Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 5108. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 13-Nov-2014 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\jp1612\3rdyearlab\JP_NH3BH3_FREQ.chk Default route: MaxDisk=10GB ----------------------------------------------------------------- # freq b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ----------------------------------------------------------------- 1/10=4,30=1,38=1,57=2/1,3; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=2,74=-5,75=-5,140=1/1,2,3; 4//1; 5/5=2,38=5,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; ------------------------- H3BNH3 Frequency analysis ------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H 0. 0.95067 1.09651 H -0.82331 -0.47534 1.09651 H 0.82331 -0.47534 1.09651 H 0. -1.17072 -1.24148 H -1.01387 0.58536 -1.24148 H 1.01387 0.58536 -1.24148 N 0. 0. 0.73112 B 0. 0. -0.93659 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.950671 1.096507 2 1 0 -0.823306 -0.475336 1.096507 3 1 0 0.823306 -0.475336 1.096507 4 1 0 0.000000 -1.170719 -1.241478 5 1 0 -1.013873 0.585360 -1.241478 6 1 0 1.013873 0.585360 -1.241478 7 7 0 0.000000 0.000000 0.731122 8 5 0 0.000000 0.000000 -0.936589 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 1.646611 0.000000 3 H 1.646611 1.646612 0.000000 4 H 3.156972 2.574406 2.574406 0.000000 5 H 2.574406 2.574406 3.156973 2.027746 0.000000 6 H 2.574406 3.156973 2.574406 2.027746 2.027746 7 N 1.018470 1.018471 1.018471 2.293847 2.293847 8 B 2.244383 2.244383 2.244383 1.209769 1.209769 6 7 8 6 H 0.000000 7 N 2.293847 0.000000 8 B 1.209769 1.667711 0.000000 Stoichiometry BH6N Framework group C3[C3(BN),X(H6)] Deg. of freedom 6 Full point group C3 NOp 3 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.950671 0.000000 1.096507 2 1 0 -0.475336 0.823305 1.096507 3 1 0 -0.475336 -0.823305 1.096507 4 1 0 -1.170719 0.000000 -1.241478 5 1 0 0.585360 1.013872 -1.241478 6 1 0 0.585359 -1.013872 -1.241478 7 7 0 0.000000 0.000000 0.731122 8 5 0 0.000000 0.000000 -0.936589 --------------------------------------------------------------------- Rotational constants (GHZ): 73.4940040 17.5068232 17.5068232 Standard basis: 6-31G(d,p) (6D, 7F) There are 60 symmetry adapted cartesian basis functions of A symmetry. There are 60 symmetry adapted basis functions of A symmetry. 60 basis functions, 98 primitive gaussians, 60 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 40.4427204757 Hartrees. NAtoms= 8 NActive= 8 NUniq= 4 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 60 RedAO= T EigKep= 8.40D-03 NBF= 60 NBsUse= 60 1.00D-06 EigRej= -1.00D+00 NBFU= 60 ExpMin= 1.27D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (E) (E) (A) (E) (E) Virtual (A) (A) (E) (E) (E) (E) (A) (E) (E) (A) (A) (E) (E) (A) (E) (E) (E) (E) (A) (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (A) (E) (E) (E) (E) (A) (A) (E) (E) (E) (E) (A) (A) (E) (E) (E) (E) (A) (E) (E) (A) (A) The electronic state of the initial guess is 1-A. Keep R1 ints in memory in canonical form, NReq=2589559. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -83.2246891063 A.U. after 11 cycles NFock= 11 Conv=0.41D-08 -V/T= 2.0104 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 60 NBasis= 60 NAE= 9 NBE= 9 NFC= 0 NFV= 0 NROrb= 60 NOA= 9 NOB= 9 NVA= 51 NVB= 51 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 9 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=11111111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=2559269. There are 15 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 15. 15 vectors produced by pass 0 Test12= 3.06D-15 6.67D-09 XBig12= 1.38D+01 1.88D+00. AX will form 15 AO Fock derivatives at one time. 15 vectors produced by pass 1 Test12= 3.06D-15 6.67D-09 XBig12= 2.30D-01 1.63D-01. 15 vectors produced by pass 2 Test12= 3.06D-15 6.67D-09 XBig12= 1.43D-03 1.52D-02. 15 vectors produced by pass 3 Test12= 3.06D-15 6.67D-09 XBig12= 6.99D-06 7.31D-04. 15 vectors produced by pass 4 Test12= 3.06D-15 6.67D-09 XBig12= 9.68D-09 3.39D-05. 8 vectors produced by pass 5 Test12= 3.06D-15 6.67D-09 XBig12= 4.73D-12 6.89D-07. 1 vectors produced by pass 6 Test12= 3.06D-15 6.67D-09 XBig12= 2.47D-15 1.32D-08. InvSVY: IOpt=1 It= 1 EMax= 1.78D-15 Solved reduced A of dimension 84 with 15 vectors. Isotropic polarizability for W= 0.000000 23.72 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (E) (E) (A) (A) (E) (E) Virtual (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (A) (E) (E) (E) (E) (A) (E) (E) (A) (E) (E) (A) (E) (E) (A) (A) (E) (E) (E) (E) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -14.41340 -6.67453 -0.94746 -0.54791 -0.54791 Alpha occ. eigenvalues -- -0.50382 -0.34683 -0.26700 -0.26700 Alpha virt. eigenvalues -- 0.02816 0.10584 0.10584 0.18577 0.22070 Alpha virt. eigenvalues -- 0.22070 0.24969 0.45499 0.45499 0.47858 Alpha virt. eigenvalues -- 0.65292 0.65292 0.66860 0.78884 0.80140 Alpha virt. eigenvalues -- 0.80140 0.88743 0.95665 0.95665 0.99967 Alpha virt. eigenvalues -- 1.18494 1.18494 1.44165 1.54916 1.54916 Alpha virt. eigenvalues -- 1.66103 1.76103 1.76103 2.00519 2.08660 Alpha virt. eigenvalues -- 2.18108 2.18108 2.27049 2.27049 2.29456 Alpha virt. eigenvalues -- 2.44336 2.44336 2.44821 2.69203 2.69203 Alpha virt. eigenvalues -- 2.72453 2.90678 2.90678 3.04080 3.16378 Alpha virt. eigenvalues -- 3.21913 3.21913 3.40201 3.40202 3.63699 Alpha virt. eigenvalues -- 4.11358 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 H 0.418944 -0.021358 -0.021358 0.003405 -0.001442 -0.001442 2 H -0.021358 0.418944 -0.021358 -0.001442 -0.001442 0.003405 3 H -0.021358 -0.021358 0.418944 -0.001442 0.003405 -0.001442 4 H 0.003405 -0.001442 -0.001442 0.766687 -0.020034 -0.020034 5 H -0.001442 -0.001442 0.003405 -0.020034 0.766687 -0.020034 6 H -0.001442 0.003405 -0.001442 -0.020034 -0.020034 0.766687 7 N 0.338531 0.338531 0.338531 -0.027571 -0.027571 -0.027571 8 B -0.017553 -0.017553 -0.017553 0.417381 0.417381 0.417381 7 8 1 H 0.338531 -0.017553 2 H 0.338531 -0.017553 3 H 0.338531 -0.017553 4 H -0.027571 0.417381 5 H -0.027571 0.417381 6 H -0.027571 0.417381 7 N 6.475572 0.182972 8 B 0.182972 3.582081 Mulliken charges: 1 1 H 0.302272 2 H 0.302272 3 H 0.302272 4 H -0.116950 5 H -0.116950 6 H -0.116950 7 N -0.591428 8 B 0.035463 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 7 N 0.315387 8 B -0.315387 APT charges: 1 1 H 0.180649 2 H 0.180649 3 H 0.180649 4 H -0.235327 5 H -0.235329 6 H -0.235329 7 N -0.363334 8 B 0.527373 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 7 N 0.178614 8 B -0.178611 Electronic spatial extent (au): = 117.9164 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 5.5647 Tot= 5.5647 Quadrupole moment (field-independent basis, Debye-Ang): XX= -15.5736 YY= -15.5736 ZZ= -16.1084 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1783 YY= 0.1783 ZZ= -0.3566 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 1.5915 YYY= 0.0000 ZZZ= 18.3854 XYY= -1.5915 XXY= 0.0000 XXZ= 8.1061 XZZ= 0.0000 YZZ= 0.0000 YYZ= 8.1061 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -34.2847 YYYY= -34.2847 ZZZZ= -106.6761 XXXY= 0.0000 XXXZ= 0.7837 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -11.4282 XXZZ= -23.5140 YYZZ= -23.5140 XXYZ= 0.0000 YYXZ= -0.7837 ZZXY= 0.0000 N-N= 4.044272047566D+01 E-N=-2.729731776384D+02 KE= 8.236809116829D+01 Exact polarizability: 24.102 0.000 24.102 0.000 0.000 22.944 Approx polarizability: 31.233 0.000 31.233 0.000 0.000 26.332