Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 5204. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 02-Feb-2015 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk Default route: MaxDisk=10GB ----------------------------------------------------------- # opt b3lyp/3-21g geom=connectivity integral=grid=ultrafine ----------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=5,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=5,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------- BH3 optimisation ---------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 B -2.55738 -0.2459 0. H -1.02742 -0.24588 0.01156 H -3.33233 1.09641 0.01171 H -3.32738 -1.57958 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.53 estimate D2E/DX2 ! ! R2 R(1,3) 1.55 estimate D2E/DX2 ! ! R3 R(1,4) 1.54 estimate D2E/DX2 ! ! A1 A(2,1,3) 119.9924 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! D1 D(2,1,4,3) 179.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.557377 -0.245902 0.000000 2 1 0 -1.027421 -0.245876 0.011563 3 1 0 -3.332333 1.096412 0.011714 4 1 0 -3.327377 -1.579581 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.530000 0.000000 3 H 1.550000 2.667275 0.000000 4 H 1.540000 2.658703 2.676023 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.001537 0.001525 -0.002909 2 1 0 0.393321 1.480492 0.004880 3 1 0 -1.494518 -0.403764 0.004818 4 1 0 1.093511 -1.084353 0.004849 --------------------------------------------------------------------- Rotational constants (GHZ): 142.0204213 139.9065309 70.4805824 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 5.7496479918 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 7.60D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 ExpMin= 1.24D-01 ExpMax= 1.16D+02 ExpMxC= 1.16D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.3665550010 A.U. after 9 cycles NFock= 9 Conv=0.79D-08 -V/T= 2.0365 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -6.82113 -0.47141 -0.32554 -0.32374 Alpha virt. eigenvalues -- -0.08926 0.02693 0.09377 0.09662 0.43423 Alpha virt. eigenvalues -- 0.43906 0.44101 0.72737 0.95623 1.00599 Alpha virt. eigenvalues -- 1.00709 Condensed to atoms (all electrons): 1 2 3 4 1 B 3.999955 0.343084 0.341598 0.342352 2 H 0.343084 0.669142 -0.010927 -0.011128 3 H 0.341598 -0.010927 0.671897 -0.010724 4 H 0.342352 -0.011128 -0.010724 0.670496 Mulliken charges: 1 1 B -0.026990 2 H 0.009829 3 H 0.008156 4 H 0.009005 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.000000 Electronic spatial extent (au): = 46.8427 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0155 Y= 0.0155 Z= -0.0117 Tot= 0.0248 Quadrupole moment (field-independent basis, Debye-Ang): XX= -10.1961 YY= -10.1835 ZZ= -8.4510 XY= -0.0002 XZ= -0.0002 YZ= -0.0002 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.5859 YY= -0.5733 ZZ= 1.1592 XY= -0.0002 XZ= -0.0002 YZ= -0.0002 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.4754 YYY= 0.5449 ZZZ= -0.0203 XYY= 0.5160 XXY= -0.5043 XXZ= 0.0105 XZZ= 0.0190 YZZ= 0.0191 YYZ= 0.0103 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -35.1934 YYYY= -34.7977 ZZZZ= -9.5227 XXXY= 0.0144 XXXZ= -0.0087 YYYX= -0.0150 YYYZ= 0.0083 ZZZX= -0.0001 ZZZY= -0.0001 XXYY= -11.6651 XXZZ= -8.0927 YYZZ= -8.0049 XXYZ= -0.0086 YYXZ= 0.0083 ZZXY= -0.0001 N-N= 5.749647991817D+00 E-N=-7.093522329009D+01 KE= 2.543805129281D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.000651547 0.000348114 0.001929643 2 1 -0.072901407 0.000046962 -0.000826302 3 1 0.036917614 -0.064044657 -0.000830044 4 1 0.036635340 0.063649580 -0.000273297 ------------------------------------------------------------------- Cartesian Forces: Max 0.072901407 RMS 0.036717819 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.073927270 RMS 0.048068977 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.10591 R2 0.00000 0.10131 R3 0.00000 0.00000 0.10358 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00231 0.10131 0.10358 0.10591 0.16000 Eigenvalues --- 0.16000 RFO step: Lambda=-8.55380544D-02 EMin= 2.31200801D-03 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.446 Iteration 1 RMS(Cart)= 0.11338125 RMS(Int)= 0.00008412 Iteration 2 RMS(Cart)= 0.00005828 RMS(Int)= 0.00000116 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000116 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.89128 -0.07291 0.00000 -0.16986 -0.16986 2.72142 R2 2.92908 -0.07393 0.00000 -0.17647 -0.17647 2.75260 R3 2.91018 -0.07344 0.00000 -0.17321 -0.17321 2.73696 A1 2.09426 0.00000 0.00000 0.00002 0.00002 2.09428 A2 2.09440 0.00015 0.00000 0.00028 0.00027 2.09467 A3 2.09440 -0.00014 0.00000 -0.00024 -0.00024 2.09415 D1 3.12414 0.00069 0.00000 0.00350 0.00350 3.12764 Item Value Threshold Converged? Maximum Force 0.073927 0.000450 NO RMS Force 0.048069 0.000300 NO Maximum Displacement 0.170935 0.001800 NO RMS Displacement 0.113382 0.001200 NO Predicted change in Energy=-3.349422D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.557958 -0.245580 0.001443 2 1 0 -1.117876 -0.245425 0.010858 3 1 0 -3.286331 1.015810 0.010995 4 1 0 -3.282343 -1.499752 -0.000019 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.440113 0.000000 3 H 1.456614 2.508568 0.000000 4 H 1.448339 2.501674 2.515590 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.001305 0.001288 -0.002188 2 1 0 0.370347 1.393300 0.003668 3 1 0 -1.404695 -0.379307 0.003625 4 1 0 1.027825 -1.020431 0.003647 --------------------------------------------------------------------- Rotational constants (GHZ): 160.3870099 158.3453587 79.6818517 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 6.1134189467 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 6.52D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000002 -0.000001 0.000141 Ang= 0.02 deg. ExpMin= 1.24D-01 ExpMax= 1.16D+02 ExpMxC= 1.16D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.4031227531 A.U. after 9 cycles NFock= 9 Conv=0.49D-08 -V/T= 2.0326 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.001195693 0.000664105 0.001547448 2 1 -0.065555206 0.000038262 -0.000678395 3 1 0.033600253 -0.058284019 -0.000687878 4 1 0.033150646 0.057581652 -0.000181175 ------------------------------------------------------------------- Cartesian Forces: Max 0.065555206 RMS 0.033220644 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.067278629 RMS 0.043489324 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.66D-02 DEPred=-3.35D-02 R= 1.09D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0006D-01 Trust test= 1.09D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.08603 R2 -0.02107 0.07917 R3 -0.02049 -0.02162 0.08251 A1 0.00001 0.00001 0.00001 0.16000 A2 0.00005 0.00005 0.00005 0.00000 0.16000 A3 -0.00005 -0.00005 -0.00005 0.00000 0.00000 D1 -0.00019 -0.00017 -0.00018 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00230 ITU= 1 0 Use linear search instead of GDIIS. Linear search step of 0.600 exceeds DXMaxT= 0.505 but not scaled. Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.13093138 RMS(Int)= 0.09589007 Iteration 2 RMS(Cart)= 0.09586480 RMS(Int)= 0.00001459 Iteration 3 RMS(Cart)= 0.00000777 RMS(Int)= 0.00000693 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000693 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.72142 -0.06556 -0.33972 0.00000 -0.33972 2.38170 R2 2.75260 -0.06728 -0.35295 0.00000 -0.35295 2.39965 R3 2.73696 -0.06644 -0.34643 0.00000 -0.34643 2.39053 A1 2.09428 0.00000 0.00003 0.00000 0.00002 2.09430 A2 2.09467 0.00013 0.00055 0.00000 0.00054 2.09521 A3 2.09415 -0.00013 -0.00048 0.00000 -0.00049 2.09366 D1 3.12764 0.00059 0.00699 0.00000 0.00699 3.13463 Item Value Threshold Converged? Maximum Force 0.067279 0.000450 NO RMS Force 0.043489 0.000300 NO Maximum Displacement 0.341942 0.001800 NO RMS Displacement 0.226768 0.001200 NO Predicted change in Energy=-6.177188D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.559150 -0.244916 0.003912 2 1 0 -1.298824 -0.244552 0.009585 3 1 0 -3.194313 0.854642 0.009698 4 1 0 -3.192221 -1.340121 0.000081 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.260339 0.000000 3 H 1.269841 2.191143 0.000000 4 H 1.265016 2.187536 2.194785 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000828 0.000800 -0.000953 2 1 0 0.325299 1.218653 0.001595 3 1 0 -1.225303 -0.329488 0.001582 4 1 0 0.895864 -0.893164 0.001589 --------------------------------------------------------------------- Rotational constants (GHZ): 209.6875835 208.0915438 104.4439192 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 6.9990834515 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 4.45D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000003 -0.000002 0.000700 Ang= 0.08 deg. ExpMin= 1.24D-01 ExpMax= 1.16D+02 ExpMxC= 1.16D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.4561385366 A.U. after 9 cycles NFock= 9 Conv=0.31D-08 -V/T= 2.0201 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.002263879 0.001313686 0.000654919 2 1 -0.027165002 0.000012583 -0.000283525 3 1 0.015104532 -0.026198796 -0.000297724 4 1 0.014324349 0.024872527 -0.000073671 ------------------------------------------------------------------- Cartesian Forces: Max 0.027165002 RMS 0.014386756 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.030242126 RMS 0.018809197 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.10879 R2 0.00177 0.10201 R3 0.00234 0.00124 0.10538 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00001 0.00001 0.00001 0.00000 0.16000 A3 -0.00001 -0.00001 -0.00001 0.00000 0.00000 D1 -0.00024 -0.00023 -0.00023 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00230 ITU= 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.10144 0.10422 0.11051 0.16000 Eigenvalues --- 0.16000 RFO step: Lambda=-4.72902932D-05 EMin= 2.30207553D-03 Quartic linear search produced a step of 0.40174. Iteration 1 RMS(Cart)= 0.09162312 RMS(Int)= 0.00037709 Iteration 2 RMS(Cart)= 0.00021271 RMS(Int)= 0.00002626 Iteration 3 RMS(Cart)= 0.00000006 RMS(Int)= 0.00002626 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.38170 -0.02717 -0.13648 0.01459 -0.12189 2.25981 R2 2.39965 -0.03024 -0.14179 -0.01536 -0.15715 2.24250 R3 2.39053 -0.02870 -0.13917 0.00010 -0.13907 2.25146 A1 2.09430 0.00000 0.00001 0.00000 -0.00004 2.09426 A2 2.09521 0.00005 0.00022 -0.00002 0.00016 2.09536 A3 2.09366 -0.00006 -0.00020 -0.00009 -0.00033 2.09333 D1 3.13463 0.00033 0.00281 -0.01888 -0.01607 3.11856 Item Value Threshold Converged? Maximum Force 0.030242 0.000450 NO RMS Force 0.018809 0.000300 NO Maximum Displacement 0.132364 0.001800 NO RMS Displacement 0.091638 0.001200 NO Predicted change in Energy=-8.863962D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.562554 -0.242848 -0.000121 2 1 0 -1.366766 -0.242451 0.010781 3 1 0 -3.156223 0.784598 0.010819 4 1 0 -3.158964 -1.274246 0.001797 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.195838 0.000000 3 H 1.186680 2.063246 0.000000 4 H 1.191423 2.068007 2.058866 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000578 -0.000610 -0.002970 2 1 0 -1.150779 0.322410 0.004934 3 1 0 0.294181 -1.150368 0.004967 4 1 0 0.853711 0.831009 0.004950 --------------------------------------------------------------------- Rotational constants (GHZ): 236.7563996 234.3458473 117.7806467 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4324014380 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 3.69D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.711761 0.000023 -0.000001 -0.702422 Ang= 89.24 deg. ExpMin= 1.24D-01 ExpMax= 1.16D+02 ExpMxC= 1.16D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.4622185077 A.U. after 8 cycles NFock= 8 Conv=0.97D-08 -V/T= 2.0126 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.003051815 -0.001885285 0.001744598 2 1 -0.000693902 -0.000094547 -0.000595580 3 1 -0.001805229 0.003306035 -0.000559715 4 1 -0.000552684 -0.001326202 -0.000589303 ------------------------------------------------------------------- Cartesian Forces: Max 0.003306035 RMS 0.001675067 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003760374 RMS 0.001606898 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -6.08D-03 DEPred=-8.86D-03 R= 6.86D-01 TightC=F SS= 1.41D+00 RLast= 2.43D-01 DXNew= 8.4853D-01 7.2964D-01 Trust test= 6.86D-01 RLast= 2.43D-01 DXMaxT set to 7.30D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.13349 R2 0.03652 0.15024 R3 0.03185 0.04246 0.14050 A1 -0.00001 -0.00002 -0.00001 0.16000 A2 -0.00047 -0.00061 -0.00054 0.00000 0.16000 A3 0.00045 0.00059 0.00052 0.00000 -0.00001 D1 0.00160 0.00211 0.00185 0.00000 -0.00002 A3 D1 A3 0.16001 D1 0.00002 0.00235 ITU= 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00233 0.10255 0.10526 0.15998 0.16000 Eigenvalues --- 0.21651 RFO step: Lambda=-4.95264125D-04 EMin= 2.32617288D-03 Quartic linear search produced a step of -0.04746. Iteration 1 RMS(Cart)= 0.04346222 RMS(Int)= 0.07026446 Iteration 2 RMS(Cart)= 0.03975916 RMS(Int)= 0.01411662 Iteration 3 RMS(Cart)= 0.00210277 RMS(Int)= 0.01393433 Iteration 4 RMS(Cart)= 0.00001312 RMS(Int)= 0.01393431 Iteration 5 RMS(Cart)= 0.00000028 RMS(Int)= 0.01393431 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25981 -0.00070 0.00578 -0.02339 -0.01761 2.24220 R2 2.24250 0.00376 0.00746 0.01416 0.02162 2.26412 R3 2.25146 0.00142 0.00660 -0.00600 0.00060 2.25207 A1 2.09426 0.00000 0.00000 0.00254 -0.01930 2.07497 A2 2.09536 -0.00020 -0.00001 0.00135 -0.01914 2.07623 A3 2.09333 0.00022 0.00002 0.00377 -0.01669 2.07664 D1 3.11856 0.00115 0.00076 0.38380 0.37793 -2.78670 Item Value Threshold Converged? Maximum Force 0.003760 0.000450 NO RMS Force 0.001607 0.000300 NO Maximum Displacement 0.186054 0.001800 NO RMS Displacement 0.081958 0.001200 NO Predicted change in Energy=-2.318671D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.559401 -0.245736 0.098334 2 1 0 -1.379013 -0.244652 -0.022116 3 1 0 -3.154419 0.787209 -0.021958 4 1 0 -3.151675 -1.271768 -0.030984 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.186519 0.000000 3 H 1.198121 2.053487 0.000000 4 H 1.191743 2.048750 2.058999 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.001020 0.000770 0.046259 2 1 0 0.281024 1.147122 -0.077442 3 1 0 -1.143364 -0.332043 -0.076685 4 1 0 0.857241 -0.818928 -0.077168 --------------------------------------------------------------------- Rotational constants (GHZ): 235.1375550 232.4844255 118.8870066 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4314987278 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 3.57D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.718968 0.000287 -0.000027 0.695043 Ang= 88.06 deg. ExpMin= 1.24D-01 ExpMax= 1.16D+02 ExpMxC= 1.16D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.4589962416 A.U. after 8 cycles NFock= 8 Conv=0.91D-08 -V/T= 2.0126 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.003769963 0.002675575 -0.027074573 2 1 0.005104302 -0.000009725 0.008811317 3 1 0.000094210 -0.000491026 0.009262032 4 1 -0.001428549 -0.002174824 0.009001224 ------------------------------------------------------------------- Cartesian Forces: Max 0.027074573 RMS 0.009273281 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.018049452 RMS 0.007250376 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 5 4 DE= 3.22D-03 DEPred=-2.32D-04 R=-1.39D+01 Trust test=-1.39D+01 RLast= 3.80D-01 DXMaxT set to 3.65D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.13517 R2 0.03857 0.13406 R3 0.03376 0.03578 0.13832 A1 -0.00514 0.01802 0.00588 0.14407 A2 -0.00301 0.01463 0.00542 -0.01609 0.14585 A3 -0.00193 0.01398 0.00567 -0.01390 -0.01239 D1 -0.00938 0.01000 -0.00035 0.00581 -0.00431 A3 D1 A3 0.14919 D1 -0.00295 0.04975 ITU= -1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.92839. Iteration 1 RMS(Cart)= 0.04468795 RMS(Int)= 0.05710978 Iteration 2 RMS(Cart)= 0.03215755 RMS(Int)= 0.00168266 Iteration 3 RMS(Cart)= 0.00141165 RMS(Int)= 0.00090988 Iteration 4 RMS(Cart)= 0.00000003 RMS(Int)= 0.00090988 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.24220 0.00418 0.01635 0.00000 0.01635 2.25854 R2 2.26412 -0.00140 -0.02007 0.00000 -0.02007 2.24405 R3 2.25207 0.00161 -0.00056 0.00000 -0.00056 2.25151 A1 2.07497 -0.00043 0.01791 0.00000 0.01930 2.09427 A2 2.07623 0.00333 0.01777 0.00000 0.01916 2.09538 A3 2.07664 0.00298 0.01549 0.00000 0.01688 2.09353 D1 -2.78670 -0.01805 -0.35086 0.00000 -0.35086 -3.13756 Item Value Threshold Converged? Maximum Force 0.018049 0.000450 NO RMS Force 0.007250 0.000300 NO Maximum Displacement 0.172860 0.001800 NO RMS Displacement 0.076198 0.001200 NO Predicted change in Energy=-4.603964D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.562330 -0.243053 0.006861 2 1 0 -1.367161 -0.242608 0.008238 3 1 0 -3.156337 0.785201 0.008713 4 1 0 -3.158679 -1.274487 -0.000535 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.195170 0.000000 3 H 1.187499 2.063381 0.000000 4 H 1.191446 2.067460 2.059710 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000483 -0.000495 0.000521 2 1 0 -1.149221 0.326016 -0.000865 3 1 0 0.290552 -1.152021 -0.000870 4 1 0 0.856252 0.828482 -0.000868 --------------------------------------------------------------------- Rotational constants (GHZ): 236.5546199 234.5108135 117.7643924 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4320013088 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 3.69D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Lowest energy guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 -0.000001 -0.000001 0.001595 Ang= -0.18 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.720076 -0.000288 0.000028 -0.693895 Ang= -87.88 deg. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.4622376666 A.U. after 6 cycles NFock= 6 Conv=0.24D-08 -V/T= 2.0126 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.002564707 -0.001548885 -0.000307008 2 1 -0.000383843 -0.000088599 0.000102433 3 1 -0.001614337 0.002939163 0.000109689 4 1 -0.000566528 -0.001301679 0.000094887 ------------------------------------------------------------------- Cartesian Forces: Max 0.002939163 RMS 0.001369848 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003352707 RMS 0.001387820 Search for a local minimum. Step number 6 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 5 4 6 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.12852 R2 0.04122 0.14609 R3 0.03162 0.04285 0.14059 A1 -0.00974 0.00860 -0.00100 0.14232 A2 -0.01027 0.00826 -0.00145 -0.01632 0.14510 A3 -0.00826 0.00850 -0.00029 -0.01447 -0.01303 D1 -0.00801 0.00849 -0.00068 -0.00114 -0.00142 A3 D1 A3 0.14864 D1 -0.00037 0.04924 ITU= 0 -1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.04644 0.09746 0.10385 0.15988 0.16003 Eigenvalues --- 0.21671 RFO step: Lambda=-1.01175595D-04 EMin= 4.64436979D-02 Quartic linear search produced a step of 0.00780. Iteration 1 RMS(Cart)= 0.00973455 RMS(Int)= 0.00001725 Iteration 2 RMS(Cart)= 0.00000994 RMS(Int)= 0.00001115 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001115 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25854 -0.00038 -0.00001 -0.01315 -0.01316 2.24538 R2 2.24405 0.00335 0.00001 0.02576 0.02577 2.26982 R3 2.25151 0.00141 0.00000 0.00507 0.00507 2.25658 A1 2.09427 0.00001 0.00000 0.00003 0.00001 2.09428 A2 2.09538 -0.00019 0.00000 -0.00121 -0.00122 2.09416 A3 2.09353 0.00018 0.00000 0.00122 0.00120 2.09473 D1 -3.13756 -0.00020 0.00021 -0.01081 -0.01060 3.13503 Item Value Threshold Converged? Maximum Force 0.003353 0.000450 NO RMS Force 0.001388 0.000300 NO Maximum Displacement 0.018620 0.001800 NO RMS Displacement 0.009734 0.001200 NO Predicted change in Energy=-5.065660D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.558854 -0.245228 0.004121 2 1 0 -1.370660 -0.245290 0.009131 3 1 0 -3.159276 0.795055 0.009662 4 1 0 -3.155718 -1.279483 0.000362 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.188204 0.000000 3 H 1.201135 2.069170 0.000000 4 H 1.194129 2.063023 2.074562 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.001035 -0.000883 -0.000848 2 1 0 -0.330277 -1.142558 0.001421 3 1 0 1.164890 0.287805 0.001406 4 1 0 -0.829440 0.859166 0.001414 --------------------------------------------------------------------- Rotational constants (GHZ): 235.8172485 232.7970126 117.1493579 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4126880096 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 3.72D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.708395 0.000000 -0.000002 -0.705816 Ang= -89.79 deg. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -26.4622250723 A.U. after 7 cycles NFock= 7 Conv=0.17D-08 -V/T= 2.0130 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.004288982 0.002705353 0.000505622 2 1 0.002970827 0.000089974 -0.000155972 3 1 0.001517709 -0.002800286 -0.000181602 4 1 -0.000199555 0.000004960 -0.000168049 ------------------------------------------------------------------- Cartesian Forces: Max 0.004288982 RMS 0.001938090 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003184789 RMS 0.001654415 Search for a local minimum. Step number 7 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 5 4 7 6 DE= 1.26D-05 DEPred=-5.07D-05 R=-2.49D-01 Trust test=-2.49D-01 RLast= 3.13D-02 DXMaxT set to 1.82D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.17680 R2 -0.04326 0.22430 R3 0.01738 0.03414 0.12855 A1 -0.00818 -0.00280 -0.00571 0.13935 A2 -0.00385 -0.00829 -0.00596 -0.01747 0.14627 A3 -0.01173 0.00190 -0.00544 -0.01690 -0.01375 D1 -0.00090 -0.00024 -0.00098 -0.00044 -0.00020 A3 D1 A3 0.14728 D1 -0.00020 0.05009 ITU= -1 0 -1 1 0 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.55762. Iteration 1 RMS(Cart)= 0.00542712 RMS(Int)= 0.00000480 Iteration 2 RMS(Cart)= 0.00000311 RMS(Int)= 0.00000262 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000262 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.24538 0.00297 0.00734 0.00000 0.00734 2.25272 R2 2.26982 -0.00318 -0.01437 0.00000 -0.01437 2.25545 R3 2.25658 0.00010 -0.00283 0.00000 -0.00283 2.25375 A1 2.09428 0.00000 -0.00001 0.00000 0.00000 2.09428 A2 2.09416 0.00020 0.00068 0.00000 0.00069 2.09485 A3 2.09473 -0.00020 -0.00067 0.00000 -0.00067 2.09406 D1 3.13503 0.00033 0.00591 0.00000 0.00591 3.14094 Item Value Threshold Converged? Maximum Force 0.003185 0.000450 NO RMS Force 0.001654 0.000300 NO Maximum Displacement 0.010381 0.001800 NO RMS Displacement 0.005428 0.001200 NO Predicted change in Energy=-2.179757D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.560792 -0.244015 0.005651 2 1 0 -1.368707 -0.243795 0.008633 3 1 0 -3.157639 0.789561 0.009132 4 1 0 -3.157370 -1.276698 -0.000139 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.192089 0.000000 3 H 1.193532 2.065938 0.000000 4 H 1.192633 2.065498 2.066280 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -0.000183 -0.000119 -0.000084 2 1 0 -0.350281 -1.139639 0.000140 3 1 0 1.163158 0.266634 0.000140 4 1 0 -0.811964 0.873600 0.000140 --------------------------------------------------------------------- Rotational constants (GHZ): 235.0885317 234.8825525 117.4927550 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4233610630 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 3.71D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Lowest energy guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.714558 0.000000 0.000001 -0.699577 Ang= 88.79 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999962 -0.000002 0.000002 0.008770 Ang= -1.00 deg. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -26.4622599570 A.U. after 4 cycles NFock= 4 Conv=0.81D-08 -V/T= 2.0128 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 -0.000480969 0.000380810 0.000050226 2 1 0.001084924 -0.000009931 -0.000014029 3 1 -0.000200840 0.000350421 -0.000015494 4 1 -0.000403114 -0.000721300 -0.000020702 ------------------------------------------------------------------- Cartesian Forces: Max 0.001084924 RMS 0.000447474 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001084883 RMS 0.000537763 Search for a local minimum. Step number 8 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 3 5 4 7 6 8 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.20312 R2 -0.03188 0.23361 R3 0.03848 0.04256 0.14373 A1 -0.00201 0.00057 -0.00098 0.13729 A2 0.00319 -0.00657 -0.00132 -0.01856 0.14702 A3 -0.00423 0.00379 -0.00078 -0.01838 -0.01348 D1 0.00098 0.00021 0.00004 0.00261 -0.00267 A3 D1 A3 0.14692 D1 -0.00300 0.04935 ITU= 0 -1 0 -1 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.04916 0.10367 0.15957 0.16079 0.21987 Eigenvalues --- 0.25785 RFO step: Lambda=-9.22997127D-06 EMin= 4.91586063D-02 Quartic linear search produced a step of 0.00002. Iteration 1 RMS(Cart)= 0.00237993 RMS(Int)= 0.00000036 Iteration 2 RMS(Cart)= 0.00000024 RMS(Int)= 0.00000003 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25272 0.00108 0.00000 0.00486 0.00486 2.25758 R2 2.25545 0.00040 0.00000 0.00166 0.00166 2.25711 R3 2.25375 0.00083 0.00000 0.00396 0.00396 2.25771 A1 2.09428 0.00001 0.00000 0.00004 0.00004 2.09432 A2 2.09485 -0.00002 0.00000 -0.00016 -0.00016 2.09469 A3 2.09406 0.00001 0.00000 0.00011 0.00011 2.09417 D1 3.14094 0.00003 0.00000 0.00055 0.00055 3.14149 Item Value Threshold Converged? Maximum Force 0.001085 0.000450 NO RMS Force 0.000538 0.000300 NO Maximum Displacement 0.004290 0.001800 NO RMS Displacement 0.002380 0.001200 NO Predicted change in Energy=-4.614984D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.561092 -0.243723 0.005793 2 1 0 -1.366437 -0.243582 0.008592 3 1 0 -3.158355 0.790630 0.009088 4 1 0 -3.158624 -1.278271 -0.000196 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.194658 0.000000 3 H 1.194412 2.068952 0.000000 4 H 1.194726 2.069443 2.068922 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000019 -0.000002 -0.000013 2 1 0 1.049932 -0.569993 0.000022 3 1 0 -0.031220 1.194001 0.000022 4 1 0 -1.018806 -0.623996 0.000022 --------------------------------------------------------------------- Rotational constants (GHZ): 234.3356736 234.1828205 117.1296112 Standard basis: 3-21G (6D, 7F) There are 15 symmetry adapted cartesian basis functions of A symmetry. There are 15 symmetry adapted basis functions of A symmetry. 15 basis functions, 24 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4118780591 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 15 RedAO= T EigKep= 3.73D-02 NBF= 15 NBsUse= 15 1.00D-06 EigRej= -1.00D+00 NBFU= 15 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\mh4512\Desktop\3rdyearlab\Day 1\HM_bh3c1r2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.773921 0.000000 0.000000 -0.633282 Ang= -78.59 deg. Keep R1 ints in memory in canonical form, NReq=888911. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -26.4622637477 A.U. after 6 cycles NFock= 6 Conv=0.77D-08 -V/T= 2.0130 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000023445 -0.000108313 0.000007419 2 1 -0.000158242 -0.000017068 -0.000003060 3 1 0.000021217 -0.000026718 -0.000002686 4 1 0.000113580 0.000152099 -0.000001673 ------------------------------------------------------------------- Cartesian Forces: Max 0.000158242 RMS 0.000078997 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000188505 RMS 0.000094961 Search for a local minimum. Step number 9 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 3 5 4 7 6 8 9 DE= -3.79D-06 DEPred=-4.61D-06 R= 8.21D-01 TightC=F SS= 1.41D+00 RLast= 6.51D-03 DXNew= 3.0678D-01 1.9518D-02 Trust test= 8.21D-01 RLast= 6.51D-03 DXMaxT set to 1.82D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.22001 R2 -0.02897 0.22963 R3 0.05685 0.04951 0.16606 A1 -0.00260 0.00217 -0.00057 0.13655 A2 0.00767 -0.00406 0.00222 -0.01904 0.14699 A3 -0.00480 0.00229 -0.00194 -0.01887 -0.01341 D1 0.00020 -0.00123 0.00030 0.00354 -0.00134 A3 D1 A3 0.14663 D1 -0.00230 0.04958 ITU= 1 0 -1 0 -1 1 0 1 Eigenvalues --- 0.04939 0.10396 0.15906 0.16080 0.25524 Eigenvalues --- 0.25782 En-DIIS/RFO-DIIS IScMMF= 0 using points: 9 8 RFO step: Lambda=-1.28098821D-07. DidBck=F Rises=F RFO-DIIS coefs: 0.85542 0.14458 Iteration 1 RMS(Cart)= 0.00039857 RMS(Int)= 0.00000003 Iteration 2 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25758 -0.00016 -0.00070 0.00024 -0.00046 2.25712 R2 2.25711 -0.00003 -0.00024 0.00024 0.00000 2.25711 R3 2.25771 -0.00019 -0.00057 -0.00040 -0.00098 2.25673 A1 2.09432 0.00001 -0.00001 0.00005 0.00004 2.09437 A2 2.09469 -0.00003 0.00002 -0.00017 -0.00015 2.09454 A3 2.09417 0.00002 -0.00002 0.00012 0.00010 2.09428 D1 3.14149 0.00001 -0.00008 0.00019 0.00011 -3.14159 Item Value Threshold Converged? Maximum Force 0.000189 0.000450 YES RMS Force 0.000095 0.000300 YES Maximum Displacement 0.000594 0.001800 YES RMS Displacement 0.000399 0.001200 YES Predicted change in Energy=-1.319672D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1947 -DE/DX = -0.0002 ! ! R2 R(1,3) 1.1944 -DE/DX = 0.0 ! ! R3 R(1,4) 1.1947 -DE/DX = -0.0002 ! ! A1 A(2,1,3) 119.9959 -DE/DX = 0.0 ! ! A2 A(2,1,4) 120.0168 -DE/DX = 0.0 ! ! A3 A(3,1,4) 119.9873 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) -180.0059 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 -2.561092 -0.243723 0.005793 2 1 0 -1.366437 -0.243582 0.008592 3 1 0 -3.158355 0.790630 0.009088 4 1 0 -3.158624 -1.278271 -0.000196 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.194658 0.000000 3 H 1.194412 2.068952 0.000000 4 H 1.194726 2.069443 2.068922 0.000000 Stoichiometry BH3 Framework group C1[X(BH3)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000019 -0.000002 -0.000013 2 1 0 1.049932 -0.569993 0.000022 3 1 0 -0.031220 1.194001 0.000022 4 1 0 -1.018806 -0.623996 0.000022 --------------------------------------------------------------------- Rotational constants (GHZ): 234.3356736 234.1828205 117.1296112 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -6.73056 -0.51761 -0.35679 -0.35677 Alpha virt. eigenvalues -- -0.07459 0.18852 0.18855 0.19179 0.40232 Alpha virt. eigenvalues -- 0.40233 0.46358 0.60792 1.09322 1.14238 Alpha virt. eigenvalues -- 1.14245 Condensed to atoms (all electrons): 1 2 3 4 1 B 3.849467 0.401042 0.401050 0.401035 2 H 0.401042 0.628098 -0.023347 -0.023317 3 H 0.401050 -0.023347 0.628100 -0.023352 4 H 0.401035 -0.023317 -0.023352 0.628115 Mulliken charges: 1 1 B -0.052594 2 H 0.017525 3 H 0.017549 4 H 0.017520 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.000000 Electronic spatial extent (au): = 34.5380 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0001 Y= 0.0002 Z= -0.0001 Tot= 0.0002 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.3148 YY= -9.3152 ZZ= -7.2614 XY= -0.0001 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.6843 YY= -0.6848 ZZ= 1.3691 XY= -0.0001 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0063 YYY= 0.0790 ZZZ= -0.0001 XYY= -0.0061 XXY= -0.0778 XXZ= 0.0000 XZZ= 0.0001 YZZ= 0.0004 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -23.5567 YYYY= -23.5494 ZZZZ= -7.4142 XXXY= -0.0002 XXXZ= 0.0000 YYYX= -0.0003 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -7.8510 XXZZ= -5.3497 YYZZ= -5.3481 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -0.0001 N-N= 7.411878059102D+00 E-N=-7.496075185441D+01 KE= 2.612342949664D+01 1|1| IMPERIAL COLLEGE-CHWS-277|FOpt|RB3LYP|3-21G|B1H3|MH4512|02-Feb-20 15|0||# opt b3lyp/3-21g geom=connectivity integral=grid=ultrafine||BH3 optimisation||0,1|B,-2.5610916341,-0.2437230951,0.0057929031|H,-1.366 4370348,-0.2435816185,0.0085916846|H,-3.1583552959,0.7906295677,0.0090 87972|H,-3.1586236452,-1.2782714841,-0.0001957697||Version=EM64W-G09Re vD.01|State=1-A|HF=-26.4622637|RMSD=7.655e-009|RMSF=7.900e-005|Dipole= -0.0000056,0.0000917,-0.0000312|Quadrupole=-0.5087893,-0.5090493,1.017 8386,0.0001116,-0.0035302,-0.006851|PG=C01 [X(B1H3)]||@ IT WAS A GAME, A VERY INTERESTING GAME ONE COULD PLAY. WHENEVER ONE SOLVED ONE OF THE LITTLE PROBLEMS, ONE COULD WRITE A PAPER ABOUT IT. IT WAS VERY EASY IN THOSE DAYS FOR ANY SECOND-RATE PHYSICIST TO DO FIRST-RATE WORK. THERE HAS NOT BEEN SUCH A GLORIOUS TIME SINCE. IT IS VERY DIFFICULT NOW FOR A FIRST-RATE PHYSICIST TO DO SECOND-RATE WORK. P.A.M. DIRAC, ON THE EARLY DAYS OF QUANTUM MECHANICS DIRECTIONS IN PHYSICS, 1978, P. 7 Job cpu time: 0 days 0 hours 0 minutes 31.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Mon Feb 02 15:49:51 2015.