0.00218 0.00485 0.00709 0.00424 D1 -0.00364 -0.00327 0.00281 0.00588 0.00245 D2 -0.00014 0.00037 -0.00103 -0.00173 -0.00086 D3 0.00370 0.00287 -0.00171 -0.00407 -0.00151 A1 A2 A3 A4 A5 A1 0.03670 A2 -0.00156 0.15382 A3 -0.01828 0.02005 0.10600 A4 0.00096 -0.01723 0.05013 0.11387 A5 0.01026 0.00506 -0.01544 0.01374 0.15574 A6 -0.00073 -0.00363 0.00586 -0.00673 0.00194 A7 0.00849 0.00273 -0.01014 0.00836 -0.00259 D1 0.00507 0.00373 -0.00653 0.00625 -0.00168 D2 -0.00144 -0.00078 0.00148 -0.00155 0.00031 D3 -0.00379 -0.00291 0.00489 -0.00460 0.00138 A6 A7 D1 D2 D3 A6 0.16308 A7 0.00216 0.15881 D1 -0.00367 -0.00195 0.00766 D2 0.00071 0.00042 -0.00087 0.00393 D3 0.00296 0.00154 -0.00307 0.00066 0.00613 ITU= 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00372 0.02719 0.05276 0.09596 0.10449 Eigenvalues --- 0.12031 0.13073 0.15995 0.16492 0.36939 Eigenvalues --- 0.37221 0.42776 En-DIIS/RFO-DIIS IScMMF= 0 using points: 8 7 RFO step: Lambda=-6.27936915D-06. DidBck=F Rises=F RFO-DIIS coefs: 0.99394 0.00606 SLEqS3 Cycle: 15 Max:0.108411E-01 RMS: 502.175 Conv:0.125155E-02 Iteration 1 RMS(Cart)= 0.00009016 RMS(Int)= 0.00297480 SLEqS3 Cycle: 181 Max:0.604757E-03 RMS:0.178256E-03 Conv:0.172508E-04 SLEqS3 Cycle: 15 Max:0.108374E-01 RMS: 6.92175 Conv:0.172508E-04 Iteration 2 RMS(Cart)= 0.00000829 RMS(Int)= 0.00297280 SLEqS3 Cycle: 181 Max:0.108295E-01 RMS:0.361751E-02 Conv:0.908010E-07 SLEqS3 Cycle: 181 Max:0.108311E-01 RMS:0.360812E-02 Conv:0.908010E-07 Iteration 3 RMS(Cart)= 0.00017534 RMS(Int)= 0.00301399 SLEqS3 Cycle: 181 Max:0.108361E-01 RMS:0.361068E-02 Conv:0.108112E-07 SLEqS3 Cycle: 181 Max:0.108360E-01 RMS:0.361121E-02 Conv:0.108112E-07 Iteration 4 RMS(Cart)= 0.00001665 RMS(Int)= 0.00301818 SLEqS3 Cycle: 181 Max:0.678990E-03 RMS:0.198347E-03 Conv:0.212986E-07 SLEqS3 Cycle: 181 Max:0.108341E-01 RMS:0.361802E-02 Conv:0.212986E-07 Iteration 5 RMS(Cart)= 0.00003980 RMS(Int)= 0.00302836 SLEqS3 Cycle: 181 Max:0.108367E-01 RMS:0.360840E-02 Conv:0.282721E-07 SLEqS3 Cycle: 181 Max:0.108370E-01 RMS:0.360697E-02 Conv:0.282721E-07 Iteration 6 RMS(Cart)= 0.00006207 RMS(Int)= 0.00301260 SLEqS3 Cycle: 181 Max:0.683825E-03 RMS:0.195256E-03 Conv:0.395525E-07 SLEqS3 Cycle: 181 Max:0.108342E-01 RMS:0.362166E-02 Conv:0.395525E-07 Iteration 7 RMS(Cart)= 0.00007979 RMS(Int)= 0.00303299 SLEqS3 Cycle: 181 Max:0.108279E-01 RMS:0.367387E-02 Conv:0.110464E-06 SLEqS3 Cycle: 181 Max:0.108273E-01 RMS:0.367853E-02 Conv:0.110464E-06 Iteration 8 RMS(Cart)= 0.00028374 RMS(Int)= 0.00311390 SLEqS3 Cycle: 181 Max:0.869014E-03 RMS:0.247524E-03 Conv:0.137915E-06 SLEqS3 Cycle: 181 Max:0.108437E-01 RMS:0.361904E-02 Conv:0.137915E-06 Iteration 9 RMS(Cart)= 0.00030041 RMS(Int)= 0.00302877 SLEqS3 Cycle: 181 Max:0.682803E-03 RMS:0.213974E-03 Conv:0.257944E-06 SLEqS3 Cycle: 181 Max:0.108479E-01 RMS:0.355801E-02 Conv:0.257944E-06 Iteration 10 RMS(Cart)= 0.00038617 RMS(Int)= 0.00294145 SLEqS3 Cycle: 181 Max:0.537141E-03 RMS:0.168980E-03 Conv:0.941525E-06 SLEqS3 Cycle: 181 Max:0.108541E-01 RMS:0.350344E-02 Conv:0.941525E-06 Iteration 11 RMS(Cart)= 0.00054586 RMS(Int)= 0.00286448 SLEqS3 Cycle: 181 Max:0.115938E-01 RMS:0.573108E-02 Conv:0.126458E-05 SLEqS3 Cycle: 29 Max:0.108370E-01 RMS:0.349049E-02 Conv:0.126458E-05 Iteration 12 RMS(Cart)= 0.00000069 RMS(Int)= 0.00286455 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01095 0.00000 4.20558 R2 3.93132 -0.00015 0.00000 -0.00105 0.00000 3.93132 R3 2.07003 0.00005 0.00000 0.00027 0.00028 2.07032 R4 2.07065 -0.00031 0.00001 -0.00078 -0.00059 2.07006 R5 2.07044 -0.00023 -0.00001 -0.00047 -0.00037 2.07007 A1 3.14159 0.00000 0.00000 0.00060 0.00000 3.14159 A2 1.93927 0.00017 0.00005 0.00151 0.00094 1.94021 A3 1.94519 -0.00005 -0.00011 -0.00071 -0.00048 1.94471 A4 1.94672 -0.00017 0.00011 -0.00125 -0.00071 1.94601 A5 1.87603 0.00001 -0.00003 0.00047 0.00026 1.87630 A6 1.87471 0.00016 0.00000 0.00130 0.00087 1.87558 A7 1.87847 -0.00011 -0.00002 -0.00127 -0.00086 1.87761 D1 -1.84607 0.00003 0.00006 0.00016 0.00013 -1.84594 D2 0.24582 0.00013 -0.00002 0.00129 0.00078 0.24660 D3 2.34587 -0.00016 -0.00005 -0.00167 -0.00113 2.34474 Item Value Threshold Converged? Maximum Force 0.001413 0.000015 NO RMS Force 0.000393 0.000010 NO Maximum Displacement 0.001602 0.000060 NO RMS Displacement 0.000781 0.000040 NO Predicted change in Energy=-7.471359D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286094 0.663159 -0.679132 2 17 0 1.912367 0.420168 -0.433053 3 6 0 -2.341186 0.890304 -0.909163 4 1 0 -2.778804 1.418851 -0.055121 5 1 0 -2.581873 1.464470 -1.810480 6 1 0 -2.845662 -0.078717 -0.989648 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225496 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.678444 4.811162 1.095564 0.000000 5 H 2.681911 4.815191 1.095430 1.766960 0.000000 6 H 2.682944 4.816381 1.095434 1.766499 1.767703 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471395 -0.000025 -0.000186 2 17 0 -1.754100 0.000013 0.000014 3 6 0 2.551758 -0.000060 -0.000373 4 1 0 2.947429 0.198016 1.001859 5 1 0 2.951827 -0.965897 -0.327590 6 1 0 2.953156 0.768318 -0.670039 --------------------------------------------------------------------- Rotational constants (GHZ): 160.5955946 2.3238706 2.3238438 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6617298600 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999958 0.009212 -0.000014 0.000001 Ang= 1.06 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270825765 A.U. after 8 cycles NFock= 8 Conv=0.44D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001252238 -0.000207079 0.000062991 2 17 -0.001394879 0.000162543 -0.000146558 3 6 -0.000005936 0.000089028 0.000219132 4 1 -0.000007735 -0.000002657 -0.000097556 5 1 0.000030981 -0.000090887 0.000042504 6 1 0.000125332 0.000049053 -0.000080513 ------------------------------------------------------------------- Cartesian Forces: Max 0.001394879 RMS 0.000453978 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001411887 RMS 0.000374355 Search for a local minimum. Step number 9 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 DE= -8.49D-07 DEPred=-7.47D-07 R= 1.14D+00 Trust test= 1.14D+00 RLast= 2.38D-03 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12673 R2 0.00301 0.10449 R3 0.00383 -0.00322 0.41196 R4 0.00060 0.00164 -0.00849 0.40039 R5 0.00437 -0.00040 0.00522 0.02665 0.39542 A1 0.00128 0.00160 0.00180 0.00086 0.00373 A2 0.00259 0.00254 -0.01600 0.02797 0.02094 A3 -0.00407 -0.00359 0.00372 -0.00862 -0.02122 A4 0.00019 0.00468 0.00289 -0.03703 -0.01187 A5 0.00029 -0.00332 0.00447 0.01733 0.00973 A6 0.00042 0.00036 0.00125 0.00923 0.00978 A7 -0.00107 -0.00197 0.00562 -0.00720 -0.00526 D1 -0.00395 -0.00381 0.00737 -0.00164 -0.00210 D2 -0.00037 -0.00029 0.01163 -0.02236 -0.01325 D3 0.00425 0.00408 -0.01883 0.02379 0.01524 A1 A2 A3 A4 A5 A1 0.03646 A2 -0.00117 0.12623 A3 -0.01736 0.03191 0.10186 A4 0.00158 0.00637 0.03989 0.09515 A5 0.00903 -0.00277 -0.01247 0.01972 0.15396 A6 -0.00187 -0.02792 0.01705 0.01130 -0.00388 A7 0.00750 0.02650 -0.02180 -0.01004 0.00371 D1 0.00468 0.00523 -0.00683 0.00415 -0.00106 D2 -0.00176 0.00083 0.00188 -0.00544 0.00164 D3 -0.00305 -0.00586 0.00473 0.00123 -0.00052 A6 A7 D1 D2 D3 A6 0.14732 A7 0.01844 0.14276 D1 -0.00073 -0.00474 0.00812 D2 0.00763 -0.00569 0.00072 0.00919 D3 -0.00674 0.01028 -0.00513 -0.00619 0.01504 ITU= 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00372 0.02757 0.05270 0.06443 0.10391 Eigenvalues --- 0.11925 0.12817 0.15327 0.16537 0.36993 Eigenvalues --- 0.41454 0.43174 En-DIIS/RFO-DIIS IScMMF= 0 using points: 9 8 7 RFO step: Lambda=-5.93833068D-06. DidBck=F Rises=F RFO-DIIS coefs: 2.12963 -1.12475 -0.00488 SLEqS3 Cycle: 15 Max:0.110104E-01 RMS: 1172.81 Conv:0.292282E-02 Iteration 1 RMS(Cart)= 0.00008121 RMS(Int)= 0.00304009 SLEqS3 Cycle: 181 Max:0.593310E-03 RMS:0.180130E-03 Conv:0.378071E-04 SLEqS3 Cycle: 30 Max:0.110040E-01 RMS: 15.1737 Conv:0.378071E-04 Iteration 2 RMS(Cart)= 0.00002221 RMS(Int)= 0.00304545 SLEqS3 Cycle: 181 Max:0.623606E-03 RMS:0.197209E-03 Conv:0.180945E-06 SLEqS3 Cycle: 181 Max:0.109916E-01 RMS:0.374284E-02 Conv:0.180945E-06 Iteration 3 RMS(Cart)= 0.00048730 RMS(Int)= 0.00316722 SLEqS3 Cycle: 181 Max:0.110675E-01 RMS:0.356658E-02 Conv:0.125805E-05 SLEqS3 Cycle: 181 Max:0.110357E-01 RMS:0.358870E-02 Conv:0.125805E-05 Iteration 4 RMS(Cart)= 0.00114958 RMS(Int)= 0.00293444 SLEqS3 Cycle: 15 Max:0.110081E-01 RMS: 1.15885 Conv:0.288627E-05 Iteration 5 RMS(Cart)= 0.00002556 RMS(Int)= 0.00293130 SLEqS3 Cycle: 181 Max:0.110075E-01 RMS:0.358496E-02 Conv:0.109892E-07 SLEqS3 Cycle: 181 Max:0.110072E-01 RMS:0.358581E-02 Conv:0.109892E-07 Iteration 6 RMS(Cart)= 0.00000683 RMS(Int)= 0.00293213 SLEqS3 Cycle: 181 Max:0.110072E-01 RMS:0.358639E-02 Conv:0.109908E-07 SLEqS3 Cycle: 181 Max:0.110072E-01 RMS:0.358639E-02 Conv:0.109908E-07 Iteration 7 RMS(Cart)= 0.00000624 RMS(Int)= 0.00293289 SLEqS3 Cycle: 181 Max:0.110073E-01 RMS:0.358581E-02 Conv:0.110201E-07 SLEqS3 Cycle: 181 Max:0.110073E-01 RMS:0.358586E-02 Conv:0.110201E-07 Iteration 8 RMS(Cart)= 0.00000539 RMS(Int)= 0.00293223 SLEqS3 Cycle: 181 Max:0.356215E-03 RMS:0.121235E-03 Conv:0.109959E-07 SLEqS3 Cycle: 181 Max:0.110067E-01 RMS:0.358620E-02 Conv:0.109959E-07 Iteration 9 RMS(Cart)= 0.00000402 RMS(Int)= 0.00293272 SLEqS3 Cycle: 181 Max:0.110069E-01 RMS:0.358606E-02 Conv:0.110098E-07 SLEqS3 Cycle: 181 Max:0.110069E-01 RMS:0.358606E-02 Conv:0.110098E-07 Iteration 10 RMS(Cart)= 0.00000147 RMS(Int)= 0.00293254 SLEqS3 Cycle: 181 Max:0.110067E-01 RMS:0.358643E-02 Conv:0.109961E-07 SLEqS3 Cycle: 181 Max:0.110067E-01 RMS:0.358643E-02 Conv:0.109961E-07 Iteration 11 RMS(Cart)= 0.00000398 RMS(Int)= 0.00293303 SLEqS3 Cycle: 181 Max:0.371354E-03 RMS:0.118662E-03 Conv:0.141627E-07 SLEqS3 Cycle: 181 Max:0.110075E-01 RMS:0.358524E-02 Conv:0.141627E-07 Iteration 12 RMS(Cart)= 0.00001336 RMS(Int)= 0.00293140 SLEqS3 Cycle: 181 Max:0.110068E-01 RMS:0.358547E-02 Conv:0.110003E-07 SLEqS3 Cycle: 181 Max:0.110068E-01 RMS:0.358542E-02 Conv:0.110003E-07 Iteration 13 RMS(Cart)= 0.00000230 RMS(Int)= 0.00293168 SLEqS3 Cycle: 181 Max:0.360345E-03 RMS:0.116946E-03 Conv:0.110146E-07 SLEqS3 Cycle: 181 Max:0.110078E-01 RMS:0.358525E-02 Conv:0.110146E-07 Iteration 14 RMS(Cart)= 0.00000296 RMS(Int)= 0.00293132 SLEqS3 Cycle: 181 Max:0.350781E-03 RMS:0.120157E-03 Conv:0.122237E-07 SLEqS3 Cycle: 181 Max:0.110068E-01 RMS:0.358609E-02 Conv:0.122237E-07 Iteration 15 RMS(Cart)= 0.00000997 RMS(Int)= 0.00293253 SLEqS3 Cycle: 181 Max:0.110088E-01 RMS:0.358198E-02 Conv:0.298552E-07 SLEqS3 Cycle: 181 Max:0.110082E-01 RMS:0.358364E-02 Conv:0.298552E-07 Iteration 16 RMS(Cart)= 0.00002760 RMS(Int)= 0.00292922 SLEqS3 Cycle: 181 Max:0.110084E-01 RMS:0.358175E-02 Conv:0.234892E-07 SLEqS3 Cycle: 181 Max:0.110084E-01 RMS:0.358185E-02 Conv:0.234892E-07 Iteration 17 RMS(Cart)= 0.00002093 RMS(Int)= 0.00292678 SLEqS3 Cycle: 181 Max:0.110087E-01 RMS:0.357945E-02 Conv:0.318769E-07 SLEqS3 Cycle: 181 Max:0.110086E-01 RMS:0.357956E-02 Conv:0.318769E-07 Iteration 18 RMS(Cart)= 0.00002723 RMS(Int)= 0.00292372 SLEqS3 Cycle: 181 Max:0.110088E-01 RMS:0.357705E-02 Conv:0.360635E-07 SLEqS3 Cycle: 181 Max:0.110088E-01 RMS:0.357718E-02 Conv:0.360635E-07 Iteration 19 RMS(Cart)= 0.00002932 RMS(Int)= 0.00292056 SLEqS3 Cycle: 181 Max:0.110083E-01 RMS:0.357498E-02 Conv:0.253269E-07 SLEqS3 Cycle: 181 Max:0.321705E-03 RMS:0.104825E-03 Conv:0.253269E-07 Iteration 20 RMS(Cart)= 0.00000001 RMS(Int)= 0.00292055 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01113 0.00000 4.20558 R2 3.93132 -0.00015 0.00000 -0.00102 0.00000 3.93132 R3 2.07032 -0.00007 0.00032 -0.00041 0.00007 2.07039 R4 2.07006 -0.00009 -0.00067 0.00027 -0.00032 2.06975 R5 2.07007 -0.00010 -0.00041 0.00016 -0.00023 2.06984 A1 3.14159 0.00000 0.00000 0.00027 0.00000 3.14159 A2 1.94021 0.00014 0.00103 0.00114 0.00123 1.94144 A3 1.94471 -0.00005 -0.00045 -0.00056 -0.00055 1.94416 A4 1.94601 -0.00014 -0.00089 -0.00078 -0.00096 1.94505 A5 1.87630 0.00000 0.00032 0.00014 0.00024 1.87653 A6 1.87558 0.00008 0.00098 0.00003 0.00061 1.87619 A7 1.87761 -0.00003 -0.00096 0.00003 -0.00054 1.87707 D1 -1.84594 0.00001 0.00010 -0.00020 -0.00012 -1.84606 D2 0.24660 0.00008 0.00090 0.00038 0.00064 0.24724 D3 2.34474 -0.00009 -0.00124 -0.00049 -0.00107 2.34366 Item Value Threshold Converged? Maximum Force 0.001412 0.000015 NO RMS Force 0.000374 0.000010 NO Maximum Displacement 0.002017 0.000060 NO RMS Displacement 0.000833 0.000040 NO Predicted change in Energy=-4.153809D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286162 0.663187 -0.679073 2 17 0 1.912316 0.419903 -0.433433 3 6 0 -2.341269 0.890605 -0.908694 4 1 0 -2.779871 1.419161 -0.055113 5 1 0 -2.581463 1.464088 -1.810372 6 1 0 -2.844805 -0.078707 -0.989913 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225496 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.679442 4.812303 1.095602 0.000000 5 H 2.681359 4.814596 1.095262 1.767009 0.000000 6 H 2.682104 4.815442 1.095312 1.766826 1.767121 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471405 -0.000027 -0.000112 2 17 0 -1.754090 0.000009 0.000008 3 6 0 2.551768 -0.000062 -0.000224 4 1 0 2.948669 0.330798 0.965874 5 1 0 2.951233 -1.001029 -0.195398 6 1 0 2.952163 0.670773 -0.767931 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6078206 2.3238867 2.3238801 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6629237536 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.997726 0.067397 -0.000017 0.000002 Ang= 7.73 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826201 A.U. after 8 cycles NFock= 8 Conv=0.41D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001255856 -0.000182338 0.000094439 2 17 -0.001393930 0.000159577 -0.000149968 3 6 0.000060040 0.000084706 0.000249121 4 1 0.000020981 -0.000048380 -0.000127617 5 1 0.000004222 0.000004696 -0.000036141 6 1 0.000052830 -0.000018261 -0.000029833 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393930 RMS 0.000453848 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001411005 RMS 0.000369731 Search for a local minimum. Step number 10 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 DE= -4.35D-07 DEPred=-4.15D-07 R= 1.05D+00 Trust test= 1.05D+00 RLast= 2.27D-03 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12602 R2 0.00274 0.10414 R3 0.00334 -0.00392 0.42354 R4 0.00236 0.00354 -0.02871 0.43415 R5 0.00565 0.00087 -0.00898 0.05033 0.41193 A1 0.00109 0.00141 0.00105 0.00220 0.00449 A2 0.00303 0.00325 -0.01852 0.03434 0.02520 A3 -0.00436 -0.00356 0.00399 -0.01036 -0.02249 A4 0.00017 0.00458 0.00310 -0.03882 -0.01273 A5 0.00020 -0.00375 0.00499 0.01720 0.00954 A6 0.00011 -0.00026 0.00933 -0.00513 -0.00019 A7 -0.00133 -0.00215 -0.00045 0.00469 0.00294 D1 -0.00421 -0.00415 0.00796 -0.00148 -0.00210 D2 -0.00114 -0.00083 0.01687 -0.03027 -0.01889 D3 0.00526 0.00494 -0.02443 0.03109 0.02056 A1 A2 A3 A4 A5 A1 0.03637 A2 -0.00090 0.11401 A3 -0.01739 0.03642 0.09982 A4 0.00181 0.01629 0.03670 0.08719 A5 0.00881 -0.00436 -0.01174 0.02087 0.15352 A6 -0.00204 -0.03004 0.01812 0.01092 -0.00370 A7 0.00707 0.02810 -0.02282 -0.00945 0.00330 D1 0.00435 0.00326 -0.00638 0.00595 -0.00141 D2 -0.00253 -0.00231 0.00226 -0.00319 0.00154 D3 -0.00194 -0.00050 0.00383 -0.00307 -0.00003 A6 A7 D1 D2 D3 A6 0.15347 A7 0.01360 0.14622 D1 -0.00090 -0.00475 0.00810 D2 0.01103 -0.00855 0.00066 0.01087 D3 -0.00979 0.01303 -0.00501 -0.00766 0.01619 ITU= 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00371 0.02748 0.05141 0.05399 0.10346 Eigenvalues --- 0.11946 0.12727 0.15038 0.16523 0.36988 Eigenvalues --- 0.41504 0.49810 En-DIIS/RFO-DIIS IScMMF= 0 using points: 10 9 8 7 RFO step: Lambda=-5.77379064D-06. DidBck=F Rises=F RFO-DIIS coefs: 4.70490 -6.02584 2.31468 0.00626 SLEqS3 Cycle: 15 Max:0.110466E-01 RMS: 4343.42 Conv:0.108230E-01 Iteration 1 RMS(Cart)= 0.00006186 RMS(Int)= 0.00302131 Iteration 2 RMS(Cart)= 0.00000006 RMS(Int)= 0.00302126 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01118 0.00000 4.20558 R2 3.93132 -0.00014 0.00000 -0.00100 0.00000 3.93132 R3 2.07039 -0.00013 -0.00039 -0.00002 -0.00003 2.07036 R4 2.06975 0.00003 0.00020 0.00001 0.00001 2.06975 R5 2.06984 -0.00001 0.00000 0.00019 0.00000 2.06984 A1 3.14159 0.00000 0.00000 0.00021 0.00000 3.14159 A2 1.94144 0.00009 0.00240 0.00001 0.00010 1.94154 A3 1.94416 -0.00003 -0.00104 -0.00003 -0.00006 1.94409 A4 1.94505 -0.00009 -0.00179 0.00018 -0.00007 1.94498 A5 1.87653 -0.00001 0.00023 0.00004 0.00003 1.87657 A6 1.87619 0.00003 0.00023 -0.00002 0.00002 1.87622 A7 1.87707 0.00000 -0.00001 -0.00019 -0.00002 1.87705 D1 -1.84606 0.00000 -0.00067 -0.00005 -0.00054 -1.84659 D2 0.24724 0.00004 0.00054 -0.00002 -0.00047 0.24677 D3 2.34366 -0.00004 -0.00139 -0.00016 -0.00059 2.34308 Item Value Threshold Converged? Maximum Force 0.001411 0.000015 NO RMS Force 0.000370 0.000010 NO Maximum Displacement 0.000154 0.000060 NO RMS Displacement 0.000062 0.000040 NO Predicted change in Energy=-2.438865D-08 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286168 0.663191 -0.679067 2 17 0 1.912311 0.419885 -0.433465 3 6 0 -2.341277 0.890630 -0.908652 4 1 0 -2.779953 1.419168 -0.055118 5 1 0 -2.581417 1.464072 -1.810377 6 1 0 -2.844749 -0.078710 -0.989917 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225496 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.679510 4.812385 1.095586 0.000000 5 H 2.681313 4.814541 1.095267 1.767022 0.000000 6 H 2.682048 4.815377 1.095312 1.766829 1.767109 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471406 -0.000030 -0.000105 2 17 0 -1.754089 0.000009 0.000007 3 6 0 2.551769 -0.000066 -0.000209 4 1 0 2.948762 0.368480 0.952093 5 1 0 2.951174 -1.007947 -0.155973 6 1 0 2.952094 0.640061 -0.793736 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6075997 2.3238892 2.3238829 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6630026242 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999807 0.019648 -0.000001 0.000000 Ang= 2.25 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826251 A.U. after 6 cycles NFock= 6 Conv=0.41D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001256220 -0.000180855 0.000097098 2 17 -0.001393805 0.000159374 -0.000150273 3 6 0.000065831 0.000078139 0.000235012 4 1 0.000018955 -0.000044210 -0.000121350 5 1 0.000002703 0.000005964 -0.000032333 6 1 0.000050095 -0.000018414 -0.000028155 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393805 RMS 0.000453281 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001410893 RMS 0.000369308 Search for a local minimum. Step number 11 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 DE= -5.01D-08 DEPred=-2.44D-08 R= 2.05D+00 Trust test= 2.05D+00 RLast= 9.36D-04 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12562 R2 0.00257 0.10398 R3 0.00476 -0.00077 0.42372 R4 0.00210 0.00296 -0.01304 0.41586 R5 0.00594 0.00149 0.00799 0.03938 0.40916 A1 0.00107 0.00113 0.00200 0.00071 0.00329 A2 0.00240 0.00173 -0.01896 0.02345 0.01403 A3 -0.00379 -0.00197 0.00694 -0.00454 -0.01473 A4 0.00052 0.00616 0.00644 -0.03285 -0.00481 A5 -0.00017 -0.00504 0.00376 0.01452 0.00540 A6 -0.00012 -0.00089 -0.00160 0.00119 0.00070 A7 -0.00141 -0.00254 0.00574 0.00047 0.00158 D1 -0.00409 -0.00427 0.00663 -0.00046 -0.00145 D2 -0.00126 -0.00206 -0.00099 -0.02461 -0.02122 D3 0.00545 0.00616 -0.01873 0.03175 0.02466 A1 A2 A3 A4 A5 A1 0.03625 A2 -0.00150 0.11371 A3 -0.01702 0.03469 0.10246 A4 0.00208 0.01399 0.03928 0.09077 A5 0.00853 -0.00283 -0.01311 0.01942 0.15346 A6 -0.00156 -0.02258 0.01289 0.00560 -0.00114 A7 0.00675 0.02404 -0.01981 -0.00685 0.00174 D1 0.00458 0.00372 -0.00660 0.00530 -0.00085 D2 -0.00133 0.00864 -0.00597 -0.01279 0.00700 D3 -0.00238 -0.00441 0.00712 0.00029 -0.00133 A6 A7 D1 D2 D3 A6 0.15345 A7 0.01429 0.14493 D1 -0.00111 -0.00483 0.00768 D2 0.01386 -0.00948 -0.00036 0.01714 D3 -0.01248 0.01431 -0.00543 -0.01379 0.01895 ITU= 0 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00084 0.02773 0.05316 0.07929 0.10382 Eigenvalues --- 0.11923 0.12690 0.14499 0.16724 0.37002 Eigenvalues --- 0.42815 0.45835 En-DIIS/RFO-DIIS IScMMF= 0 using points: 11 10 9 8 7 RFO step: Lambda=-5.75223549D-06. DidBck=F Rises=F RFO-DIIS coefs: 8.27408 -5.40479 -3.09205 1.22504 -0.00229 Iteration 1 RMS(Cart)= 0.00005585 RMS(Int)= 0.00298967 SLEqS3 Cycle: 15 Max:0.111015E-01 RMS: 1196.85 Conv:0.297140E-02 Iteration 2 RMS(Cart)= 0.00038431 RMS(Int)= 0.00294063 SLEqS3 Cycle: 15 Max:0.110905E-01 RMS: 52.2257 Conv:0.129646E-03 Iteration 3 RMS(Cart)= 0.00077609 RMS(Int)= 0.00290910 SLEqS3 Cycle: 100 Max:0.102685E-03 RMS:0.370159E-04 Conv:0.691717E-05 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00290909 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01122 0.00000 4.20558 R2 3.93132 -0.00014 0.00000 -0.00101 0.00000 3.93132 R3 2.07036 -0.00012 -0.00043 0.00010 -0.00027 2.07009 R4 2.06975 0.00003 0.00017 -0.00001 0.00017 2.06992 R5 2.06984 0.00000 0.00002 0.00017 0.00017 2.07001 A1 3.14159 0.00000 0.00000 0.00028 0.00000 3.14159 A2 1.94154 0.00009 0.00185 0.00011 0.00209 1.94363 A3 1.94409 -0.00003 -0.00085 0.00003 -0.00087 1.94322 A4 1.94498 -0.00009 -0.00148 0.00015 -0.00143 1.94355 A5 1.87657 -0.00001 0.00038 -0.00017 0.00016 1.87673 A6 1.87622 0.00003 0.00025 -0.00008 0.00017 1.87638 A7 1.87705 0.00000 -0.00011 -0.00005 -0.00011 1.87694 D1 -1.84659 0.00001 -0.00431 0.00072 -0.00359 -1.85018 D2 0.24677 0.00003 -0.00315 0.00059 -0.00255 0.24422 D3 2.34308 -0.00004 -0.00488 0.00064 -0.00425 2.33883 Item Value Threshold Converged? Maximum Force 0.001411 0.000015 NO RMS Force 0.000369 0.000010 NO Maximum Displacement 0.003287 0.000060 NO RMS Displacement 0.001207 0.000040 NO Predicted change in Energy=-1.062488D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286203 0.663237 -0.679004 2 17 0 1.912295 0.419469 -0.434030 3 6 0 -2.341330 0.891107 -0.908003 4 1 0 -2.781692 1.419347 -0.055333 5 1 0 -2.580729 1.463988 -1.810386 6 1 0 -2.843594 -0.078913 -0.989841 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225496 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.681069 4.814217 1.095446 0.000000 5 H 2.680686 4.813797 1.095354 1.767085 0.000000 6 H 2.680979 4.814124 1.095402 1.766895 1.767183 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471411 -0.000005 -0.000006 2 17 0 -1.754084 0.000007 0.000005 3 6 0 2.551775 -0.000017 -0.000015 4 1 0 2.950803 0.352053 0.957494 5 1 0 2.950344 -1.005358 -0.173887 6 1 0 2.950704 0.653340 -0.783524 --------------------------------------------------------------------- Rotational constants (GHZ): 160.5950887 2.3239010 2.3238945 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6630514680 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999964 -0.008514 -0.000026 0.000006 Ang= -0.98 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826442 A.U. after 8 cycles NFock= 8 Conv=0.39D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001257287 -0.000142460 0.000148532 2 17 -0.001393155 0.000154832 -0.000156188 3 6 0.000077923 -0.000015308 0.000077996 4 1 0.000044064 -0.000015686 -0.000056431 5 1 -0.000014393 -0.000018891 0.000011783 6 1 0.000028274 0.000037511 -0.000025692 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393155 RMS 0.000449302 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001410407 RMS 0.000366747 Search for a local minimum. Step number 12 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 DE= -1.91D-07 DEPred=-1.06D-07 R= 1.80D+00 Trust test= 1.80D+00 RLast= 6.69D-03 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12515 R2 0.00227 0.10329 R3 0.00474 -0.00146 0.42774 R4 0.00197 0.00283 -0.02049 0.42238 R5 0.00540 0.00080 0.00584 0.03751 0.40343 A1 0.00107 0.00095 0.00131 0.00030 0.00231 A2 0.00165 0.00353 -0.00548 0.00897 0.00501 A3 -0.00383 -0.00261 0.00372 -0.00239 -0.01383 A4 0.00107 0.00492 -0.00635 -0.01920 0.00280 A5 -0.00003 -0.00513 0.00416 0.01659 0.00744 A6 0.00018 -0.00037 0.00139 -0.00085 0.00216 A7 -0.00193 -0.00339 0.00554 -0.00089 -0.00145 D1 -0.00410 -0.00442 0.00747 -0.00043 -0.00127 D2 -0.00088 -0.00057 0.00417 -0.02549 -0.01959 D3 0.00539 0.00551 -0.02456 0.03616 0.02548 A1 A2 A3 A4 A5 A1 0.03631 A2 -0.00220 0.09197 A3 -0.01718 0.04104 0.10037 A4 0.00262 0.02960 0.03439 0.08017 A5 0.00866 -0.00298 -0.01243 0.02011 0.15249 A6 -0.00101 -0.01821 0.01248 0.00131 -0.00242 A7 0.00635 0.01943 -0.01914 -0.00305 0.00227 D1 0.00447 0.00274 -0.00603 0.00609 -0.00102 D2 -0.00073 0.00062 -0.00228 -0.00649 0.00536 D3 -0.00264 -0.00103 0.00531 -0.00157 -0.00022 A6 A7 D1 D2 D3 A6 0.15409 A7 0.01529 0.14290 D1 -0.00146 -0.00490 0.00776 D2 0.01276 -0.00892 -0.00106 0.01055 D3 -0.01343 0.01471 -0.00508 -0.01026 0.01831 ITU= 0 0 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00097 0.02753 0.04876 0.05340 0.10248 Eigenvalues --- 0.12000 0.12624 0.13631 0.16591 0.36992 Eigenvalues --- 0.42769 0.46085 En-DIIS/RFO-DIIS IScMMF= 0 using points: 12 11 10 9 8 RFO step: Lambda=-5.68036090D-06. DidBck=T Rises=F RFO-DIIS coefs: 0.38840 7.53281 -6.34636 -0.91772 0.34287 Iteration 1 RMS(Cart)= 0.00028340 RMS(Int)= 1.40495808 SLEqS3 Cycle: 15 Max:0.158100 RMS: 742.715 Conv:0.184375E-02 Iteration 2 RMS(Cart)= 0.01654546 RMS(Int)= 1.39046667 Iteration 3 RMS(Cart)= 0.00100865 RMS(Int)= 1.38962103 Iteration 4 RMS(Cart)= 0.00106471 RMS(Int)= 1.38873541 Iteration 5 RMS(Cart)= 0.00104298 RMS(Int)= 1.38786487 Iteration 6 RMS(Cart)= 0.00102231 RMS(Int)= 1.38700862 Iteration 7 RMS(Cart)= 0.00100259 RMS(Int)= 1.38616591 Iteration 8 RMS(Cart)= 0.00098306 RMS(Int)= 1.38533660 Iteration 9 RMS(Cart)= 0.00096567 RMS(Int)= 1.38451905 Iteration 10 RMS(Cart)= 0.00094833 RMS(Int)= 1.38371322 Iteration 11 RMS(Cart)= 0.00093167 RMS(Int)= 1.38291857 Iteration 12 RMS(Cart)= 0.00091562 RMS(Int)= 1.38213462 Iteration 13 RMS(Cart)= 0.00090015 RMS(Int)= 1.38136091 Iteration 14 RMS(Cart)= 0.00088522 RMS(Int)= 1.38059700 Iteration 15 RMS(Cart)= 0.00087073 RMS(Int)= 1.37984249 Iteration 16 RMS(Cart)= 0.00085684 RMS(Int)= 1.37909693 Iteration 17 RMS(Cart)= 0.00084333 RMS(Int)= 1.37835996 Iteration 18 RMS(Cart)= 0.00083026 RMS(Int)= 1.37763117 Iteration 19 RMS(Cart)= 0.00081753 RMS(Int)= 1.37691023 Iteration 20 RMS(Cart)= 0.00080497 RMS(Int)= 1.37619688 Iteration 21 RMS(Cart)= 0.00079322 RMS(Int)= 1.37549044 Iteration 22 RMS(Cart)= 0.00078157 RMS(Int)= 1.37479065 Iteration 23 RMS(Cart)= 0.00077018 RMS(Int)= 1.37409713 Iteration 24 RMS(Cart)= 0.00075923 RMS(Int)= 1.37340933 Iteration 25 RMS(Cart)= 0.00074848 RMS(Int)= 1.37272676 Iteration 26 RMS(Cart)= 0.00073800 RMS(Int)= 1.37204882 Iteration 27 RMS(Cart)= 0.00072503 RMS(Int)= 1.37137648 Iteration 28 RMS(Cart)= 0.00071915 RMS(Int)= 1.37070456 Iteration 29 RMS(Cart)= 0.00070845 RMS(Int)= 1.37003512 New curvilinear step failed, DQL= 5.37D+00 SP=-6.62D-01. ITry= 1 IFail=1 DXMaxC= 7.66D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 15 Max:0.100212E-01 RMS: 1270.69 Conv:0.315441E-02 Iteration 1 RMS(Cart)= 0.00000984 RMS(Int)= 0.00263008 SLEqS3 Cycle: 15 Max:0.100215E-01 RMS: 1.47129 Conv:0.365271E-05 Iteration 2 RMS(Cart)= 0.00002742 RMS(Int)= 0.00262969 SLEqS3 Cycle: 181 Max:0.198968E-03 RMS:0.601329E-04 Conv:0.124516E-05 SLEqS3 Cycle: 181 Max:0.167917E-03 RMS:0.446787E-04 Conv:0.124516E-05 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00262968 ITry= 2 IFail=0 DXMaxC= 9.78D-05 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01126 0.00000 4.20558 R2 3.93132 -0.00014 0.00000 -0.00106 0.00000 3.93132 R3 2.07009 -0.00007 -0.00010 0.00008 -0.00001 2.07008 R4 2.06992 -0.00002 -0.00003 0.00000 -0.00001 2.06991 R5 2.07001 -0.00004 -0.00011 0.00012 0.00000 2.07001 A1 3.14159 0.00000 0.00000 0.00028 0.00000 3.14159 A2 1.94363 -0.00002 -0.00021 0.00003 -0.00005 1.94358 A3 1.94322 0.00002 -0.00005 0.00013 0.00002 1.94324 A4 1.94355 -0.00001 0.00008 0.00006 0.00004 1.94359 A5 1.87673 -0.00001 0.00019 -0.00013 0.00002 1.87676 A6 1.87638 0.00003 0.00012 -0.00007 0.00002 1.87640 A7 1.87694 -0.00002 -0.00011 -0.00003 -0.00005 1.87689 D1 -1.85018 0.00001 -0.00163 0.00164 -0.00017 -1.85035 D2 0.24422 0.00001 -0.00157 0.00158 -0.00016 0.24405 D3 2.33883 -0.00001 -0.00170 0.00166 -0.00019 2.33864 Item Value Threshold Converged? Maximum Force 0.001410 0.000015 NO RMS Force 0.000367 0.000010 NO Maximum Displacement 0.000098 0.000060 NO RMS Displacement 0.000037 0.000040 YES Predicted change in Energy=-3.640221D-09 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286203 0.663239 -0.679000 2 17 0 1.912295 0.419479 -0.434018 3 6 0 -2.341330 0.891103 -0.908006 4 1 0 -2.781640 1.419346 -0.055321 5 1 0 -2.580748 1.463968 -1.810388 6 1 0 -2.843625 -0.078899 -0.989864 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225496 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.681022 4.814164 1.095439 0.000000 5 H 2.680698 4.813812 1.095349 1.767090 0.000000 6 H 2.681010 4.814159 1.095402 1.766905 1.767145 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471411 -0.000005 -0.000005 2 17 0 -1.754084 0.000007 0.000003 3 6 0 2.551775 -0.000017 -0.000013 4 1 0 2.950745 0.411303 0.933595 5 1 0 2.950363 -1.014256 -0.110622 6 1 0 2.950743 0.602991 -0.822881 --------------------------------------------------------------------- Rotational constants (GHZ): 160.5964797 2.3239007 2.3238952 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6630941611 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999510 0.031314 0.000001 0.000000 Ang= 3.59 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826532 A.U. after 6 cycles NFock= 6 Conv=0.43D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001257377 -0.000143753 0.000147011 2 17 -0.001393163 0.000154960 -0.000156023 3 6 0.000080192 -0.000020584 0.000073810 4 1 0.000039553 -0.000013837 -0.000054206 5 1 -0.000013503 -0.000013082 0.000010901 6 1 0.000029543 0.000036296 -0.000021493 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393163 RMS 0.000449237 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001410411 RMS 0.000366632 Search for a local minimum. Step number 13 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 13 DE= -9.01D-08 DEPred=-3.64D-09 R= 2.48D+01 Trust test= 2.48D+01 RLast= 3.18D-04 DXMaxT set to 1.20D+00 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12473 R2 0.00202 0.10288 R3 0.00453 -0.00145 0.43901 R4 0.00019 0.00211 -0.00750 0.38511 R5 0.00465 0.00025 0.01185 0.01514 0.38840 A1 0.00108 0.00087 0.00146 -0.00050 0.00176 A2 0.00061 0.00331 0.00484 -0.00190 -0.00124 A3 -0.00340 -0.00241 0.00063 0.00133 -0.01280 A4 0.00148 0.00543 -0.00800 -0.01640 0.00331 A5 0.00068 -0.00524 -0.00187 0.02266 0.01090 A6 0.00141 0.00026 -0.00628 0.02083 0.01413 A7 -0.00398 -0.00496 0.01320 -0.02395 -0.01184 D1 -0.00417 -0.00468 0.00841 -0.00238 -0.00201 D2 -0.00044 -0.00042 -0.00592 -0.02459 -0.01528 D3 0.00488 0.00549 -0.01641 0.03128 0.02006 A1 A2 A3 A4 A5 A1 0.03634 A2 -0.00261 0.09104 A3 -0.01700 0.04230 0.09917 A4 0.00281 0.03032 0.03280 0.07828 A5 0.00882 -0.00253 -0.01269 0.01895 0.15203 A6 -0.00031 -0.01190 0.00981 -0.00156 -0.00628 A7 0.00551 0.01155 -0.01429 0.00407 0.00739 D1 0.00430 0.00208 -0.00555 0.00635 -0.00080 D2 -0.00101 -0.00370 0.00055 -0.00360 0.00873 D3 -0.00255 0.00074 0.00405 -0.00349 -0.00160 A6 A7 D1 D2 D3 A6 0.14178 A7 0.03080 0.11694 D1 -0.00077 -0.00612 0.00789 D2 0.01282 -0.01368 -0.00092 0.01352 D3 -0.01066 0.01490 -0.00566 -0.01236 0.01967 ITU= 0 0 0 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00079 0.02763 0.04600 0.05318 0.10176 Eigenvalues --- 0.10839 0.11965 0.12756 0.16368 0.36989 Eigenvalues --- 0.40373 0.44285 En-DIIS/RFO-DIIS IScMMF= 0 using points: 13 12 11 10 9 RFO step: Lambda=-5.69205114D-06. DidBck=F Rises=F RFO-DIIS coefs: 4.38286 -3.43350 0.16024 0.00000 -0.10960 Iteration 1 RMS(Cart)= 0.00027390 RMS(Int)= 1.40472435 Iteration 2 RMS(Cart)= 0.00257151 RMS(Int)= 1.39604290 Iteration 3 RMS(Cart)= 0.00005395 RMS(Int)= 1.30661936 Iteration 4 RMS(Cart)= 0.00004138 RMS(Int)= 1.21910818 Iteration 5 RMS(Cart)= 0.00004185 RMS(Int)= 1.13475750 Iteration 6 RMS(Cart)= 0.00004978 RMS(Int)= 1.05410139 Iteration 7 RMS(Cart)= 0.00006058 RMS(Int)= 0.97676618 Iteration 8 RMS(Cart)= 0.00008140 RMS(Int)= 0.90299401 Iteration 9 RMS(Cart)= 0.00005904 RMS(Int)= 0.88107860 Iteration 10 RMS(Cart)= 0.00004009 RMS(Int)= 0.86528610 Iteration 11 RMS(Cart)= 0.00002741 RMS(Int)= 0.85435343 Iteration 12 RMS(Cart)= 0.00002155 RMS(Int)= 0.84616557 Iteration 13 RMS(Cart)= 0.00001985 RMS(Int)= 0.83733288 Iteration 14 RMS(Cart)= 0.00001836 RMS(Int)= 0.82999610 Iteration 15 RMS(Cart)= 0.00001576 RMS(Int)= 0.82198406 Iteration 16 RMS(Cart)= 0.00001490 RMS(Int)= 0.81464994 Iteration 17 RMS(Cart)= 0.00001360 RMS(Int)= 0.80738287 Iteration 18 RMS(Cart)= 0.00001401 RMS(Int)= 0.80033893 Iteration 19 RMS(Cart)= 0.00007630 RMS(Int)= 0.76982710 Iteration 20 RMS(Cart)= 0.00000306 RMS(Int)= 0.76266189 Iteration 21 RMS(Cart)= 0.00000598 RMS(Int)= 0.75361557 Iteration 22 RMS(Cart)= 0.00000484 RMS(Int)= 0.74215037 Iteration 23 RMS(Cart)= 0.00000368 RMS(Int)= 0.73206348 Iteration 24 RMS(Cart)= 0.00000889 RMS(Int)= 0.72106519 Iteration 25 RMS(Cart)= 0.00000885 RMS(Int)= 0.71103259 Iteration 26 RMS(Cart)= 0.00010753 RMS(Int)= 0.70111078 Iteration 27 RMS(Cart)= 0.00025863 RMS(Int)= 0.69101719 Iteration 28 RMS(Cart)= 0.00434631 RMS(Int)= 0.61210332 Iteration 29 RMS(Cart)= 0.00147926 RMS(Int)= 0.52674713 Iteration 30 RMS(Cart)= 0.00055862 RMS(Int)= 0.44667100 Iteration 31 RMS(Cart)= 0.00019514 RMS(Int)= 0.42032478 Iteration 32 RMS(Cart)= 0.00017488 RMS(Int)= 0.38105422 Iteration 33 RMS(Cart)= 0.00022822 RMS(Int)= 0.32496369 Iteration 34 RMS(Cart)= 0.00020925 RMS(Int)= 0.25245978 Iteration 35 RMS(Cart)= 0.00019296 RMS(Int)= 0.17164777 Iteration 36 RMS(Cart)= 0.00015581 RMS(Int)= 0.08856478 Iteration 37 RMS(Cart)= 0.00011996 RMS(Int)= 0.00754993 Iteration 38 RMS(Cart)= 0.00002953 RMS(Int)= 0.00323642 Iteration 39 RMS(Cart)= 0.00422360 RMS(Int)= 0.00017892 Iteration 40 RMS(Cart)= 0.00002540 RMS(Int)= 0.00009471 SLEqS3 Cycle: 181 Max:0.114367E-03 RMS:0.447542E-04 Conv:0.509149E-06 SLEqS3 Cycle: 181 Max:0.113540E-03 RMS:0.437495E-04 Conv:0.509149E-06 New curvilinear step failed, DQL= 5.44D+00 SP=-1.28D-01. ITry= 1 IFail=1 DXMaxC= 1.00D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00022789 RMS(Int)= 1.40477025 Iteration 2 RMS(Cart)= 0.00233399 RMS(Int)= 1.39675477 Iteration 3 RMS(Cart)= 0.00004974 RMS(Int)= 1.30731553 Iteration 4 RMS(Cart)= 0.00003733 RMS(Int)= 1.22049599 Iteration 5 RMS(Cart)= 0.00003851 RMS(Int)= 1.13664281 Iteration 6 RMS(Cart)= 0.00004651 RMS(Int)= 1.05656721 Iteration 7 RMS(Cart)= 0.00005787 RMS(Int)= 0.97996305 Iteration 8 RMS(Cart)= 0.00007784 RMS(Int)= 0.90701599 Iteration 9 RMS(Cart)= 0.00005939 RMS(Int)= 0.88264661 Iteration 10 RMS(Cart)= 0.00004275 RMS(Int)= 0.86318991 Iteration 11 RMS(Cart)= 0.00002331 RMS(Int)= 0.85361796 Iteration 12 RMS(Cart)= 0.00002471 RMS(Int)= 0.84093407 Iteration 13 RMS(Cart)= 0.00002098 RMS(Int)= 0.83387841 Iteration 14 RMS(Cart)= 0.00001543 RMS(Int)= 0.82568398 Iteration 15 RMS(Cart)= 0.00002022 RMS(Int)= 0.81862281 Iteration 16 RMS(Cart)= 0.00001972 RMS(Int)= 0.81145756 Iteration 17 RMS(Cart)= 0.00007407 RMS(Int)= 0.78301409 Iteration 18 RMS(Cart)= 0.00000348 RMS(Int)= 0.77576798 Iteration 19 RMS(Cart)= 0.00000629 RMS(Int)= 0.76663604 Iteration 20 RMS(Cart)= 0.00000498 RMS(Int)= 0.75512736 Iteration 21 RMS(Cart)= 0.00000286 RMS(Int)= 0.74501658 Iteration 22 RMS(Cart)= 0.00000741 RMS(Int)= 0.73402590 Iteration 23 RMS(Cart)= 0.00000843 RMS(Int)= 0.72400071 Iteration 24 RMS(Cart)= 0.00007667 RMS(Int)= 0.71408504 Iteration 25 RMS(Cart)= 0.00021230 RMS(Int)= 0.70427477 Iteration 26 RMS(Cart)= 0.00582202 RMS(Int)= 0.61521155 Iteration 27 RMS(Cart)= 0.00141172 RMS(Int)= 0.52638824 Iteration 28 RMS(Cart)= 0.00074216 RMS(Int)= 0.45589882 Iteration 29 RMS(Cart)= 0.00015340 RMS(Int)= 0.44556484 Iteration 30 RMS(Cart)= 0.00015767 RMS(Int)= 0.42928599 Iteration 31 RMS(Cart)= 0.00020019 RMS(Int)= 0.39982553 Iteration 32 RMS(Cart)= 0.00022574 RMS(Int)= 0.34780715 Iteration 33 RMS(Cart)= 0.00020148 RMS(Int)= 0.27569738 Iteration 34 RMS(Cart)= 0.00016290 RMS(Int)= 0.19406363 Iteration 35 RMS(Cart)= 0.00013949 RMS(Int)= 0.10877899 Iteration 36 RMS(Cart)= 0.00009424 RMS(Int)= 0.02220539 Iteration 37 RMS(Cart)= 0.00004197 RMS(Int)= 0.00433232 SLEqS3 Cycle: 181 Max:0.142939E-02 RMS:0.408113E-03 Conv:0.138670E-03 SLEqS3 Cycle: 29 Max:0.223010E-02 RMS:0.688525E-03 Conv:0.138670E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-1.26D-02. ITry= 2 IFail=1 DXMaxC= 2.60D-02 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00020498 RMS(Int)= 1.40481585 Iteration 2 RMS(Cart)= 0.00207324 RMS(Int)= 1.39671476 Iteration 3 RMS(Cart)= 0.00004503 RMS(Int)= 1.30726951 Iteration 4 RMS(Cart)= 0.00003317 RMS(Int)= 1.22089083 Iteration 5 RMS(Cart)= 0.00003485 RMS(Int)= 1.13789975 Iteration 6 RMS(Cart)= 0.00004219 RMS(Int)= 1.05783355 Iteration 7 RMS(Cart)= 0.00005296 RMS(Int)= 0.98123110 Iteration 8 RMS(Cart)= 0.00007361 RMS(Int)= 0.90937677 Iteration 9 RMS(Cart)= 0.00004035 RMS(Int)= 0.89466444 Iteration 10 RMS(Cart)= 0.00002609 RMS(Int)= 0.88594941 Iteration 11 RMS(Cart)= 0.00002916 RMS(Int)= 0.87294275 Iteration 12 RMS(Cart)= 0.00002116 RMS(Int)= 0.86359746 Iteration 13 RMS(Cart)= 0.00002981 RMS(Int)= 0.85645586 Iteration 14 RMS(Cart)= 0.00001560 RMS(Int)= 0.84896431 Iteration 15 RMS(Cart)= 0.00001416 RMS(Int)= 0.84154686 Iteration 16 RMS(Cart)= 0.00001263 RMS(Int)= 0.83404756 Iteration 17 RMS(Cart)= 0.00002099 RMS(Int)= 0.82672434 Iteration 18 RMS(Cart)= 0.00006610 RMS(Int)= 0.80050395 Iteration 19 RMS(Cart)= 0.00000370 RMS(Int)= 0.79315900 Iteration 20 RMS(Cart)= 0.00000598 RMS(Int)= 0.78399664 Iteration 21 RMS(Cart)= 0.00000490 RMS(Int)= 0.77248252 Iteration 22 RMS(Cart)= 0.00000429 RMS(Int)= 0.76236151 Iteration 23 RMS(Cart)= 0.00001162 RMS(Int)= 0.75137493 Iteration 24 RMS(Cart)= 0.00000466 RMS(Int)= 0.74135184 Iteration 25 RMS(Cart)= 0.00013809 RMS(Int)= 0.73147700 New curvilinear step failed, DQL= 5.41D+00 SP=-9.95D-01. ITry= 3 IFail=1 DXMaxC= 8.48D-03 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00011376 RMS(Int)= 1.40486273 Iteration 2 RMS(Cart)= 0.00133256 RMS(Int)= 1.39882630 Iteration 3 RMS(Cart)= 0.00054264 RMS(Int)= 1.32309740 Iteration 4 RMS(Cart)= 0.00005488 RMS(Int)= 1.23633077 Iteration 5 RMS(Cart)= 0.00003255 RMS(Int)= 1.15353842 Iteration 6 RMS(Cart)= 0.00003711 RMS(Int)= 1.07328536 Iteration 7 RMS(Cart)= 0.00004684 RMS(Int)= 0.99724375 Iteration 8 RMS(Cart)= 0.00006541 RMS(Int)= 0.92523140 Iteration 9 RMS(Cart)= 0.00010096 RMS(Int)= 0.85801396 Iteration 10 RMS(Cart)= 0.00008274 RMS(Int)= 0.81781723 Iteration 11 RMS(Cart)= 0.00005312 RMS(Int)= 0.79071780 Iteration 12 RMS(Cart)= 0.00003905 RMS(Int)= 0.76807303 Iteration 13 RMS(Cart)= 0.00002705 RMS(Int)= 0.75124006 Iteration 14 RMS(Cart)= 0.00005039 RMS(Int)= 0.74244332 Iteration 15 RMS(Cart)= 0.00006296 RMS(Int)= 0.72599039 Iteration 16 RMS(Cart)= 0.00001028 RMS(Int)= 0.71765834 Iteration 17 RMS(Cart)= 0.00000951 RMS(Int)= 0.70845644 Iteration 18 RMS(Cart)= 0.00000572 RMS(Int)= 0.69977267 Iteration 19 RMS(Cart)= 0.00000390 RMS(Int)= 0.69132983 Iteration 20 RMS(Cart)= 0.00000390 RMS(Int)= 0.67867561 Iteration 21 RMS(Cart)= 0.00000369 RMS(Int)= 0.66893128 Iteration 22 RMS(Cart)= 0.00002645 RMS(Int)= 0.65784549 Iteration 23 RMS(Cart)= 0.00001357 RMS(Int)= 0.64810186 Iteration 24 RMS(Cart)= 0.00054873 RMS(Int)= 0.63904582 New curvilinear step failed, DQL= 4.93D+00 SP=-9.87D-01. ITry= 4 IFail=1 DXMaxC= 8.80D-03 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 5.44D+00 SP=-2.07D-03. ITry= 5 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 15 Max:0.558591E-02 RMS: 143.444 Conv:0.356031E-03 Iteration 1 RMS(Cart)= 0.00001528 RMS(Int)= 0.00146856 SLEqS3 Cycle: 15 Max:0.558417E-02 RMS: 8.24422 Conv:0.204621E-04 Iteration 2 RMS(Cart)= 0.00015249 RMS(Int)= 0.00146629 SLEqS3 Cycle: 181 Max:0.863666E-04 RMS:0.253715E-04 Conv:0.212846E-05 SLEqS3 Cycle: 181 Max:0.914385E-04 RMS:0.253335E-04 Conv:0.212846E-05 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00146629 ITry= 6 IFail=0 DXMaxC= 3.85D-04 DCOld= 1.00D+10 DXMaxT= 1.20D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01130 0.00000 4.20558 R2 3.93132 -0.00014 0.00000 -0.00111 0.00000 3.93132 R3 2.07008 -0.00006 -0.00003 0.00001 -0.00002 2.07006 R4 2.06991 -0.00001 -0.00008 0.00004 -0.00008 2.06983 R5 2.07001 -0.00004 -0.00003 0.00005 -0.00002 2.06999 A1 3.14159 0.00000 0.00000 0.00032 0.00000 3.14159 A2 1.94358 -0.00001 -0.00014 -0.00003 -0.00021 1.94337 A3 1.94324 0.00002 0.00004 0.00010 0.00012 1.94337 A4 1.94359 -0.00001 0.00009 0.00004 0.00014 1.94373 A5 1.87676 -0.00001 0.00010 -0.00002 0.00012 1.87688 A6 1.87640 0.00003 0.00014 -0.00006 0.00014 1.87655 A7 1.87689 -0.00002 -0.00023 -0.00003 -0.00032 1.87657 D1 -1.85035 0.00001 -0.00047 0.00100 0.00003 -1.85032 D2 0.24405 0.00000 -0.00041 0.00102 0.00012 0.24418 D3 2.33864 -0.00001 -0.00061 0.00107 -0.00010 2.33854 Item Value Threshold Converged? Maximum Force 0.001410 0.000015 NO RMS Force 0.000367 0.000010 NO Maximum Displacement 0.000385 0.000060 NO RMS Displacement 0.000167 0.000040 NO Predicted change in Energy=-4.310617D-09 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286199 0.663252 -0.678978 2 17 0 1.912299 0.419509 -0.433971 3 6 0 -2.341325 0.891100 -0.908007 4 1 0 -2.781437 1.419364 -0.055247 5 1 0 -2.580863 1.463835 -1.810390 6 1 0 -2.843728 -0.078824 -0.990004 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225496 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.680850 4.813968 1.095427 0.000000 5 H 2.680767 4.813901 1.095308 1.767126 0.000000 6 H 2.681113 4.814281 1.095393 1.766980 1.766898 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471410 -0.000004 0.000001 2 17 0 -1.754085 0.000001 -0.000006 3 6 0 2.551774 -0.000009 0.000008 4 1 0 2.950524 0.961128 0.342314 5 1 0 2.950474 -0.777011 0.661073 6 1 0 2.950883 -0.184036 -1.003352 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6046974 2.3238991 2.3238941 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6632722582 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.918375 0.395712 0.000002 -0.000002 Ang= 46.62 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826446 A.U. after 7 cycles NFock= 7 Conv=0.36D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001257034 -0.000147744 0.000140618 2 17 -0.001393277 0.000155418 -0.000155278 3 6 0.000087540 -0.000040591 0.000068255 4 1 0.000022928 -0.000013908 -0.000056309 5 1 -0.000007421 0.000023130 -0.000002481 6 1 0.000033196 0.000023695 0.000005195 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393277 RMS 0.000449158 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001410492 RMS 0.000366512 Search for a local minimum. Step number 14 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 13 14 DE= 8.64D-08 DEPred=-4.31D-09 R=-2.00D+01 Trust test=-2.00D+01 RLast= 4.97D-04 DXMaxT set to 5.98D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12420 R2 0.00183 0.10254 R3 0.00599 -0.00139 0.43113 R4 -0.00033 0.00122 -0.01406 0.39183 R5 0.00431 -0.00015 0.01217 0.01488 0.38493 A1 0.00104 0.00083 0.00149 -0.00218 0.00127 A2 0.00090 0.00320 0.00015 0.00414 0.00053 A3 -0.00382 -0.00205 0.00719 -0.00352 -0.01585 A4 0.00113 0.00568 -0.00361 -0.02122 0.00160 A5 0.00034 -0.00533 0.00494 0.02486 0.01064 A6 0.00174 0.00091 -0.00290 0.01989 0.01475 A7 -0.00382 -0.00656 -0.00323 -0.02094 -0.00899 D1 -0.00425 -0.00495 0.00997 -0.00212 -0.00203 D2 -0.00087 -0.00012 -0.00317 -0.02610 -0.01496 D3 0.00495 0.00529 -0.01913 0.03394 0.02006 A1 A2 A3 A4 A5 A1 0.03620 A2 -0.00327 0.09394 A3 -0.01660 0.04039 0.09917 A4 0.00320 0.02772 0.03426 0.08090 A5 0.00929 -0.00193 -0.01430 0.01855 0.14736 A6 0.00065 -0.01536 0.01153 0.00098 -0.00849 A7 0.00389 0.01643 -0.01395 0.00024 0.01523 D1 0.00428 0.00271 -0.00585 0.00592 -0.00158 D2 -0.00091 -0.00280 -0.00038 -0.00521 0.00695 D3 -0.00307 0.00133 0.00373 -0.00319 -0.00006 A6 A7 D1 D2 D3 A6 0.14095 A7 0.03283 0.10551 D1 -0.00120 -0.00501 0.00794 D2 0.01304 -0.01035 -0.00133 0.01566 D3 -0.01112 0.01342 -0.00546 -0.01465 0.02229 ITU= -1 0 0 0 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00076 0.02743 0.04920 0.05326 0.10032 Eigenvalues --- 0.10315 0.11960 0.12636 0.16254 0.36878 Eigenvalues --- 0.40545 0.43743 En-DIIS/RFO-DIIS IScMMF= 0 using points: 14 13 12 11 10 RFO step: Lambda=-5.70141195D-06. DidBck=T Rises=F RFO-DIIS coefs: -0.15534 6.78002 -5.54563 -0.07904 0.00000 Iteration 1 RMS(Cart)= 0.00000544 RMS(Int)= 0.00294539 Iteration 2 RMS(Cart)= 0.00000010 RMS(Int)= 0.00294529 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01134 0.00000 4.20558 R2 3.93132 -0.00014 0.00000 -0.00113 0.00000 3.93132 R3 2.07006 -0.00006 -0.00007 0.00006 0.00000 2.07006 R4 2.06983 0.00002 0.00004 0.00000 0.00001 2.06985 R5 2.06999 -0.00004 0.00003 0.00001 0.00000 2.07000 A1 3.14159 0.00000 0.00000 0.00033 0.00000 3.14159 A2 1.94337 0.00001 0.00010 -0.00002 0.00001 1.94338 A3 1.94337 0.00001 -0.00010 0.00007 0.00000 1.94336 A4 1.94373 -0.00002 -0.00006 0.00001 0.00000 1.94373 A5 1.87688 -0.00002 0.00001 -0.00002 0.00000 1.87688 A6 1.87655 0.00001 -0.00002 -0.00001 0.00000 1.87655 A7 1.87657 0.00002 0.00007 -0.00004 0.00000 1.87656 D1 -1.85032 0.00001 -0.00128 -0.00028 -0.00142 -1.85174 D2 0.24418 -0.00001 -0.00127 -0.00027 -0.00141 0.24277 D3 2.33854 0.00000 -0.00129 -0.00026 -0.00143 2.33711 Item Value Threshold Converged? Maximum Force 0.001410 0.000015 NO RMS Force 0.000367 0.000010 NO Maximum Displacement 0.000013 0.000060 YES RMS Displacement 0.000005 0.000040 YES Predicted change in Energy=-2.074007D-09 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286198 0.663252 -0.678976 2 17 0 1.912299 0.419508 -0.433973 3 6 0 -2.341324 0.891101 -0.908002 4 1 0 -2.781444 1.419365 -0.055247 5 1 0 -2.580861 1.463837 -1.810394 6 1 0 -2.843725 -0.078826 -0.990004 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225495 0.000000 3 C 2.080363 4.305859 0.000000 4 H 2.680857 4.813977 1.095426 0.000000 5 H 2.680769 4.813902 1.095316 1.767131 0.000000 6 H 2.681112 4.814279 1.095395 1.766982 1.766903 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471410 -0.000003 0.000001 2 17 0 -1.754085 0.000001 -0.000006 3 6 0 2.551773 -0.000008 0.000008 4 1 0 2.950533 0.958884 0.348540 5 1 0 2.950472 -0.781290 0.656021 6 1 0 2.950880 -0.177530 -1.004527 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6039999 2.3238989 2.3238939 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6632436316 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999995 -0.003243 0.000000 0.000000 Ang= -0.37 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826449 A.U. after 5 cycles NFock= 5 Conv=0.59D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001256941 -0.000147611 0.000140781 2 17 -0.001393246 0.000155401 -0.000155301 3 6 0.000086336 -0.000039865 0.000063224 4 1 0.000022794 -0.000013619 -0.000055757 5 1 -0.000006459 0.000020836 0.000001467 6 1 0.000033635 0.000024857 0.000005585 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393246 RMS 0.000449075 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001410462 RMS 0.000366496 Search for a local minimum. Step number 15 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 13 14 15 DE= -3.40D-09 DEPred=-2.07D-09 R= 1.64D+00 Trust test= 1.64D+00 RLast= 2.46D-03 DXMaxT set to 5.98D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.12393 R2 0.00162 0.10226 R3 0.00562 -0.00135 0.38822 R4 -0.00132 0.00502 -0.04015 0.64151 R5 0.00433 0.00093 0.01277 0.07877 0.39825 A1 0.00104 0.00085 0.00049 0.00847 0.00448 A2 0.00084 0.00361 0.00324 0.01932 0.00323 A3 -0.00380 -0.00192 -0.00110 -0.01037 -0.01718 A4 0.00117 0.00580 -0.01056 -0.03170 -0.00019 A5 0.00059 -0.00596 0.02636 0.02537 0.00712 A6 0.00149 0.00091 -0.00376 0.03198 0.01854 A7 -0.00413 -0.00711 -0.01036 -0.03104 -0.00883 D1 -0.00417 -0.00525 0.01496 -0.00137 -0.00257 D2 -0.00125 0.00016 -0.00924 -0.00775 -0.00809 D3 0.00539 0.00512 -0.00621 0.01287 0.01170 A1 A2 A3 A4 A5 A1 0.03642 A2 -0.00246 0.09482 A3 -0.01653 0.04044 0.09724 A4 0.00305 0.02706 0.03294 0.08014 A5 0.00911 -0.00327 -0.01010 0.02173 0.13761 A6 0.00079 -0.01411 0.01151 0.00037 -0.00849 A7 0.00312 0.01635 -0.01457 0.00066 0.01804 D1 0.00426 0.00260 -0.00485 0.00662 -0.00377 D2 -0.00038 -0.00158 -0.00134 -0.00521 0.00829 D3 -0.00388 -0.00065 0.00613 -0.00163 -0.00443 A6 A7 D1 D2 D3 A6 0.14154 A7 0.03154 0.10392 D1 -0.00132 -0.00460 0.00764 D2 0.01325 -0.01223 -0.00111 0.01589 D3 -0.01160 0.01635 -0.00653 -0.01485 0.02148 ITU= 0 -1 0 0 0 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00001 0.02735 0.04917 0.05465 0.09971 Eigenvalues --- 0.10291 0.11809 0.12567 0.15763 0.35669 Eigenvalues --- 0.40487 0.67253 Eigenvalue 1 is 7.15D-06 Eigenvector: D3 D1 D2 R4 A2 1 0.57867 0.57706 0.57631 -0.00312 -0.00187 A7 A1 R5 A4 A6 1 0.00126 0.00093 -0.00088 0.00058 -0.00058 En-DIIS/RFO-DIIS IScMMF= 0 using points: 15 14 13 12 11 RFO step: Lambda=-5.70806622D-06. DidBck=F Rises=F RFO-DIIS coefs: 7.38285 -7.13408 4.03405 -3.26204 -0.02077 Iteration 1 RMS(Cart)= 0.00002456 RMS(Int)= 0.00300353 Iteration 2 RMS(Cart)= 0.00004585 RMS(Int)= 0.00295239 SLEqS3 Cycle: 30 Max:0.238530E-02 RMS: 106.681 Conv:0.261961E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-1.68D-03. ITry= 1 IFail=1 DXMaxC= 1.47D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002459 RMS(Int)= 0.00271409 Iteration 2 RMS(Cart)= 0.00004366 RMS(Int)= 0.00265721 SLEqS3 Cycle: 29 Max:0.218648E-02 RMS:0.689449E-03 Conv:0.105671E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-2.84D-03. ITry= 2 IFail=1 DXMaxC= 1.37D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002463 RMS(Int)= 0.00242604 Iteration 2 RMS(Cart)= 0.00004589 RMS(Int)= 0.00236205 SLEqS3 Cycle: 29 Max:0.191600E-02 RMS:0.616525E-03 Conv:0.262952E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-1.82D-03. ITry= 3 IFail=1 DXMaxC= 1.41D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002467 RMS(Int)= 0.00213993 Iteration 2 RMS(Cart)= 0.00004796 RMS(Int)= 0.00206694 SLEqS3 Cycle: 29 Max:0.167320E-02 RMS:0.535927E-03 Conv:0.741372E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-4.44D-03. ITry= 4 IFail=1 DXMaxC= 1.44D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002472 RMS(Int)= 0.00185667 Iteration 2 RMS(Cart)= 0.00004408 RMS(Int)= 0.00177170 SLEqS3 Cycle: 29 Max:0.145867E-02 RMS:0.463696E-03 Conv:0.130396E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-3.38D-03. ITry= 5 IFail=1 DXMaxC= 1.28D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002476 RMS(Int)= 0.00157778 Iteration 2 RMS(Cart)= 0.00004661 RMS(Int)= 0.00147655 SLEqS3 Cycle: 29 Max:0.120445E-02 RMS:0.386979E-03 Conv:0.289840E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-1.63D-03. ITry= 6 IFail=1 DXMaxC= 1.31D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002481 RMS(Int)= 0.00130608 Iteration 2 RMS(Cart)= 0.00004477 RMS(Int)= 0.00118136 SLEqS3 Cycle: 29 Max:0.975992E-03 RMS:0.310786E-03 Conv:0.110745E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-3.66D-03. ITry= 7 IFail=1 DXMaxC= 1.22D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002487 RMS(Int)= 0.00104716 Iteration 2 RMS(Cart)= 0.00004752 RMS(Int)= 0.00088622 SLEqS3 Cycle: 29 Max:0.725373E-03 RMS:0.232838E-03 Conv:0.321760E-03 New curvilinear step failed, DQL= 5.44D+00 SP=-5.86D-04. ITry= 8 IFail=1 DXMaxC= 1.25D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002492 RMS(Int)= 0.00081334 Iteration 2 RMS(Cart)= 0.00004575 RMS(Int)= 0.00059104 SLEqS3 Cycle: 15 Max:0.225153E-02 RMS: 45.9668 Conv:0.112866E-03 Iteration 3 RMS(Cart)= 0.00000649 RMS(Int)= 0.00059101 SLEqS3 Cycle: 29 Max:0.468453E-03 RMS:0.160185E-03 Conv:0.597509E-05 New curvilinear step failed, DQL= 5.44D+00 SP=-4.75D-03. ITry= 9 IFail=1 DXMaxC= 1.13D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00002498 RMS(Int)= 0.00063306 Iteration 2 RMS(Cart)= 0.00005082 RMS(Int)= 0.00029635 SLEqS3 Cycle: 15 Max:0.112668E-02 RMS: 304.316 Conv:0.747234E-03 Iteration 3 RMS(Cart)= 0.00000459 RMS(Int)= 0.00029575 SLEqS3 Cycle: 29 Max:0.241750E-03 RMS:0.775937E-04 Conv:0.813258E-04 New curvilinear step failed, DQL= 5.44D+00 SP=-1.17D-03. ITry=10 IFail=1 DXMaxC= 1.22D-04 DCOld= 1.00D+10 DXMaxT= 5.98D-01 DXLimC= 3.00D+00 Rises=F RedQX1 iteration 1 Try 1 RMS(Cart)= 0.00058186 RMS(Int)= 1.40064299 XScale= 0.00372175 RedQX1 iteration 2 Try 1 RMS(Cart)= 0.00011637 RMS(Int)= 1.40064848 XScale= 0.00372174 RedQX1 iteration 3 Try 1 RMS(Cart)= 0.00002327 RMS(Int)= 1.40064958 XScale= 0.00372174 RedQX1 iteration 4 Try 1 RMS(Cart)= 0.00000465 RMS(Int)= 1.40064976 XScale= 0.00372174 RedQX1 iteration 5 Try 1 RMS(Cart)= 0.00000093 RMS(Int)= 1.40064939 XScale= 0.00372174 RedQX1 iteration 6 Try 1 RMS(Cart)= 0.00000019 RMS(Int)= 0.00522835 XScale=************ RedQX1 iteration 6 Try 2 RMS(Cart)= 0.00000019 RMS(Int)= 0.00522147 XScale=596.72001860 RedQX1 iteration 6 Try 3 RMS(Cart)= 0.00000019 RMS(Int)= 1.40064830 XScale= 0.00372174 RedQX1 iteration 7 Try 1 RMS(Cart)= 0.00000019 RMS(Int)= 1.40064830 XScale= 0.00372174 RedQX1 iteration 8 Try 1 RMS(Cart)= 0.00000004 RMS(Int)= 1.40062604 XScale= 0.00372180 RedQX1 iteration 9 Try 1 RMS(Cart)= 0.00000001 RMS(Int)= 0.00521848 XScale=422.49077664 TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.01137 0.00000 4.20558 R2 3.93132 -0.00014 0.00000 -0.00116 0.00000 3.93132 R3 2.07006 -0.00006 -0.00005 0.00004 0.00000 2.07006 R4 2.06985 0.00001 0.00012 -0.00006 0.00000 2.06985 R5 2.07000 -0.00004 0.00004 0.00001 0.00000 2.07000 A1 3.14159 0.00000 0.00000 0.00030 0.00000 3.14159 A2 1.94338 0.00001 0.00009 -0.00001 0.00000 1.94338 A3 1.94336 0.00001 -0.00007 0.00008 0.00000 1.94336 A4 1.94373 -0.00002 -0.00003 0.00000 0.00000 1.94373 A5 1.87688 -0.00002 -0.00001 -0.00002 0.00000 1.87688 A6 1.87655 0.00001 -0.00001 -0.00004 0.00000 1.87655 A7 1.87656 0.00002 0.00003 -0.00001 0.00000 1.87656 D1 -1.85174 0.00001 -0.00971 0.00004 -0.00003 -1.85177 D2 0.24277 -0.00001 -0.00971 0.00006 -0.00003 0.24274 D3 2.33711 0.00000 -0.00973 0.00010 -0.00003 2.33708 Item Value Threshold Converged? Maximum Force 0.001410 0.000015 NO RMS Force 0.000366 0.000010 NO Maximum Displacement 0.000001 0.000060 YES RMS Displacement 0.000000 0.000040 YES Predicted change in Energy=-2.114563D-09 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.286198 0.663252 -0.678976 2 17 0 1.912299 0.419508 -0.433973 3 6 0 -2.341324 0.891101 -0.908002 4 1 0 -2.781443 1.419365 -0.055247 5 1 0 -2.580861 1.463837 -1.810394 6 1 0 -2.843725 -0.078826 -0.990004 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.225495 0.000000 3 C 2.080363 4.305858 0.000000 4 H 2.680857 4.813976 1.095426 0.000000 5 H 2.680768 4.813901 1.095316 1.767131 0.000000 6 H 2.681112 4.814278 1.095395 1.766982 1.766903 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.471410 -0.000003 0.000001 2 17 0 -1.754085 0.000001 -0.000006 3 6 0 2.551773 -0.000008 0.000008 4 1 0 2.950532 0.958878 0.348556 5 1 0 2.950472 -0.781301 0.656008 6 1 0 2.950880 -0.177512 -1.004530 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6039995 2.3239000 2.3238949 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.6632651287 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.82D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000009 0.000000 0.000000 Ang= 0.00 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270826451 A.U. after 3 cycles NFock= 3 Conv=0.43D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.001256793 -0.000147595 0.000140765 2 17 -0.001393079 0.000155383 -0.000155283 3 6 0.000086324 -0.000039864 0.000063221 4 1 0.000022791 -0.000013618 -0.000055757 5 1 -0.000006462 0.000020835 0.000001469 6 1 0.000033633 0.000024859 0.000005585 ------------------------------------------------------------------- Cartesian Forces: Max 0.001393079 RMS 0.000449021 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001410292 RMS 0.000366495 Search for a local minimum. Step number 16 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 13 14 15 16 DE= -2.12D-09 DEPred=-2.11D-09 R= 1.00D+00 Trust test= 1.00D+00 RLast= 4.79D-05 DXMaxT set to 5.98D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.05743 R2 -0.00503 0.10152 R3 0.00551 -0.00213 0.38678 R4 -0.04485 0.00496 -0.03868 0.65546 R5 -0.01010 0.00076 0.01458 0.07745 0.39485 A1 -4.83065 -0.54500 -0.17532 1.12611 0.33282 A2 0.00300 0.00310 0.01133 -0.01819 -0.00822 A3 -0.00447 -0.00117 -0.00527 0.01758 -0.00985 A4 0.00047 0.00607 -0.01323 -0.01873 0.00361 A5 -0.00139 -0.00631 0.02692 0.02781 0.00694 A6 -0.00632 0.00022 -0.00483 0.03428 0.01947 A7 0.00779 -0.00665 -0.01117 -0.03603 -0.00827 D1 0.00091 -0.00507 0.01614 -0.00374 -0.00330 D2 0.00249 0.00067 -0.01036 -0.01006 -0.00753 D3 -0.00403 0.00441 -0.00617 0.01719 0.01168 A1 A2 A3 A4 A5 A1 545.34687 A2 0.00806 0.09587 A3 -0.14277 0.03965 0.09749 A4 -0.12292 0.02769 0.03221 0.07943 A5 0.11387 -0.00532 -0.00875 0.02236 0.13736 A6 0.12494 -0.01548 0.01297 0.00094 -0.00810 A7 0.02926 0.01861 -0.01565 0.00043 0.01772 D1 0.00578 0.00271 -0.00472 0.00671 -0.00399 D2 0.05666 -0.00316 0.00033 -0.00429 0.00851 D3 -0.06180 0.00038 0.00466 -0.00249 -0.00443 A6 A7 D1 D2 D3 A6 0.14118 A7 0.03107 0.10283 D1 -0.00122 -0.00518 0.00753 D2 0.01299 -0.01328 -0.00167 0.01494 D3 -0.01144 0.01798 -0.00587 -0.01336 0.01939 ITU= 0 0 -1 0 0 0 0 0 1 1 1 1 1 1 1 0 Eigenvalues --- 0.00000 0.01078 0.04711 0.04754 0.09964 Eigenvalues --- 0.10456 0.11881 0.15532 0.35486 0.40428 Eigenvalues --- 0.68516 545.39293 Eigenvalue 1 is 8.45D-09 Eigenvector: D3 D1 D2 R1 R2 1 -0.57802 -0.57705 -0.57655 -0.02207 -0.00225 R4 A2 A7 A3 R5 1 0.00178 0.00134 -0.00067 -0.00056 0.00055 Eigenvalue 12 is 5.45D+02 Eigenvector: A1 R1 R4 R2 R5 1 -0.99996 0.00886 -0.00207 0.00100 -0.00061 R3 A3 A6 A4 A5 1 0.00032 0.00026 -0.00022 0.00022 -0.00021 En-DIIS/RFO-DIIS IScMMF= 0 using points: 16 15 14 13 12 RFO step: Lambda=-1.92011210D-05. DidBck=F Rises=F RFO-DIIS coefs: 1.00000 0.00000 0.00000 0.00000 0.00000 Iteration 1 RMS(Cart)= 0.00075347 RMS(Int)= 0.07043079 Iteration 2 RMS(Cart)= 0.00016878 RMS(Int)= 0.06777231 Iteration 3 RMS(Cart)= 0.00017016 RMS(Int)= 0.06544912 Iteration 4 RMS(Cart)= 0.00011192 RMS(Int)= 0.06339670 Iteration 5 RMS(Cart)= 0.00012174 RMS(Int)= 0.06155359 Iteration 6 RMS(Cart)= 0.00011552 RMS(Int)= 0.05988626 Iteration 7 RMS(Cart)= 0.00011923 RMS(Int)= 0.05836572 Iteration 8 RMS(Cart)= 0.00011848 RMS(Int)= 0.05697121 Iteration 9 RMS(Cart)= 0.00012092 RMS(Int)= 0.05567363 Iteration 10 RMS(Cart)= 0.00012153 RMS(Int)= 0.05445079 Iteration 11 RMS(Cart)= 0.00012747 RMS(Int)= 0.05325609 Iteration 12 RMS(Cart)= 0.00014113 RMS(Int)= 0.05199056 Iteration 13 RMS(Cart)= 0.00022439 RMS(Int)= 0.04996330 Iteration 14 RMS(Cart)= 0.00045342 RMS(Int)= 0.04564675 Iteration 15 RMS(Cart)= 0.00068995 RMS(Int)= 0.03820132 Iteration 16 RMS(Cart)= 0.00059386 RMS(Int)= 0.03521791 SLEqS3 Cycle: 30 Max:0.110000 RMS: 12374.1 Conv:0.347937E-01 Iteration 17 RMS(Cart)= 0.00003979 RMS(Int)= 0.03519251 SLEqS3 Cycle: 15 Max:0.121210 RMS: 14117.9 Conv:0.396972E-01 Iteration 18 RMS(Cart)= 0.00000517 RMS(Int)= 0.03518929 SLEqS3 Cycle: 15 Max:0.117967 RMS: 16700.2 Conv:0.469583E-01 Iteration 19 RMS(Cart)= 0.00000793 RMS(Int)= 0.03518435 Iteration 20 RMS(Cart)= 0.00005233 RMS(Int)= 1.40414517 Iteration 21 RMS(Cart)= 0.03483407 RMS(Int)= 1.40218693 Iteration 22 RMS(Cart)= 0.00058524 RMS(Int)= 1.35753734 Iteration 23 RMS(Cart)= 0.00048360 RMS(Int)= 1.30099357 Iteration 24 RMS(Cart)= 0.00037070 RMS(Int)= 1.22856247 Iteration 25 RMS(Cart)= 0.00024762 RMS(Int)= 1.14362085 Iteration 26 RMS(Cart)= 0.00016765 RMS(Int)= 1.05456903 Iteration 27 RMS(Cart)= 0.00014213 RMS(Int)= 0.96513772 Iteration 28 RMS(Cart)= 0.00013410 RMS(Int)= 0.87582411 Iteration 29 RMS(Cart)= 0.00013366 RMS(Int)= 0.78651162 Iteration 30 RMS(Cart)= 0.00013309 RMS(Int)= 0.69750052 Iteration 31 RMS(Cart)= 0.00013421 RMS(Int)= 0.60832552 Iteration 32 RMS(Cart)= 0.00013484 RMS(Int)= 0.51895589 Iteration 33 RMS(Cart)= 0.00013586 RMS(Int)= 0.42951077 Iteration 34 RMS(Cart)= 0.00013569 RMS(Int)= 0.34006409 Iteration 35 RMS(Cart)= 0.00013550 RMS(Int)= 0.25061991 Iteration 36 RMS(Cart)= 0.00013485 RMS(Int)= 0.16117951 Iteration 37 RMS(Cart)= 0.00013399 RMS(Int)= 0.07174234 Iteration 38 RMS(Cart)= 0.00010459 RMS(Int)= 0.00004227 Iteration 39 RMS(Cart)= 0.00001646 RMS(Int)= 0.00001088 Iteration 40 RMS(Cart)= 0.00000014 RMS(Int)= 0.00001088 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.20558 -0.00141 0.00000 -0.13543 -0.13543 4.07015 R2 3.93132 -0.00014 0.00000 -0.01416 -0.01416 3.91716 R3 2.07006 -0.00006 0.00000 -0.00005 -0.00005 2.07000 R4 2.06985 0.00001 0.00000 -0.00532 -0.00532 2.06452 R5 2.07000 -0.00004 0.00000 -0.00089 -0.00089 2.06910 A1 3.14159 -0.00002 0.00000 -0.00121 -0.00121 3.14039 A2 1.94338 0.00001 0.00000 0.00958 0.00958 1.95296 A3 1.94336 0.00001 0.00000 -0.00970 -0.00970 1.93366 A4 1.94373 -0.00002 0.00000 -0.00203 -0.00204 1.94169 A5 1.87688 -0.00002 0.00000 0.00085 0.00087 1.87774 A6 1.87655 0.00001 0.00000 -0.00084 -0.00085 1.87570 A7 1.87656 0.00002 0.00000 0.00228 0.00226 1.87882 D1 -1.85177 0.00001 0.00000 -0.17854 -0.17853 -2.03029 D2 0.24274 -0.00001 0.00000 -0.17754 -0.17757 0.06517 D3 2.33708 0.00000 0.00000 -0.18259 -0.18258 2.15451 Item Value Threshold Converged? Maximum Force 0.001410 0.000015 NO RMS Force 0.000366 0.000010 NO Maximum Displacement 0.121021 0.000060 NO RMS Displacement 0.035771 0.000040 NO Predicted change in Energy=-1.014105D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.279996 0.662139 -0.677777 2 17 0 1.848257 0.426747 -0.445159 3 6 0 -2.327871 0.890110 -0.903668 4 1 0 -2.776114 1.418559 -0.055308 5 1 0 -2.557269 1.460795 -1.806577 6 1 0 -2.828260 -0.080114 -0.988107 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.153830 0.000000 3 C 2.072869 4.226698 0.000000 4 H 2.681463 4.745575 1.095397 0.000000 5 H 2.664210 4.725609 1.092498 1.765396 0.000000 6 H 2.672245 4.735136 1.094922 1.766028 1.765710 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.441214 -0.000162 -0.001051 2 17 0 -1.712615 0.000109 0.000158 3 6 0 2.514083 0.000466 0.000122 4 1 0 2.922801 0.691960 -0.744647 5 1 0 2.901230 0.300512 0.976668 6 1 0 2.911364 -0.995179 -0.222837 --------------------------------------------------------------------- Rotational constants (GHZ): 160.8484520 2.4198886 2.4198718 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 103.7028265608 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.51D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.833052 0.553195 0.000103 0.000121 Ang= 67.17 deg. ExpMin= 4.21D-02 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.269835863 A.U. after 10 cycles NFock= 10 Conv=0.33D-09 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.014617978 0.001641709 -0.001249191 2 17 0.016345161 -0.001815976 0.001750013 3 6 -0.000376100 -0.000622952 0.001361975 4 1 0.000107850 0.000046010 -0.000080288 5 1 -0.001040008 0.000910606 -0.001552652 6 1 -0.000418924 -0.000159396 -0.000229857 ------------------------------------------------------------------- Cartesian Forces: Max 0.016345161 RMS 0.005262264 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.016538537 RMS 0.004336687 Search for a local minimum. Step number 17 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 14 15 16 17 13 DE= 9.91D-04 DEPred=-1.01D-04 R=-9.77D+00 Trust test=-9.77D+00 RLast= 3.42D-01 DXMaxT set to 2.99D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.13338 R2 0.00300 0.10218 R3 0.00099 -0.00146 0.38001 R4 -0.01633 0.00656 -0.00470 0.57938 R5 -0.00266 0.00036 0.02594 0.04810 0.38587 A1 -0.00085 -0.00001 0.00686 -0.02065 0.00336 A2 0.00196 0.00368 0.00688 -0.01940 -0.00934 A3 -0.00005 -0.00006 -0.00331 0.01905 -0.01185 A4 0.00180 0.00590 -0.01107 -0.02440 0.00280 A5 -0.00116 -0.00725 0.02935 0.02374 0.00612 A6 -0.00491 0.00034 -0.00424 0.03654 0.01935 A7 0.00211 -0.00778 -0.01379 -0.02727 -0.00309 D1 0.00107 -0.00526 0.01653 -0.00493 -0.00384 D2 0.00016 0.00053 -0.01142 -0.00929 -0.00613 D3 -0.00144 0.00478 -0.00531 0.01708 0.01047 A1 A2 A3 A4 A5 A1 0.04211 A2 -0.01640 0.09460 A3 -0.01330 0.04033 0.09808 A4 0.00996 0.02951 0.03063 0.07866 A5 0.02385 -0.00660 -0.00898 0.02287 0.13719 A6 0.01470 -0.01651 0.01498 0.00130 -0.00865 A7 -0.01999 0.01933 -0.01660 0.00036 0.01878 D1 0.00443 0.00285 -0.00463 0.00664 -0.00420 D2 0.00707 -0.00411 0.00034 -0.00448 0.00940 D3 -0.01118 0.00113 0.00472 -0.00220 -0.00527 A6 A7 D1 D2 D3 A6 0.14082 A7 0.03031 0.10256 D1 -0.00127 -0.00530 0.00764 D2 0.01314 -0.01286 -0.00190 0.01475 D3 -0.01157 0.01767 -0.00576 -0.01291 0.01878 ITU= -1 0 0 -1 0 0 0 0 0 1 1 1 1 1 1 1 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.91130. Iteration 1 RMS(Cart)= 0.00438216 RMS(Int)= 0.06848541 Iteration 2 RMS(Cart)= 0.00207171 RMS(Int)= 0.06314208 Iteration 3 RMS(Cart)= 0.00504176 RMS(Int)= 0.04921414 Iteration 4 RMS(Cart)= 0.00422050 RMS(Int)= 0.03796498 Iteration 5 RMS(Cart)= 0.00370996 RMS(Int)= 0.02836501 Iteration 6 RMS(Cart)= 0.00337367 RMS(Int)= 0.01988711 Iteration 7 RMS(Cart)= 0.00310686 RMS(Int)= 0.01237660 Iteration 8 RMS(Cart)= 0.00282163 RMS(Int)= 0.00603286 Iteration 9 RMS(Cart)= 0.00239045 RMS(Int)= 0.00161962 Iteration 10 RMS(Cart)= 0.00141916 RMS(Int)= 0.00007583 Iteration 11 RMS(Cart)= 0.00003919 RMS(Int)= 0.00000092 Iteration 12 RMS(Cart)= 0.00000027 RMS(Int)= 0.00000087 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.07015 0.01654 0.12342 0.00000 0.12342 4.19356 R2 3.91716 0.00178 0.01291 0.00000 0.01291 3.93006 R3 2.07000 -0.00008 0.00007 0.00000 0.00007 2.07007 R4 2.06452 0.00198 0.00491 0.00000 0.00491 2.06943 R5 2.06910 0.00035 0.00083 0.00000 0.00083 2.06993 A1 3.14039 -0.00010 0.00110 0.00000 0.00110 3.14149 A2 1.95296 -0.00033 -0.00855 0.00000 -0.00855 1.94441 A3 1.93366 0.00086 0.00873 0.00000 0.00873 1.94240 A4 1.94169 0.00033 0.00173 0.00000 0.00173 1.94342 A5 1.87774 -0.00031 -0.00090 0.00000 -0.00090 1.87684 A6 1.87570 -0.00006 0.00064 0.00000 0.00064 1.87634 A7 1.87882 -0.00055 -0.00176 0.00000 -0.00176 1.87706 D1 -2.03029 -0.00002 0.16398 0.00000 0.16398 -1.86631 D2 0.06517 -0.00004 0.16302 0.00000 0.16302 0.22819 D3 2.15451 0.00005 0.16780 0.00000 0.16780 2.32230 Item Value Threshold Converged? Maximum Force 0.016539 0.000015 NO RMS Force 0.004337 0.000010 NO Maximum Displacement 0.110286 0.000060 NO RMS Displacement 0.032577 0.000040 NO Predicted change in Energy=-6.496569D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285653 0.663136 -0.678897 2 17 0 1.906618 0.420151 -0.435005 3 6 0 -2.340137 0.891009 -0.907620 4 1 0 -2.781149 1.419274 -0.055316 5 1 0 -2.578668 1.463679 -1.810054 6 1 0 -2.842264 -0.079013 -0.989704 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.219139 0.000000 3 C 2.079699 4.298837 0.000000 4 H 2.681063 4.808074 1.095435 0.000000 5 H 2.679236 4.805986 1.095096 1.766939 0.000000 6 H 2.680233 4.807155 1.095359 1.766827 1.767019 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468733 -0.000086 -0.000016 2 17 0 -1.750406 0.000011 -0.000009 3 6 0 2.548431 0.000045 -0.000025 4 1 0 2.948258 -0.309636 -0.971731 5 1 0 2.946005 0.996896 0.217825 6 1 0 2.947259 -0.686686 0.754395 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6180798 2.3321948 2.3321906 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8393032699 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.79D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Lowest energy guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.053149 0.998587 0.000010 0.000009 Ang= 173.91 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.863899 0.503665 -0.000138 0.000036 Ang= 60.49 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270835011 A.U. after 7 cycles NFock= 7 Conv=0.34D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.000042475 -0.000005911 0.000041978 2 17 -0.000016520 0.000001492 -0.000005718 3 6 0.000043710 -0.000073495 0.000186741 4 1 0.000045750 -0.000008623 -0.000056802 5 1 -0.000105434 0.000067485 -0.000126498 6 1 -0.000009981 0.000019051 -0.000039701 ------------------------------------------------------------------- Cartesian Forces: Max 0.000186741 RMS 0.000068799 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000162506 RMS 0.000057322 Search for a local minimum. Step number 18 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 4 5 6 7 8 9 10 11 12 14 15 16 17 13 18 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.11679 R2 0.00272 0.10217 R3 0.00089 -0.00169 0.38148 R4 -0.01687 0.00743 -0.00503 0.56402 R5 -0.00273 0.00030 0.02736 0.04221 0.38563 A1 0.00004 0.00002 0.00420 -0.00814 0.00379 A2 0.00156 0.00423 0.00540 -0.02542 -0.01262 A3 0.00040 -0.00024 -0.00362 0.02188 -0.01213 A4 0.00162 0.00654 -0.01118 -0.01809 0.00554 A5 -0.00064 -0.00823 0.03188 0.02908 0.00980 A6 -0.00427 -0.00045 -0.00255 0.04414 0.02257 A7 0.00122 -0.00755 -0.01533 -0.04281 -0.00851 D1 0.00103 -0.00528 0.01653 -0.00300 -0.00325 D2 0.00047 0.00012 -0.01046 -0.00422 -0.00387 D3 -0.00169 0.00520 -0.00622 0.01023 0.00768 A1 A2 A3 A4 A5 A1 0.03682 A2 -0.00767 0.09274 A3 -0.01649 0.04405 0.09683 A4 0.00653 0.02945 0.02867 0.08004 A5 0.01414 -0.00516 -0.01285 0.02238 0.13658 A6 0.00460 -0.01283 0.01119 -0.00101 -0.01161 A7 -0.00393 0.01270 -0.01013 0.00398 0.02506 D1 0.00398 0.00290 -0.00511 0.00697 -0.00437 D2 0.00112 -0.00206 -0.00180 -0.00607 0.00780 D3 -0.00503 -0.00088 0.00723 -0.00097 -0.00358 A6 A7 D1 D2 D3 A6 0.13581 A7 0.04035 0.08311 D1 -0.00180 -0.00459 0.00787 D2 0.01022 -0.00677 -0.00228 0.01295 D3 -0.00825 0.01114 -0.00562 -0.01081 0.01661 ITU= 0 -1 0 0 -1 0 0 0 0 0 1 1 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.00000 0.02479 0.04387 0.05260 0.06994 Eigenvalues --- 0.09967 0.11548 0.12149 0.16020 0.35197 Eigenvalues --- 0.40920 0.58456 RFO step: Lambda=-7.08183405D-07 EMin= 9.91530391D-09 Quartic linear search produced a step of -0.00231. Iteration 1 RMS(Cart)= 0.00122587 RMS(Int)= 0.12479254 Iteration 2 RMS(Cart)= 0.00003335 RMS(Int)= 0.11272410 Iteration 3 RMS(Cart)= 0.00005927 RMS(Int)= 0.10036452 Iteration 4 RMS(Cart)= 0.00025748 RMS(Int)= 0.01649409 Iteration 5 RMS(Cart)= 0.00002268 RMS(Int)= 0.01592203 Iteration 6 RMS(Cart)= 0.00000339 RMS(Int)= 0.01566006 Iteration 7 RMS(Cart)= 0.00000415 RMS(Int)= 0.01527960 Iteration 8 RMS(Cart)= 0.00000126 RMS(Int)= 0.01502132 Iteration 9 RMS(Cart)= 0.00000118 RMS(Int)= 0.01471670 Iteration 10 RMS(Cart)= 0.00000054 RMS(Int)= 0.01446172 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19356 -0.00002 0.00003 -0.00054 -0.00067 4.19289 R2 3.93006 0.00003 0.00000 0.00015 0.00030 3.93036 R3 2.07007 -0.00007 0.00000 -0.00020 -0.00024 2.06983 R4 2.06943 0.00016 0.00000 0.00280 0.00274 2.07217 R5 2.06993 -0.00001 0.00000 0.00045 0.00045 2.07038 A1 3.14149 -0.00001 0.00000 0.00339 0.00011 3.14159 A2 1.94441 -0.00004 0.00000 -0.00101 -0.00074 1.94367 A3 1.94240 0.00009 0.00000 0.00278 0.00250 1.94490 A4 1.94342 0.00002 0.00000 -0.00012 -0.00016 1.94326 A5 1.87684 -0.00003 0.00000 -0.00159 -0.00144 1.87541 A6 1.87634 0.00002 0.00000 -0.00076 -0.00046 1.87588 A7 1.87706 -0.00007 0.00000 0.00059 0.00019 1.87725 D1 -1.86631 0.00001 0.00004 -0.47301 -0.44058 -2.30689 D2 0.22819 0.00000 0.00004 -0.47383 -0.44120 -0.21301 D3 2.32230 -0.00001 0.00004 -0.47128 -0.43938 1.88292 Item Value Threshold Converged? Maximum Force 0.000163 0.000015 NO RMS Force 0.000057 0.000010 NO Maximum Displacement 0.004426 0.000060 NO RMS Displacement 0.001542 0.000040 NO Predicted change in Energy=-4.016198D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285135 0.663015 -0.678826 2 17 0 1.906692 0.419888 -0.434312 3 6 0 -2.339722 0.890920 -0.908033 4 1 0 -2.780170 1.419036 -0.055507 5 1 0 -2.581010 1.464796 -1.810730 6 1 0 -2.841908 -0.079419 -0.989188 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.218784 0.000000 3 C 2.079858 4.298642 0.000000 4 H 2.680540 4.807127 1.095309 0.000000 5 H 2.682369 4.808933 1.096547 1.767078 0.000000 6 H 2.680414 4.806911 1.095597 1.766618 1.768502 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468478 -0.000002 0.000028 2 17 0 -1.750306 0.000025 -0.000006 3 6 0 2.548336 -0.000025 0.000062 4 1 0 2.947366 -0.120321 -1.012857 5 1 0 2.949060 0.938150 0.402134 6 1 0 2.947017 -0.818077 0.610126 --------------------------------------------------------------------- Rotational constants (GHZ): 160.5325234 2.3323444 2.3323009 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8387238344 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.81D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.995466 -0.095123 -0.000014 0.000028 Ang= -10.92 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270834115 A.U. after 9 cycles NFock= 9 Conv=0.14D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.000078912 0.000035172 -0.000034975 2 17 0.000054318 -0.000008930 0.000008736 3 6 -0.000231686 0.000286690 -0.000535863 4 1 0.000011893 0.000018122 0.000069339 5 1 0.000196871 -0.000489004 0.000572882 6 1 0.000047516 0.000157949 -0.000080119 ------------------------------------------------------------------- Cartesian Forces: Max 0.000572882 RMS 0.000244925 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000770875 RMS 0.000209693 Search for a local minimum. Step number 19 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 17 18 19 DE= 8.95D-07 DEPred=-4.02D-07 R=-2.23D+00 Trust test=-2.23D+00 RLast= 7.63D-01 DXMaxT set to 1.49D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.13460 R2 0.00384 0.10006 R3 -0.00036 0.00171 0.37566 R4 -0.01974 0.00630 -0.00599 0.71355 R5 -0.00458 0.00285 0.02224 0.08150 0.39189 A1 -0.00384 0.00737 -0.00914 0.03053 0.00303 A2 0.00153 0.00446 0.00510 -0.02819 -0.01362 A3 0.00298 -0.00647 0.00711 0.01328 -0.00548 A4 0.00214 0.00586 -0.00990 -0.02716 0.00418 A5 -0.00195 -0.00488 0.02618 0.02834 0.00484 A6 -0.00256 -0.00370 0.00343 0.02203 0.02163 A7 -0.00188 -0.00166 -0.02604 -0.00472 -0.00724 D1 0.00041 -0.00406 0.01430 0.00388 -0.00326 D2 0.00162 -0.00168 -0.00701 -0.02458 -0.00646 D3 -0.00218 0.00569 -0.00730 0.02327 0.01027 A1 A2 A3 A4 A5 A1 0.01746 A2 -0.00912 0.09277 A3 0.00526 0.04481 0.07773 A4 0.00693 0.02969 0.02693 0.08033 A5 0.00114 -0.00547 -0.00234 0.02363 0.13099 A6 0.01197 -0.01210 0.00177 -0.00089 -0.00579 A7 -0.01757 0.01139 0.00688 0.00389 0.01462 D1 0.00087 0.00265 -0.00151 0.00701 -0.00654 D2 0.00329 -0.00149 -0.00670 -0.00554 0.01114 D3 -0.00389 -0.00118 0.00831 -0.00155 -0.00462 A6 A7 D1 D2 D3 A6 0.13325 A7 0.04519 0.07399 D1 -0.00064 -0.00675 0.00737 D2 0.00992 -0.00600 -0.00198 0.01384 D3 -0.00918 0.01267 -0.00539 -0.01202 0.01758 ITU= -1 0 -1 0 0 -1 0 0 0 0 0 1 1 1 1 1 Eigenvalues --- 0.00000 0.00323 0.04089 0.04608 0.07029 Eigenvalues --- 0.09910 0.11595 0.13313 0.14749 0.35223 Eigenvalues --- 0.39936 0.73995 Eigenvalue 1 is 4.14D-07 Eigenvector: D2 D1 D3 A1 A7 1 0.57941 0.57784 0.57418 -0.02424 -0.00745 A3 A2 A6 R2 A4 1 0.00416 -0.00404 0.00393 0.00280 0.00208 En-DIIS/RFO-DIIS IScMMF= 0 using points: 19 18 RFO step: Lambda=-8.51076839D-07. DidBck=T Rises=F RFO-DIIS coefs: 0.56522 0.43478 Iteration 1 RMS(Cart)= 0.00050870 RMS(Int)= 0.00275111 SLEqS3 Cycle: 38 Max:0.346846E-02 RMS: 306.228 Conv:0.906362E-03 Iteration 2 RMS(Cart)= 0.00118356 RMS(Int)= 0.00217033 SLEqS3 Cycle: 181 Max:0.350199E-02 RMS:0.113800E-02 Conv:0.158111E-05 SLEqS3 Cycle: 181 Max:0.351566E-02 RMS:0.115137E-02 Conv:0.158111E-05 Iteration 3 RMS(Cart)= 0.00052767 RMS(Int)= 0.00209579 SLEqS3 Cycle: 181 Max:0.346504E-02 RMS:0.116546E-02 Conv:0.894914E-07 SLEqS3 Cycle: 181 Max:0.346515E-02 RMS:0.116550E-02 Conv:0.894914E-07 Iteration 4 RMS(Cart)= 0.00020724 RMS(Int)= 0.00208827 SLEqS3 Cycle: 29 Max:0.345441E-02 RMS:0.116744E-02 Conv:0.100309E-05 Iteration 5 RMS(Cart)= 0.00002649 RMS(Int)= 0.00208814 SLEqS3 Cycle: 181 Max:0.312565E-02 RMS:0.113461E-02 Conv:0.593069E-07 SLEqS3 Cycle: 181 Max:0.339122E-02 RMS:0.114955E-02 Conv:0.593069E-07 Iteration 6 RMS(Cart)= 0.00017850 RMS(Int)= 0.00208092 SLEqS3 Cycle: 181 Max:0.207050E-02 RMS:0.752410E-03 Conv:0.641857E-07 SLEqS3 Cycle: 181 Max:0.343515E-02 RMS:0.116062E-02 Conv:0.641857E-07 Iteration 7 RMS(Cart)= 0.00017921 RMS(Int)= 0.00207423 SLEqS3 Cycle: 181 Max:0.294784E-02 RMS:0.104384E-02 Conv:0.389887E-07 SLEqS3 Cycle: 181 Max:0.229984E-02 RMS:0.755715E-03 Conv:0.389887E-07 Iteration 8 RMS(Cart)= 0.00135401 RMS(Int)= 0.00140625 Iteration 9 RMS(Cart)= 0.00307752 RMS(Int)= 0.00000692 Iteration 10 RMS(Cart)= 0.00000802 RMS(Int)= 0.00000037 Iteration 11 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000037 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19289 0.00006 0.00029 -0.00021 0.00008 4.19298 R2 3.93036 -0.00003 -0.00013 0.00092 0.00079 3.93115 R3 2.06983 0.00006 0.00010 -0.00051 -0.00041 2.06942 R4 2.07217 -0.00077 -0.00119 -0.00028 -0.00147 2.07070 R5 2.07038 -0.00016 -0.00020 -0.00028 -0.00047 2.06990 A1 3.14159 0.00001 -0.00005 -0.00803 -0.00808 3.13352 A2 1.94367 -0.00002 0.00032 -0.00194 -0.00162 1.94205 A3 1.94490 -0.00007 -0.00109 0.00212 0.00103 1.94593 A4 1.94326 0.00005 0.00007 0.00105 0.00112 1.94438 A5 1.87541 0.00009 0.00062 0.00063 0.00125 1.87666 A6 1.87588 0.00004 0.00020 0.00194 0.00214 1.87802 A7 1.87725 -0.00009 -0.00008 -0.00388 -0.00396 1.87329 D1 -2.30689 0.00001 0.19156 0.00920 0.20076 -2.10613 D2 -0.21301 0.00006 0.19183 0.01012 0.20195 -0.01107 D3 1.88292 -0.00007 0.19104 0.00735 0.19838 2.08131 Item Value Threshold Converged? Maximum Force 0.000771 0.000015 NO RMS Force 0.000210 0.000010 NO Maximum Displacement 0.011276 0.000060 NO RMS Displacement 0.004617 0.000040 NO Predicted change in Energy=-1.201372D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285876 0.659746 -0.672859 2 17 0 1.907664 0.422389 -0.437835 3 6 0 -2.339925 0.890826 -0.907454 4 1 0 -2.780012 1.420092 -0.055734 5 1 0 -2.578987 1.463089 -1.810820 6 1 0 -2.844116 -0.077906 -0.991895 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.218827 0.000000 3 C 2.080276 4.299068 0.000000 4 H 2.679493 4.807881 1.095092 0.000000 5 H 2.683034 4.806057 1.095767 1.767084 0.000000 6 H 2.681512 4.810062 1.095346 1.767627 1.765105 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468395 -0.002789 0.005245 2 17 0 -1.750418 0.000997 -0.001807 3 6 0 2.548650 0.001456 -0.003029 4 1 0 2.948222 -1.016786 0.049443 5 1 0 2.945579 0.465176 -0.913037 6 1 0 2.950656 0.559392 0.849544 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6157995 2.3319614 2.3319099 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8355221672 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.81D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.729645 0.683826 -0.000035 -0.000038 Ang= 86.29 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270832655 A.U. after 9 cycles NFock= 9 Conv=0.27D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.000127092 0.000094841 -0.000238284 2 17 0.000033165 -0.000036802 0.000068548 3 6 0.000010957 -0.000049050 -0.000435500 4 1 -0.000199092 0.000001780 0.000098063 5 1 0.000273608 0.000049970 0.000248372 6 1 0.000008455 -0.000060740 0.000258801 ------------------------------------------------------------------- Cartesian Forces: Max 0.000435500 RMS 0.000173255 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000326565 RMS 0.000175960 Search for a local minimum. Step number 20 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 5 6 7 8 9 10 11 12 14 15 16 17 13 18 19 20 DE= 1.46D-06 DEPred=-1.20D-06 R=-1.22D+00 Trust test=-1.22D+00 RLast= 3.47D-01 DXMaxT set to 7.47D-02 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.10376 R2 -0.00026 0.10209 R3 0.00208 -0.00136 0.37979 R4 -0.04214 0.00724 -0.00815 0.68454 R5 -0.00933 0.00128 0.02391 0.06988 0.38903 A1 -0.00172 0.00069 -0.00022 0.01623 0.00433 A2 0.00002 0.00028 0.01047 -0.03926 -0.01311 A3 0.00979 0.00072 -0.00123 0.03522 -0.00451 A4 -0.01137 0.00533 -0.01049 -0.04248 0.00001 A5 -0.00065 -0.00463 0.02580 0.03079 0.00464 A6 0.00123 0.00074 -0.00196 0.03624 0.02210 A7 0.00176 -0.00906 -0.01642 -0.01669 -0.00443 D1 -0.00360 -0.00449 0.01444 -0.00032 -0.00456 D2 0.00612 0.00056 -0.00946 -0.01440 -0.00497 D3 -0.00293 0.00391 -0.00503 0.01701 0.00997 A1 A2 A3 A4 A5 A1 0.03428 A2 0.00093 0.09711 A3 -0.01033 0.03826 0.08715 A4 0.00455 0.02457 0.03637 0.07037 A5 0.00016 -0.00483 -0.00336 0.02597 0.13028 A6 0.00178 -0.01667 0.00834 0.00434 -0.00601 A7 0.00126 0.02271 -0.01097 0.00202 0.01336 D1 0.00009 0.00141 0.00045 0.00456 -0.00576 D2 -0.00070 -0.00289 -0.00566 -0.00127 0.01100 D3 0.00073 0.00132 0.00559 -0.00358 -0.00523 A6 A7 D1 D2 D3 A6 0.13787 A7 0.03347 0.09529 D1 0.00074 -0.00740 0.00710 D2 0.01090 -0.01085 -0.00074 0.01325 D3 -0.01136 0.01803 -0.00641 -0.01254 0.01906 ITU= -1 -1 0 -1 0 0 -1 0 0 0 0 0 1 1 1 1 Eigenvalues --- 0.00000 0.01876 0.03900 0.04665 0.09458 Eigenvalues --- 0.10098 0.10800 0.11658 0.14374 0.35229 Eigenvalues --- 0.40293 0.71438 Eigenvalue 1 is 1.51D-07 Eigenvector: D1 D3 D2 A3 A4 1 0.57984 0.57644 0.57569 -0.00559 0.00528 A1 R1 A2 R4 A5 1 -0.00395 0.00310 0.00104 -0.00085 -0.00084 En-DIIS/RFO-DIIS IScMMF= 0 using points: 20 19 18 RFO step: Lambda=-1.45216919D-06. DidBck=T Rises=F RFO-DIIS coefs: 0.11797 0.13641 0.74563 Iteration 1 RMS(Cart)= 0.00043441 RMS(Int)= 0.05996383 Iteration 2 RMS(Cart)= 0.00031340 RMS(Int)= 0.05472987 Iteration 3 RMS(Cart)= 0.00025962 RMS(Int)= 0.05046971 Iteration 4 RMS(Cart)= 0.00021950 RMS(Int)= 0.04691650 Iteration 5 RMS(Cart)= 0.00018829 RMS(Int)= 0.04390313 Iteration 6 RMS(Cart)= 0.00016348 RMS(Int)= 0.04131193 Iteration 7 RMS(Cart)= 0.00014340 RMS(Int)= 0.03905771 Iteration 8 RMS(Cart)= 0.00012689 RMS(Int)= 0.03707721 Iteration 9 RMS(Cart)= 0.00011314 RMS(Int)= 0.03532235 Iteration 10 RMS(Cart)= 0.00010156 RMS(Int)= 0.03375579 Iteration 11 RMS(Cart)= 0.00009172 RMS(Int)= 0.03234810 Iteration 12 RMS(Cart)= 0.00008327 RMS(Int)= 0.03107574 Iteration 13 RMS(Cart)= 0.00007596 RMS(Int)= 0.02991960 Iteration 14 RMS(Cart)= 0.00006960 RMS(Int)= 0.02886405 Iteration 15 RMS(Cart)= 0.00006403 RMS(Int)= 0.02789613 Iteration 16 RMS(Cart)= 0.00005912 RMS(Int)= 0.02700502 Iteration 17 RMS(Cart)= 0.00005478 RMS(Int)= 0.02618162 Iteration 18 RMS(Cart)= 0.00005092 RMS(Int)= 0.02541820 Iteration 19 RMS(Cart)= 0.00004746 RMS(Int)= 0.02470817 Iteration 20 RMS(Cart)= 0.00004437 RMS(Int)= 0.02404586 Iteration 21 RMS(Cart)= 0.00004158 RMS(Int)= 0.02342640 Iteration 22 RMS(Cart)= 0.00003906 RMS(Int)= 0.02284553 Iteration 23 RMS(Cart)= 0.00003678 RMS(Int)= 0.02229955 Iteration 24 RMS(Cart)= 0.00003470 RMS(Int)= 0.02178523 Iteration 25 RMS(Cart)= 0.00003280 RMS(Int)= 0.02129971 Iteration 26 RMS(Cart)= 0.00003107 RMS(Int)= 0.02084048 Iteration 27 RMS(Cart)= 0.00002948 RMS(Int)= 0.02040530 Iteration 28 RMS(Cart)= 0.00002802 RMS(Int)= 0.01999219 Iteration 29 RMS(Cart)= 0.00002667 RMS(Int)= 0.01959939 Iteration 30 RMS(Cart)= 0.00002543 RMS(Int)= 0.01922531 Iteration 31 RMS(Cart)= 0.00002428 RMS(Int)= 0.01886853 Iteration 32 RMS(Cart)= 0.00002321 RMS(Int)= 0.01852778 Iteration 33 RMS(Cart)= 0.00002222 RMS(Int)= 0.01820190 Iteration 34 RMS(Cart)= 0.00002129 RMS(Int)= 0.01788985 Iteration 35 RMS(Cart)= 0.00002043 RMS(Int)= 0.01759069 Iteration 36 RMS(Cart)= 0.00001963 RMS(Int)= 0.01730355 Iteration 37 RMS(Cart)= 0.00001887 RMS(Int)= 0.01702766 Iteration 38 RMS(Cart)= 0.00001816 RMS(Int)= 0.01676230 Iteration 39 RMS(Cart)= 0.00001750 RMS(Int)= 0.01650682 Iteration 40 RMS(Cart)= 0.00001687 RMS(Int)= 0.01626063 Iteration 41 RMS(Cart)= 0.00001629 RMS(Int)= 0.01602316 Iteration 42 RMS(Cart)= 0.00001573 RMS(Int)= 0.01579393 Iteration 43 RMS(Cart)= 0.00001521 RMS(Int)= 0.01557245 Iteration 44 RMS(Cart)= 0.00001471 RMS(Int)= 0.01535832 Iteration 45 RMS(Cart)= 0.00001424 RMS(Int)= 0.01515111 Iteration 46 RMS(Cart)= 0.00001380 RMS(Int)= 0.01495048 Iteration 47 RMS(Cart)= 0.00001338 RMS(Int)= 0.01475607 Iteration 48 RMS(Cart)= 0.00001298 RMS(Int)= 0.01456758 Iteration 49 RMS(Cart)= 0.00001260 RMS(Int)= 0.01438470 Iteration 50 RMS(Cart)= 0.00001223 RMS(Int)= 0.01420717 Iteration 51 RMS(Cart)= 0.00001189 RMS(Int)= 0.01403472 Iteration 52 RMS(Cart)= 0.00001156 RMS(Int)= 0.01386712 Iteration 53 RMS(Cart)= 0.00001124 RMS(Int)= 0.01370415 Iteration 54 RMS(Cart)= 0.00001094 RMS(Int)= 0.01354559 Iteration 55 RMS(Cart)= 0.00001066 RMS(Int)= 0.01339125 Iteration 56 RMS(Cart)= 0.00001038 RMS(Int)= 0.01324095 Iteration 57 RMS(Cart)= 0.00001012 RMS(Int)= 0.01309451 Iteration 58 RMS(Cart)= 0.00000987 RMS(Int)= 0.01295177 Iteration 59 RMS(Cart)= 0.00000962 RMS(Int)= 0.01281258 Iteration 60 RMS(Cart)= 0.00000939 RMS(Int)= 0.01267679 Iteration 61 RMS(Cart)= 0.00000917 RMS(Int)= 0.01254427 Iteration 62 RMS(Cart)= 0.00000895 RMS(Int)= 0.01241488 Iteration 63 RMS(Cart)= 0.00000875 RMS(Int)= 0.01228852 Iteration 64 RMS(Cart)= 0.00000855 RMS(Int)= 0.01216506 Iteration 65 RMS(Cart)= 0.00000836 RMS(Int)= 0.01204439 Iteration 66 RMS(Cart)= 0.00000817 RMS(Int)= 0.01192641 Iteration 67 RMS(Cart)= 0.00000800 RMS(Int)= 0.01181103 Iteration 68 RMS(Cart)= 0.00000783 RMS(Int)= 0.01169814 Iteration 69 RMS(Cart)= 0.00000766 RMS(Int)= 0.01158767 Iteration 70 RMS(Cart)= 0.00000750 RMS(Int)= 0.01147953 Iteration 71 RMS(Cart)= 0.00000735 RMS(Int)= 0.01137363 Iteration 72 RMS(Cart)= 0.00000720 RMS(Int)= 0.01126991 Iteration 73 RMS(Cart)= 0.00000705 RMS(Int)= 0.01116828 Iteration 74 RMS(Cart)= 0.00000691 RMS(Int)= 0.01106869 Iteration 75 RMS(Cart)= 0.00000678 RMS(Int)= 0.01097107 Iteration 76 RMS(Cart)= 0.00000665 RMS(Int)= 0.01087534 Iteration 77 RMS(Cart)= 0.00000652 RMS(Int)= 0.01078146 Iteration 78 RMS(Cart)= 0.00000640 RMS(Int)= 0.01068937 Iteration 79 RMS(Cart)= 0.00000628 RMS(Int)= 0.01059900 Iteration 80 RMS(Cart)= 0.00000616 RMS(Int)= 0.01051031 Iteration 81 RMS(Cart)= 0.00000605 RMS(Int)= 0.01042326 Iteration 82 RMS(Cart)= 0.00000594 RMS(Int)= 0.01033778 Iteration 83 RMS(Cart)= 0.00000584 RMS(Int)= 0.01025383 Iteration 84 RMS(Cart)= 0.00000574 RMS(Int)= 0.01017137 Iteration 85 RMS(Cart)= 0.00000564 RMS(Int)= 0.01009036 Iteration 86 RMS(Cart)= 0.00000554 RMS(Int)= 0.01001076 Iteration 87 RMS(Cart)= 0.00000544 RMS(Int)= 0.00993252 Iteration 88 RMS(Cart)= 0.00000535 RMS(Int)= 0.00985561 Iteration 89 RMS(Cart)= 0.00000526 RMS(Int)= 0.00978000 Iteration 90 RMS(Cart)= 0.00000518 RMS(Int)= 0.00970564 Iteration 91 RMS(Cart)= 0.00000509 RMS(Int)= 0.00963251 Iteration 92 RMS(Cart)= 0.00000501 RMS(Int)= 0.00956057 Iteration 93 RMS(Cart)= 0.00000493 RMS(Int)= 0.00948979 Iteration 94 RMS(Cart)= 0.00000485 RMS(Int)= 0.00942014 Iteration 95 RMS(Cart)= 0.00000478 RMS(Int)= 0.00935159 Iteration 96 RMS(Cart)= 0.00000470 RMS(Int)= 0.00928412 Iteration 97 RMS(Cart)= 0.00000463 RMS(Int)= 0.00921770 Iteration 98 RMS(Cart)= 0.00000456 RMS(Int)= 0.00915229 Iteration 99 RMS(Cart)= 0.00000449 RMS(Int)= 0.00908789 Iteration100 RMS(Cart)= 0.00000442 RMS(Int)= 0.00902445 New curvilinear step not converged. ITry= 1 IFail=1 DXMaxC= 9.98D-03 DCOld= 1.00D+10 DXMaxT= 7.47D-02 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00042796 RMS(Int)= 0.06000957 Iteration 2 RMS(Cart)= 0.00033210 RMS(Int)= 0.05434626 Iteration 3 RMS(Cart)= 0.00027503 RMS(Int)= 0.04974331 Iteration 4 RMS(Cart)= 0.00023247 RMS(Int)= 0.04591054 Iteration 5 RMS(Cart)= 0.00019959 RMS(Int)= 0.04266050 Iteration 6 RMS(Cart)= 0.00017356 RMS(Int)= 0.03986387 Iteration 7 RMS(Cart)= 0.00015255 RMS(Int)= 0.03742804 Iteration 8 RMS(Cart)= 0.00013530 RMS(Int)= 0.03528464 Iteration 9 RMS(Cart)= 0.00012094 RMS(Int)= 0.03338200 Iteration 10 RMS(Cart)= 0.00010884 RMS(Int)= 0.03168020 Iteration 11 RMS(Cart)= 0.00009854 RMS(Int)= 0.03014789 Iteration 12 RMS(Cart)= 0.00008969 RMS(Int)= 0.02876005 Iteration 13 RMS(Cart)= 0.00008203 RMS(Int)= 0.02749644 Iteration 14 RMS(Cart)= 0.00007535 RMS(Int)= 0.02634053 Iteration 15 RMS(Cart)= 0.00006948 RMS(Int)= 0.02527861 Iteration 16 RMS(Cart)= 0.00006430 RMS(Int)= 0.02429928 Iteration 17 RMS(Cart)= 0.00005970 RMS(Int)= 0.02339292 Iteration 18 RMS(Cart)= 0.00005559 RMS(Int)= 0.02255137 Iteration 19 RMS(Cart)= 0.00005191 RMS(Int)= 0.02176768 Iteration 20 RMS(Cart)= 0.00004860 RMS(Int)= 0.02103584 Iteration 21 RMS(Cart)= 0.00004561 RMS(Int)= 0.02035069 Iteration 22 RMS(Cart)= 0.00004290 RMS(Int)= 0.01970772 Iteration 23 RMS(Cart)= 0.00004043 RMS(Int)= 0.01910300 Iteration 24 RMS(Cart)= 0.00003818 RMS(Int)= 0.01853306 Iteration 25 RMS(Cart)= 0.00003612 RMS(Int)= 0.01799487 Iteration 26 RMS(Cart)= 0.00003423 RMS(Int)= 0.01748572 Iteration 27 RMS(Cart)= 0.00003249 RMS(Int)= 0.01700321 Iteration 28 RMS(Cart)= 0.00003089 RMS(Int)= 0.01654521 Iteration 29 RMS(Cart)= 0.00002941 RMS(Int)= 0.01610979 Iteration 30 RMS(Cart)= 0.00002804 RMS(Int)= 0.01569525 Iteration 31 RMS(Cart)= 0.00002677 RMS(Int)= 0.01530003 Iteration 32 RMS(Cart)= 0.00002559 RMS(Int)= 0.01492273 Iteration 33 RMS(Cart)= 0.00002449 RMS(Int)= 0.01456208 Iteration 34 RMS(Cart)= 0.00002346 RMS(Int)= 0.01421693 Iteration 35 RMS(Cart)= 0.00002251 RMS(Int)= 0.01388625 Iteration 36 RMS(Cart)= 0.00002161 RMS(Int)= 0.01356906 Iteration 37 RMS(Cart)= 0.00002077 RMS(Int)= 0.01326450 Iteration 38 RMS(Cart)= 0.00001998 RMS(Int)= 0.01297177 Iteration 39 RMS(Cart)= 0.00001924 RMS(Int)= 0.01269013 Iteration 40 RMS(Cart)= 0.00001855 RMS(Int)= 0.01241891 Iteration 41 RMS(Cart)= 0.00001790 RMS(Int)= 0.01215749 Iteration 42 RMS(Cart)= 0.00001728 RMS(Int)= 0.01190529 Iteration 43 RMS(Cart)= 0.00001670 RMS(Int)= 0.01166177 Iteration 44 RMS(Cart)= 0.00001615 RMS(Int)= 0.01142645 Iteration 45 RMS(Cart)= 0.00001563 RMS(Int)= 0.01119887 Iteration 46 RMS(Cart)= 0.00001514 RMS(Int)= 0.01097861 Iteration 47 RMS(Cart)= 0.00001467 RMS(Int)= 0.01076527 Iteration 48 RMS(Cart)= 0.00001423 RMS(Int)= 0.01055848 Iteration 49 RMS(Cart)= 0.00001381 RMS(Int)= 0.01035790 Iteration 50 RMS(Cart)= 0.00001342 RMS(Int)= 0.01016320 Iteration 51 RMS(Cart)= 0.00001304 RMS(Int)= 0.00997410 Iteration 52 RMS(Cart)= 0.00001268 RMS(Int)= 0.00979029 Iteration 53 RMS(Cart)= 0.00001234 RMS(Int)= 0.00961154 Iteration 54 RMS(Cart)= 0.00001202 RMS(Int)= 0.00943757 Iteration 55 RMS(Cart)= 0.00001171 RMS(Int)= 0.00926818 Iteration 56 RMS(Cart)= 0.00001141 RMS(Int)= 0.00910312 Iteration 57 RMS(Cart)= 0.00001113 RMS(Int)= 0.00894221 Iteration 58 RMS(Cart)= 0.00001086 RMS(Int)= 0.00878523 Iteration 59 RMS(Cart)= 0.00001061 RMS(Int)= 0.00863202 Iteration 60 RMS(Cart)= 0.00001037 RMS(Int)= 0.00848239 Iteration 61 RMS(Cart)= 0.00001013 RMS(Int)= 0.00833618 Iteration 62 RMS(Cart)= 0.00000991 RMS(Int)= 0.00819324 Iteration 63 RMS(Cart)= 0.00000970 RMS(Int)= 0.00805341 Iteration 64 RMS(Cart)= 0.00000950 RMS(Int)= 0.00791656 Iteration 65 RMS(Cart)= 0.00000930 RMS(Int)= 0.00778256 Iteration 66 RMS(Cart)= 0.00000912 RMS(Int)= 0.00765128 Iteration 67 RMS(Cart)= 0.00000894 RMS(Int)= 0.00752260 Iteration 68 RMS(Cart)= 0.00000877 RMS(Int)= 0.00739640 Iteration 69 RMS(Cart)= 0.00000861 RMS(Int)= 0.00727258 Iteration 70 RMS(Cart)= 0.00000845 RMS(Int)= 0.00715103 Iteration 71 RMS(Cart)= 0.00000831 RMS(Int)= 0.00703166 Iteration 72 RMS(Cart)= 0.00000816 RMS(Int)= 0.00691436 Iteration 73 RMS(Cart)= 0.00000803 RMS(Int)= 0.00679906 Iteration 74 RMS(Cart)= 0.00000790 RMS(Int)= 0.00668566 Iteration 75 RMS(Cart)= 0.00000777 RMS(Int)= 0.00657407 Iteration 76 RMS(Cart)= 0.00000766 RMS(Int)= 0.00646423 Iteration 77 RMS(Cart)= 0.00000754 RMS(Int)= 0.00635606 Iteration 78 RMS(Cart)= 0.00000743 RMS(Int)= 0.00624948 Iteration 79 RMS(Cart)= 0.00000733 RMS(Int)= 0.00614442 Iteration 80 RMS(Cart)= 0.00000723 RMS(Int)= 0.00604082 Iteration 81 RMS(Cart)= 0.00000713 RMS(Int)= 0.00593862 Iteration 82 RMS(Cart)= 0.00000704 RMS(Int)= 0.00583774 Iteration 83 RMS(Cart)= 0.00000695 RMS(Int)= 0.00573814 Iteration 84 RMS(Cart)= 0.00000687 RMS(Int)= 0.00563977 Iteration 85 RMS(Cart)= 0.00000679 RMS(Int)= 0.00554255 Iteration 86 RMS(Cart)= 0.00000672 RMS(Int)= 0.00544644 Iteration 87 RMS(Cart)= 0.00000664 RMS(Int)= 0.00535140 Iteration 88 RMS(Cart)= 0.00000657 RMS(Int)= 0.00525736 Iteration 89 RMS(Cart)= 0.00000651 RMS(Int)= 0.00516430 Iteration 90 RMS(Cart)= 0.00000644 RMS(Int)= 0.00507216 Iteration 91 RMS(Cart)= 0.00000638 RMS(Int)= 0.00498089 Iteration 92 RMS(Cart)= 0.00000633 RMS(Int)= 0.00489046 Iteration 93 RMS(Cart)= 0.00000627 RMS(Int)= 0.00480083 Iteration 94 RMS(Cart)= 0.00000622 RMS(Int)= 0.00471197 Iteration 95 RMS(Cart)= 0.00000617 RMS(Int)= 0.00462383 Iteration 96 RMS(Cart)= 0.00000612 RMS(Int)= 0.00453637 Iteration 97 RMS(Cart)= 0.00000608 RMS(Int)= 0.00444958 Iteration 98 RMS(Cart)= 0.00000604 RMS(Int)= 0.00436340 Iteration 99 RMS(Cart)= 0.00000600 RMS(Int)= 0.00427782 Iteration100 RMS(Cart)= 0.00000596 RMS(Int)= 0.00419281 New curvilinear step not converged. ITry= 2 IFail=1 DXMaxC= 1.07D-02 DCOld= 1.00D+10 DXMaxT= 7.47D-02 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00043302 RMS(Int)= 0.05982924 Iteration 2 RMS(Cart)= 0.00035154 RMS(Int)= 0.05370855 Iteration 3 RMS(Cart)= 0.00029189 RMS(Int)= 0.04872724 Iteration 4 RMS(Cart)= 0.00024773 RMS(Int)= 0.04456741 Iteration 5 RMS(Cart)= 0.00021395 RMS(Int)= 0.04102246 Iteration 6 RMS(Cart)= 0.00018747 RMS(Int)= 0.03795126 Iteration 7 RMS(Cart)= 0.00016630 RMS(Int)= 0.03525333 Iteration 8 RMS(Cart)= 0.00014911 RMS(Int)= 0.03285478 Iteration 9 RMS(Cart)= 0.00013497 RMS(Int)= 0.03069985 Iteration 10 RMS(Cart)= 0.00012322 RMS(Int)= 0.02874547 Iteration 11 RMS(Cart)= 0.00011339 RMS(Int)= 0.02695777 Iteration 12 RMS(Cart)= 0.00010510 RMS(Int)= 0.02530965 Iteration 13 RMS(Cart)= 0.00009807 RMS(Int)= 0.02377908 Iteration 14 RMS(Cart)= 0.00009210 RMS(Int)= 0.02234800 Iteration 15 RMS(Cart)= 0.00008702 RMS(Int)= 0.02100134 Iteration 16 RMS(Cart)= 0.00008268 RMS(Int)= 0.01972652 Iteration 17 RMS(Cart)= 0.00007898 RMS(Int)= 0.01851288 Iteration 18 RMS(Cart)= 0.00007582 RMS(Int)= 0.01735140 Iteration 19 RMS(Cart)= 0.00007313 RMS(Int)= 0.01623440 Iteration 20 RMS(Cart)= 0.00007083 RMS(Int)= 0.01515535 Iteration 21 RMS(Cart)= 0.00006888 RMS(Int)= 0.01410872 Iteration 22 RMS(Cart)= 0.00006721 RMS(Int)= 0.01308987 Iteration 23 RMS(Cart)= 0.00006578 RMS(Int)= 0.01209497 Iteration 24 RMS(Cart)= 0.00006454 RMS(Int)= 0.01112092 Iteration 25 RMS(Cart)= 0.00006346 RMS(Int)= 0.01016531 Iteration 26 RMS(Cart)= 0.00006250 RMS(Int)= 0.00922643 Iteration 27 RMS(Cart)= 0.00006160 RMS(Int)= 0.00830323 Iteration 28 RMS(Cart)= 0.00006074 RMS(Int)= 0.00739542 Iteration 29 RMS(Cart)= 0.00005987 RMS(Int)= 0.00650350 Iteration 30 RMS(Cart)= 0.00005893 RMS(Int)= 0.00562902 Iteration 31 RMS(Cart)= 0.00005786 RMS(Int)= 0.00477497 Iteration 32 RMS(Cart)= 0.00005666 RMS(Int)= 0.00394397 Iteration 33 RMS(Cart)= 0.00005515 RMS(Int)= 0.00314302 Iteration 34 RMS(Cart)= 0.00005320 RMS(Int)= 0.00238181 Iteration 35 RMS(Cart)= 0.00005060 RMS(Int)= 0.00167540 Iteration 36 RMS(Cart)= 0.00004698 RMS(Int)= 0.00104750 Iteration 37 RMS(Cart)= 0.00004178 RMS(Int)= 0.00053470 Iteration 38 RMS(Cart)= 0.00003413 RMS(Int)= 0.00018566 Iteration 39 RMS(Cart)= 0.00002324 RMS(Int)= 0.00002904 Iteration 40 RMS(Cart)= 0.00001044 RMS(Int)= 0.00000118 Iteration 41 RMS(Cart)= 0.00000181 RMS(Int)= 0.00000020 Iteration 42 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000020 ITry= 3 IFail=0 DXMaxC= 1.12D-02 DCOld= 1.00D+10 DXMaxT= 7.47D-02 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19298 0.00004 0.00043 -0.00009 0.00035 4.19333 R2 3.93115 -0.00012 -0.00092 0.00001 -0.00091 3.93024 R3 2.06942 0.00016 0.00054 -0.00005 0.00050 2.06993 R4 2.07070 -0.00024 -0.00074 -0.00010 -0.00083 2.06987 R5 2.06990 0.00003 0.00008 -0.00007 0.00003 2.06993 A1 3.13352 0.00030 0.00704 0.00114 0.00795 3.14147 A2 1.94205 0.00019 0.00198 -0.00035 0.00170 1.94375 A3 1.94593 -0.00029 -0.00278 0.00062 -0.00229 1.94365 A4 1.94438 -0.00004 -0.00086 -0.00007 -0.00092 1.94346 A5 1.87666 -0.00001 -0.00003 -0.00006 -0.00008 1.87658 A6 1.87802 -0.00017 -0.00154 0.00003 -0.00152 1.87650 A7 1.87329 0.00033 0.00335 -0.00019 0.00320 1.87649 D1 -2.10613 -0.00001 0.15143 -0.00099 0.15064 -1.95550 D2 -0.01107 -0.00009 0.15085 -0.00088 0.15014 0.13908 D3 2.08131 0.00010 0.15263 -0.00074 0.15204 2.23334 Item Value Threshold Converged? Maximum Force 0.000327 0.000015 NO RMS Force 0.000176 0.000010 NO Maximum Displacement 0.011237 0.000060 NO RMS Displacement 0.004223 0.000040 NO Predicted change in Energy=-2.733742D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285463 0.663100 -0.678806 2 17 0 1.906651 0.420081 -0.434676 3 6 0 -2.340005 0.891035 -0.907815 4 1 0 -2.780447 1.419252 -0.055285 5 1 0 -2.579789 1.463728 -1.810185 6 1 0 -2.842199 -0.078960 -0.989830 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.219014 0.000000 3 C 2.079794 4.298807 0.000000 4 H 2.680576 4.807407 1.095358 0.000000 5 H 2.680477 4.807220 1.095329 1.766894 0.000000 6 H 2.680352 4.807163 1.095361 1.766869 1.766841 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468636 -0.000057 0.000065 2 17 0 -1.750378 0.000018 -0.000024 3 6 0 2.548430 0.000024 -0.000061 4 1 0 2.947564 -0.990858 -0.242244 5 1 0 2.947356 0.705342 -0.737033 6 1 0 2.947299 0.285757 0.979264 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6289589 2.3322136 2.3322124 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8399102638 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.79D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.989289 -0.145969 0.000037 0.000002 Ang= -16.79 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270835172 A.U. after 8 cycles NFock= 8 Conv=0.54D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.000006517 0.000006790 -0.000000528 2 17 0.000008215 -0.000002115 0.000001455 3 6 0.000011988 -0.000021190 0.000015073 4 1 0.000000256 -0.000000122 -0.000007806 5 1 -0.000007301 0.000009964 -0.000008149 6 1 -0.000006641 0.000006673 -0.000000045 ------------------------------------------------------------------- Cartesian Forces: Max 0.000021190 RMS 0.000008665 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000013595 RMS 0.000006625 Search for a local minimum. Step number 21 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 6 7 8 9 10 11 12 14 15 16 17 13 18 20 21 DE= -2.52D-06 DEPred=-2.73D-06 R= 9.21D-01 TightC=F SS= 1.41D+00 RLast= 2.62D-01 DXNew= 1.2568D-01 7.8481D-01 Trust test= 9.21D-01 RLast= 2.62D-01 DXMaxT set to 1.26D-01 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.11464 R2 0.00302 0.10213 R3 -0.00009 -0.00117 0.37924 R4 -0.00944 0.00515 -0.00141 0.62154 R5 -0.00022 0.00049 0.02557 0.04829 0.38161 A1 -0.00237 0.00126 -0.00070 0.02039 0.00558 A2 0.00171 0.00117 0.00973 -0.02597 -0.00900 A3 0.00365 -0.00131 0.00059 0.00594 -0.01335 A4 0.00014 0.00746 -0.01132 -0.01887 0.00773 A5 -0.00310 -0.00489 0.02517 0.03182 0.00386 A6 -0.00274 -0.00049 -0.00112 0.02427 0.01833 A7 0.00104 -0.00901 -0.01683 -0.01725 -0.00437 D1 -0.00145 -0.00377 0.01374 0.01120 -0.00147 D2 -0.00066 0.00033 -0.00992 -0.01021 -0.00346 D3 0.00213 0.00339 -0.00379 0.00058 0.00514 A1 A2 A3 A4 A5 A1 0.03406 A2 0.00027 0.09680 A3 -0.00875 0.03829 0.08840 A4 0.00344 0.02581 0.03170 0.07732 A5 0.00088 -0.00505 -0.00160 0.02517 0.12860 A6 0.00234 -0.01685 0.00957 0.00163 -0.00561 A7 0.00080 0.02253 -0.01089 0.00218 0.01350 D1 0.00007 0.00142 0.00046 0.00577 -0.00655 D2 -0.00116 -0.00505 -0.00035 -0.00651 0.01105 D3 0.00128 0.00365 -0.00012 0.00080 -0.00449 A6 A7 D1 D2 D3 A6 0.13876 A7 0.03344 0.09533 D1 0.00033 -0.00735 0.00705 D2 0.01331 -0.01075 -0.00278 0.01364 D3 -0.01354 0.01787 -0.00418 -0.01085 0.01494 ITU= 1 -1 -1 0 -1 0 0 -1 0 0 0 0 0 1 1 1 Eigenvalues --- 0.00000 0.02797 0.04098 0.04791 0.09543 Eigenvalues --- 0.10647 0.11395 0.11547 0.14444 0.35130 Eigenvalues --- 0.40232 0.63698 Eigenvalue 1 is 2.55D-07 Eigenvector: D3 D2 D1 A1 R4 1 -0.57864 -0.57690 -0.57650 0.00189 0.00145 A7 A2 A3 A4 R2 1 -0.00133 0.00116 -0.00106 0.00100 -0.00056 En-DIIS/RFO-DIIS IScMMF= 0 using points: 21 20 19 18 RFO step: Lambda=-1.66543594D-09. DidBck=F Rises=F RFO-DIIS coefs: 1.05999 -0.01010 0.00443 -0.05432 Iteration 1 RMS(Cart)= 0.00002087 RMS(Int)= 0.00176842 Iteration 2 RMS(Cart)= 0.00002146 RMS(Int)= 0.00125728 Iteration 3 RMS(Cart)= 0.00002064 RMS(Int)= 0.00078488 Iteration 4 RMS(Cart)= 0.00001897 RMS(Int)= 0.00038718 Iteration 5 RMS(Cart)= 0.00001583 RMS(Int)= 0.00011787 Iteration 6 RMS(Cart)= 0.00001054 RMS(Int)= 0.00001197 Iteration 7 RMS(Cart)= 0.00000412 RMS(Int)= 0.00000021 Iteration 8 RMS(Cart)= 0.00000030 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19333 0.00001 -0.00001 0.00009 0.00008 4.19341 R2 3.93024 0.00000 0.00000 -0.00002 -0.00002 3.93022 R3 2.06993 -0.00001 0.00000 0.00000 -0.00001 2.06992 R4 2.06987 0.00001 0.00003 0.00002 0.00004 2.06991 R5 2.06993 0.00000 0.00000 -0.00002 -0.00002 2.06992 A1 3.14147 0.00000 0.00008 0.00001 0.00009 3.14156 A2 1.94375 0.00000 -0.00002 -0.00004 -0.00006 1.94369 A3 1.94365 0.00000 0.00005 -0.00008 -0.00003 1.94362 A4 1.94346 0.00001 -0.00001 0.00025 0.00024 1.94371 A5 1.87658 -0.00001 -0.00002 -0.00009 -0.00011 1.87647 A6 1.87650 0.00000 -0.00001 -0.00002 -0.00002 1.87648 A7 1.87649 0.00000 0.00000 -0.00004 -0.00003 1.87646 D1 -1.95550 0.00000 -0.00488 -0.00010 -0.00498 -1.96047 D2 0.13908 0.00000 -0.00488 -0.00029 -0.00517 0.13390 D3 2.23334 0.00000 -0.00485 -0.00022 -0.00507 2.22827 Item Value Threshold Converged? Maximum Force 0.000014 0.000015 YES RMS Force 0.000007 0.000010 YES Maximum Displacement 0.000310 0.000060 NO RMS Displacement 0.000113 0.000040 NO Predicted change in Energy=-3.660752D-09 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285438 0.663137 -0.678861 2 17 0 1.906704 0.420104 -0.434622 3 6 0 -2.339990 0.890956 -0.907818 4 1 0 -2.780367 1.419241 -0.055302 5 1 0 -2.579798 1.463734 -1.810156 6 1 0 -2.842363 -0.078936 -0.989838 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.219055 0.000000 3 C 2.079785 4.298840 0.000000 4 H 2.680520 4.807368 1.095354 0.000000 5 H 2.680461 4.807281 1.095352 1.766839 0.000000 6 H 2.680531 4.807384 1.095352 1.766843 1.766831 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468652 -0.000005 0.000023 2 17 0 -1.750403 0.000002 -0.000007 3 6 0 2.548437 0.000001 -0.000008 4 1 0 2.947494 -1.002533 0.188354 5 1 0 2.947397 0.338126 -0.962451 6 1 0 2.947513 0.664432 0.773986 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6344831 2.3321610 2.3321607 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8387926895 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.80D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.977453 0.211153 -0.000001 0.000002 Ang= 24.38 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270835158 A.U. after 7 cycles NFock= 7 Conv=0.43D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 0.000001338 -0.000000823 0.000001042 2 17 -0.000000947 0.000000088 -0.000000068 3 6 0.000002922 0.000000298 -0.000000022 4 1 -0.000000380 -0.000000201 -0.000000481 5 1 -0.000002804 0.000001589 -0.000001168 6 1 -0.000000130 -0.000000951 0.000000698 ------------------------------------------------------------------- Cartesian Forces: Max 0.000002922 RMS 0.000001217 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000003813 RMS 0.000001393 Search for a local minimum. Step number 22 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 7 8 9 10 11 12 14 15 16 17 13 18 19 20 21 22 DE= 1.38D-08 DEPred=-3.66D-09 R=-3.77D+00 Trust test=-3.77D+00 RLast= 8.80D-03 DXMaxT set to 6.28D-02 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.11542 R2 0.00359 0.10111 R3 -0.00131 0.00045 0.37701 R4 -0.00172 -0.00604 0.01418 0.52114 R5 0.00076 -0.00139 0.02807 0.02825 0.37745 A1 -0.00208 0.00089 0.00022 0.01677 0.00496 A2 0.00141 0.00127 0.00989 -0.02495 -0.00889 A3 0.00025 -0.00284 0.00527 -0.00812 -0.01230 A4 0.00226 0.00635 -0.01070 -0.02368 0.00634 A5 -0.00154 -0.00308 0.02137 0.04104 0.00292 A6 -0.00274 -0.00017 -0.00162 0.02618 0.01865 A7 0.00109 -0.00879 -0.01770 -0.01453 -0.00423 D1 0.00062 -0.00381 0.01289 0.00992 -0.00336 D2 -0.00188 0.00172 -0.01141 0.00073 -0.00138 D3 0.00127 0.00196 -0.00132 -0.00972 0.00487 A1 A2 A3 A4 A5 A1 0.03383 A2 0.00030 0.09734 A3 -0.01168 0.03765 0.08718 A4 0.00298 0.02593 0.02360 0.07906 A5 0.00337 -0.00535 0.00415 0.02977 0.12293 A6 0.00284 -0.01709 0.01205 0.00172 -0.00666 A7 0.00113 0.02266 -0.00846 0.00328 0.01036 D1 0.00103 0.00141 -0.00154 0.00888 -0.00661 D2 -0.00057 -0.00480 0.00244 -0.00654 0.00918 D3 -0.00034 0.00338 -0.00095 -0.00242 -0.00245 A6 A7 D1 D2 D3 A6 0.13849 A7 0.03281 0.09497 D1 -0.00003 -0.00846 0.00860 D2 0.01296 -0.01110 -0.00317 0.01275 D3 -0.01278 0.01936 -0.00538 -0.00951 0.01477 ITU= -1 1 -1 -1 0 -1 0 0 -1 0 0 0 0 0 1 1 Eigenvalues --- 0.00000 0.02734 0.03972 0.05464 0.09408 Eigenvalues --- 0.10664 0.11450 0.11582 0.13239 0.34974 Eigenvalues --- 0.39831 0.53886 Eigenvalue 1 is 3.72D-07 Eigenvector: D3 D1 D2 A1 A7 1 -0.57865 -0.57718 -0.57621 0.00144 -0.00128 A2 R4 A6 R2 A3 1 0.00124 0.00085 0.00077 -0.00076 -0.00069 En-DIIS/RFO-DIIS IScMMF= 0 using points: 22 21 20 19 18 RFO step: Lambda=-8.94483906D-11. DidBck=F Rises=F RFO-DIIS coefs: 0.91065 0.14643 -0.00677 0.00070 -0.05102 Iteration 1 RMS(Cart)= 0.00000793 RMS(Int)= 0.00002793 SLEqS3 Cycle: 181 Max:0.175509E-04 RMS:0.591108E-05 Conv:0.150454E-07 SLEqS3 Cycle: 181 Max:0.118388E-04 RMS:0.496846E-05 Conv:0.150454E-07 Iteration 2 RMS(Cart)= 0.00003766 RMS(Int)= 0.00000876 SLEqS3 Cycle: 181 Max:0.720298E-05 RMS:0.219524E-05 Conv:0.928264E-08 SLEqS3 Cycle: 181 Max:0.939743E-05 RMS:0.326622E-05 Conv:0.928264E-08 Iteration 3 RMS(Cart)= 0.00000532 RMS(Int)= 0.00000608 SLEqS3 Cycle: 181 Max:0.679782E-05 RMS:0.234443E-05 Conv:0.113972E-07 SLEqS3 Cycle: 181 Max:0.199512E-05 RMS:0.667025E-06 Conv:0.113972E-07 New curvilinear step failed, DQL= 5.44D+00 SP=-1.02D-01. ITry= 1 IFail=1 DXMaxC= 1.15D-04 DCOld= 1.00D+10 DXMaxT= 6.28D-02 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00000796 RMS(Int)= 0.00002748 SLEqS3 Cycle: 181 Max:0.118827E-04 RMS:0.498013E-05 Conv:0.150858E-07 SLEqS3 Cycle: 181 Max:0.177225E-04 RMS:0.589337E-05 Conv:0.150858E-07 Iteration 2 RMS(Cart)= 0.00003299 RMS(Int)= 0.00001019 SLEqS3 Cycle: 181 Max:0.405615E-05 RMS:0.138304E-05 Conv:0.753841E-08 SLEqS3 Cycle: 181 Max:0.389346E-05 RMS:0.132919E-05 Conv:0.753841E-08 New curvilinear step failed, DQL= 5.44D+00 SP=-1.68D-01. ITry= 2 IFail=1 DXMaxC= 9.79D-05 DCOld= 1.00D+10 DXMaxT= 6.28D-02 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00000799 RMS(Int)= 0.00002703 SLEqS3 Cycle: 181 Max:0.119258E-04 RMS:0.498095E-05 Conv:0.151261E-07 SLEqS3 Cycle: 181 Max:0.119549E-04 RMS:0.498227E-05 Conv:0.151261E-07 Iteration 2 RMS(Cart)= 0.00003724 RMS(Int)= 0.00000853 SLEqS3 Cycle: 181 Max:0.647191E-05 RMS:0.187084E-05 Conv:0.117768E-07 SLEqS3 Cycle: 181 Max:0.260634E-05 RMS:0.856640E-06 Conv:0.117768E-07 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000853 ITry= 3 IFail=0 DXMaxC= 1.07D-04 DCOld= 1.00D+10 DXMaxT= 6.28D-02 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19341 0.00000 -0.00002 0.00001 -0.00001 4.19339 R2 3.93022 0.00000 0.00000 0.00000 0.00001 3.93023 R3 2.06992 0.00000 0.00000 0.00000 0.00000 2.06992 R4 2.06991 0.00000 0.00001 0.00000 0.00001 2.06993 R5 2.06992 0.00000 0.00000 0.00000 0.00000 2.06992 A1 3.14156 0.00000 0.00004 -0.00001 0.00001 3.14157 A2 1.94369 0.00000 -0.00002 0.00000 -0.00002 1.94367 A3 1.94362 0.00000 0.00005 0.00002 0.00006 1.94368 A4 1.94371 0.00000 -0.00003 0.00000 -0.00003 1.94368 A5 1.87647 0.00000 -0.00001 -0.00001 -0.00001 1.87646 A6 1.87648 0.00000 0.00000 -0.00001 -0.00001 1.87647 A7 1.87646 0.00000 0.00000 0.00001 0.00000 1.87646 D1 -1.96047 0.00000 -0.00333 0.00002 -0.00331 -1.96379 D2 0.13390 0.00000 -0.00332 0.00002 -0.00330 0.13060 D3 2.22827 0.00000 -0.00330 0.00004 -0.00327 2.22500 Item Value Threshold Converged? Maximum Force 0.000004 0.000015 YES RMS Force 0.000001 0.000010 YES Maximum Displacement 0.000107 0.000060 NO RMS Displacement 0.000036 0.000040 YES Predicted change in Energy=-1.706161D-10 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285431 0.663140 -0.678865 2 17 0 1.906700 0.420092 -0.434604 3 6 0 -2.339984 0.890965 -0.907835 4 1 0 -2.780345 1.419236 -0.055301 5 1 0 -2.579855 1.463744 -1.810162 6 1 0 -2.842338 -0.078940 -0.989830 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.219048 0.000000 3 C 2.079788 4.298836 0.000000 4 H 2.680505 4.807344 1.095354 0.000000 5 H 2.680519 4.807343 1.095357 1.766837 0.000000 6 H 2.680514 4.807357 1.095354 1.766839 1.766838 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468648 0.000006 0.000016 2 17 0 -1.750401 -0.000002 -0.000006 3 6 0 2.548436 -0.000003 -0.000009 4 1 0 2.947470 -0.763349 0.676656 5 1 0 2.947467 -0.204351 -0.999421 6 1 0 2.947484 0.967677 0.322723 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6344447 2.3321645 2.3321645 Standard basis: 6-31G(d,p) (6D, 7F) There are 68 symmetry adapted cartesian basis functions of A symmetry. There are 68 symmetry adapted basis functions of A symmetry. 68 basis functions, 153 primitive gaussians, 68 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 101.8388665959 Hartrees. NAtoms= 6 NActive= 6 NUniq= 6 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 68 RedAO= T EigKep= 9.80D-03 NBF= 68 NBsUse= 68 1.00D-06 EigRej= -1.00D+00 NBFU= 68 Initial guess from the checkpoint file: "\\ic.ac.uk\homes\js4211\Year 3\Labs\Inorg1\JS_MeMgCl_OPT.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.963833 0.266507 0.000001 0.000000 Ang= 30.91 deg. Keep R1 ints in memory in canonical form, NReq=3678492. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -700.270835159 A.U. after 6 cycles NFock= 6 Conv=0.26D-09 -V/T= 2.0038 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 12 -0.000000560 0.000000357 -0.000000828 2 17 0.000000348 -0.000000148 0.000000214 3 6 0.000000755 0.000000726 -0.000001168 4 1 -0.000000439 -0.000000222 0.000000118 5 1 0.000000619 -0.000000902 0.000001499 6 1 -0.000000724 0.000000190 0.000000165 ------------------------------------------------------------------- Cartesian Forces: Max 0.000001499 RMS 0.000000669 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000001837 RMS 0.000000653 Search for a local minimum. Step number 23 out of a maximum of 25 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 8 9 10 11 12 14 15 16 17 13 18 19 20 21 22 23 DE= -8.61D-10 DEPred=-1.71D-10 R= 5.05D+00 Trust test= 5.05D+00 RLast= 5.71D-03 DXMaxT set to 6.28D-02 The second derivative matrix: R1 R2 R3 R4 R5 R1 0.11674 R2 0.00317 0.10180 R3 -0.00032 -0.00051 0.37849 R4 -0.00990 -0.00170 0.00879 0.54578 R5 -0.00089 -0.00106 0.02751 0.02767 0.37636 A1 -0.00232 0.00168 -0.00031 0.01915 0.00502 A2 0.00249 0.00071 0.01079 -0.02769 -0.00864 A3 0.00119 -0.00035 0.00202 0.01267 -0.00928 A4 0.00341 0.00495 -0.00958 -0.03071 0.00593 A5 -0.00287 -0.00417 0.02269 0.02952 0.00032 A6 -0.00448 0.00058 -0.00213 0.02885 0.01860 A7 0.00058 -0.00894 -0.01749 -0.01738 -0.00471 D1 0.00002 -0.00415 0.01312 0.00747 -0.00420 D2 -0.00105 0.00163 -0.01083 -0.00062 -0.00122 D3 0.00098 0.00241 -0.00215 -0.00586 0.00555 A1 A2 A3 A4 A5 A1 0.03352 A2 -0.00015 0.09742 A3 -0.00762 0.03543 0.09154 A4 0.00258 0.02664 0.01728 0.08184 A5 0.00194 -0.00401 0.00277 0.03270 0.12296 A6 0.00187 -0.01756 0.01708 0.00122 -0.00865 A7 0.00029 0.02304 -0.00696 0.00376 0.00908 D1 0.00090 0.00162 -0.00243 0.00984 -0.00630 D2 -0.00111 -0.00470 0.00216 -0.00631 0.00966 D3 0.00031 0.00306 0.00033 -0.00361 -0.00329 A6 A7 D1 D2 D3 A6 0.13731 A7 0.03165 0.09465 D1 -0.00020 -0.00899 0.00896 D2 0.01231 -0.01100 -0.00310 0.01270 D3 -0.01199 0.01977 -0.00582 -0.00954 0.01526 ITU= 0 -1 1 -1 -1 0 -1 0 0 -1 0 0 0 0 0 1 Eigenvalues --- 0.00000 0.03027 0.03878 0.05806 0.09342 Eigenvalues --- 0.10772 0.11473 0.12037 0.13093 0.34991 Eigenvalues --- 0.40110 0.56049 Eigenvalue 1 is 3.30D-07 Eigenvector: D3 D1 D2 A1 A7 1 0.57830 0.57732 0.57643 -0.00144 0.00123 R4 A2 R2 A6 A4 1 -0.00090 -0.00083 0.00070 -0.00058 0.00047 En-DIIS/RFO-DIIS IScMMF= 0 using points: 23 22 21 20 19 RFO step: Lambda=-1.34706127D-11. DidBck=F Rises=F RFO-DIIS coefs: 1.04465 0.00730 -0.04712 -0.00198 -0.00284 Iteration 1 RMS(Cart)= 0.00000235 RMS(Int)= 0.00000741 Iteration 2 RMS(Cart)= 0.00000007 RMS(Int)= 0.00000736 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.19339 0.00000 0.00001 0.00000 0.00000 4.19339 R2 3.93023 0.00000 0.00000 0.00000 0.00000 3.93023 R3 2.06992 0.00000 0.00000 0.00000 0.00000 2.06992 R4 2.06993 0.00000 -0.00001 0.00000 -0.00001 2.06992 R5 2.06992 0.00000 0.00000 0.00000 0.00000 2.06992 A1 3.14157 0.00000 0.00002 0.00000 0.00000 3.14157 A2 1.94367 0.00000 0.00000 0.00000 0.00000 1.94367 A3 1.94368 0.00000 -0.00001 0.00000 0.00000 1.94368 A4 1.94368 0.00000 0.00001 0.00000 0.00000 1.94368 A5 1.87646 0.00000 0.00000 0.00000 0.00000 1.87646 A6 1.87647 0.00000 0.00000 0.00000 0.00000 1.87646 A7 1.87646 0.00000 0.00000 0.00000 0.00000 1.87647 D1 -1.96379 0.00000 0.00089 -0.00001 0.00088 -1.96291 D2 0.13060 0.00000 0.00088 0.00000 0.00088 0.13148 D3 2.22500 0.00000 0.00089 -0.00001 0.00088 2.22589 Item Value Threshold Converged? Maximum Force 0.000002 0.000015 YES RMS Force 0.000001 0.000010 YES Maximum Displacement 0.000005 0.000060 YES RMS Displacement 0.000002 0.000040 YES Predicted change in Energy=-5.885512D-12 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.219 -DE/DX = 0.0 ! ! R2 R(1,3) 2.0798 -DE/DX = 0.0 ! ! R3 R(3,4) 1.0954 -DE/DX = 0.0 ! ! R4 R(3,5) 1.0954 -DE/DX = 0.0 ! ! R5 R(3,6) 1.0954 -DE/DX = 0.0 ! ! A1 A(2,1,3) 179.9987 -DE/DX = 0.0 ! ! A2 A(1,3,4) 111.364 -DE/DX = 0.0 ! ! A3 A(1,3,5) 111.3648 -DE/DX = 0.0 ! ! A4 A(1,3,6) 111.3647 -DE/DX = 0.0 ! ! A5 A(4,3,5) 107.5132 -DE/DX = 0.0 ! ! A6 A(4,3,6) 107.5136 -DE/DX = 0.0 ! ! A7 A(5,3,6) 107.5133 -DE/DX = 0.0 ! ! D1 D(2,1,3,4) -112.5167 -DE/DX = 0.0 ! ! D2 D(2,1,3,5) 7.483 -DE/DX = 0.0 ! ! D3 D(2,1,3,6) 127.4832 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 -0.285431 0.663140 -0.678865 2 17 0 1.906700 0.420092 -0.434604 3 6 0 -2.339984 0.890965 -0.907835 4 1 0 -2.780345 1.419236 -0.055301 5 1 0 -2.579855 1.463744 -1.810162 6 1 0 -2.842338 -0.078940 -0.989830 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Mg 0.000000 2 Cl 2.219048 0.000000 3 C 2.079788 4.298836 0.000000 4 H 2.680505 4.807344 1.095354 0.000000 5 H 2.680519 4.807343 1.095357 1.766837 0.000000 6 H 2.680514 4.807357 1.095354 1.766839 1.766838 6 6 H 0.000000 Stoichiometry CH3ClMg Framework group C1[X(CH3ClMg)] Deg. of freedom 12 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 12 0 0.468648 0.000006 0.000016 2 17 0 -1.750401 -0.000002 -0.000006 3 6 0 2.548436 -0.000003 -0.000009 4 1 0 2.947470 -0.763349 0.676656 5 1 0 2.947467 -0.204351 -0.999421 6 1 0 2.947484 0.967677 0.322723 --------------------------------------------------------------------- Rotational constants (GHZ): 160.6344447 2.3321645 2.3321645 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -101.49590 -46.83836 -10.15885 -9.41307 -7.17224 Alpha occ. eigenvalues -- -7.16959 -7.16959 -3.12712 -1.87326 -1.87326 Alpha occ. eigenvalues -- -1.86655 -0.76390 -0.66351 -0.38463 -0.38463 Alpha occ. eigenvalues -- -0.33986 -0.29560 -0.29560 -0.26615 Alpha virt. eigenvalues -- -0.04424 -0.00971 -0.00971 0.05041 0.12821 Alpha virt. eigenvalues -- 0.13281 0.13281 0.19326 0.19326 0.23361 Alpha virt. eigenvalues -- 0.28302 0.28302 0.31328 0.31328 0.31750 Alpha virt. eigenvalues -- 0.40136 0.51320 0.51320 0.54518 0.61940 Alpha virt. eigenvalues -- 0.65175 0.65176 0.72373 0.88035 0.88035 Alpha virt. eigenvalues -- 0.90779 0.91442 0.91442 0.99437 0.99437 Alpha virt. eigenvalues -- 1.01010 1.26914 1.39288 1.51264 1.51264 Alpha virt. eigenvalues -- 2.00388 2.05583 2.10861 2.10861 2.31985 Alpha virt. eigenvalues -- 2.31985 2.68910 2.82356 2.82356 3.18237 Alpha virt. eigenvalues -- 3.43788 3.43789 4.29766 4.44447 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Mg 10.735917 0.383890 0.381012 -0.023236 -0.023235 -0.023235 2 Cl 0.383890 16.940281 -0.003584 -0.000010 -0.000010 -0.000010 3 C 0.381012 -0.003584 5.118113 0.368227 0.368228 0.368228 4 H -0.023236 -0.000010 0.368227 0.591996 -0.027138 -0.027138 5 H -0.023235 -0.000010 0.368228 -0.027138 0.591995 -0.027138 6 H -0.023235 -0.000010 0.368228 -0.027138 -0.027138 0.591994 Mulliken charges: 1 1 Mg 0.568888 2 Cl -0.320558 3 C -0.600224 4 H 0.117298 5 H 0.117298 6 H 0.117298 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Mg 0.568888 2 Cl -0.320558 3 C -0.248330 Electronic spatial extent (au): = 510.3467 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 2.5395 Y= 0.0000 Z= 0.0001 Tot= 2.5395 Quadrupole moment (field-independent basis, Debye-Ang): XX= -39.6608 YY= -28.2931 ZZ= -28.2931 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -7.5785 YY= 3.7892 ZZ= 3.7892 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -9.4726 YYY= 0.2615 ZZZ= -0.3779 XYY= 0.0297 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0296 YZZ= -0.2615 YYZ= 0.3782 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -670.5385 YYYY= -42.4169 ZZZZ= -42.4169 XXXY= 0.0002 XXXZ= 0.0001 YYYX= 0.8604 YYYZ= 0.0000 ZZZX= -1.2440 ZZZY= 0.0000 XXYY= -111.6584 XXZZ= -111.6586 YYZZ= -14.1390 XXYZ= 0.0000 YYXZ= 1.2442 ZZXY= -0.8604 N-N= 1.018388665959D+02 E-N=-1.869233939305D+03 KE= 6.976320072212D+02 1|1| IMPERIAL COLLEGE-CHWS-261|FOpt|RB3LYP|6-31G(d,p)|C1H3Cl1Mg1|JS421 1|17-Nov-2013|0||# opt=tight b3lyp/6-31g(d,p) geom=connectivity int=ul trafine scf=conver=9||MeMgCl Opt1||0,1|Mg,-0.2854310819,0.6631396355,- 0.6788650085|Cl,1.9067001807,0.4200915353,-0.4346037417|C,-2.339983655 ,0.8909653294,-0.9078346118|H,-2.7803450676,1.4192361331,-0.0553014022 |H,-2.5798548623,1.4637438534,-1.8101618301|H,-2.8423384238,-0.0789401 968,-0.9898303957||Version=EM64W-G09RevD.01|State=1-A|HF=-700.2708352| RMSD=2.637e-010|RMSF=6.694e-007|Dipole=-0.9870046,0.1094161,-0.109952| Quadrupole=-5.4305895,2.7158089,2.7147806,0.9145257,-0.9191161,0.10191 66|PG=C01 [X(C1H3Cl1Mg1)]||@ The arm of the moral universe is long, but it bends toward justice. -- Martin Luther King, Jr. Job cpu time: 0 days 0 hours 2 minutes 31.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sun Nov 17 13:34:03 2013.