Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4664. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 20-Oct-2014 ****************************************** %chk=\\icnas1.cc.ic.ac.uk\ej410\Desktop\3rd year computational lab\3rdyearlab\Be nzene\Boratabenzene\EKJ_boratabenzene_negcharge_6-31G_mol.chk Default route: MaxDisk=10GB ----------------------------------------------------------------- # opt ub3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ----------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5,116=2/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5,116=2/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------------ Boratabenzene_6-31G(d,p) ------------------------ Symbolic Z-matrix: Charge = -1 Multiplicity = 1 C -1.27774 -0.72053 0.00001 C 1.27775 -0.72053 0.00001 C 1.21953 0.67704 -0.00001 C 0. 1.37507 -0.00001 C -1.21954 0.67704 -0.00001 H -2.28253 -1.16052 0. H 0. -2.75153 -0.00004 H 2.28253 -1.16051 0. H 2.14204 1.2706 -0.00002 H -0.00001 2.46654 -0.00003 H -2.14205 1.27059 -0.00003 B 0. -1.53274 0.00004 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,5) 1.3988 estimate D2E/DX2 ! ! R2 R(1,6) 1.0969 estimate D2E/DX2 ! ! R3 R(1,12) 1.514 estimate D2E/DX2 ! ! R4 R(2,3) 1.3988 estimate D2E/DX2 ! ! R5 R(2,8) 1.0969 estimate D2E/DX2 ! ! R6 R(2,12) 1.514 estimate D2E/DX2 ! ! R7 R(3,4) 1.4052 estimate D2E/DX2 ! ! R8 R(3,9) 1.097 estimate D2E/DX2 ! ! R9 R(4,5) 1.4052 estimate D2E/DX2 ! ! R10 R(4,10) 1.0915 estimate D2E/DX2 ! ! R11 R(5,11) 1.097 estimate D2E/DX2 ! ! R12 R(7,12) 1.2188 estimate D2E/DX2 ! ! A1 A(5,1,6) 116.0332 estimate D2E/DX2 ! ! A2 A(5,1,12) 120.0573 estimate D2E/DX2 ! ! A3 A(6,1,12) 123.9095 estimate D2E/DX2 ! ! A4 A(3,2,8) 116.033 estimate D2E/DX2 ! ! A5 A(3,2,12) 120.0573 estimate D2E/DX2 ! ! A6 A(8,2,12) 123.9097 estimate D2E/DX2 ! ! A7 A(2,3,4) 122.1707 estimate D2E/DX2 ! ! A8 A(2,3,9) 120.3728 estimate D2E/DX2 ! ! A9 A(4,3,9) 117.4565 estimate D2E/DX2 ! ! A10 A(3,4,5) 120.4286 estimate D2E/DX2 ! ! A11 A(3,4,10) 119.7857 estimate D2E/DX2 ! ! A12 A(5,4,10) 119.7857 estimate D2E/DX2 ! ! A13 A(1,5,4) 122.1707 estimate D2E/DX2 ! ! A14 A(1,5,11) 120.3728 estimate D2E/DX2 ! ! A15 A(4,5,11) 117.4565 estimate D2E/DX2 ! ! A16 A(1,12,2) 115.1153 estimate D2E/DX2 ! ! A17 A(1,12,7) 122.4422 estimate D2E/DX2 ! ! A18 A(2,12,7) 122.4425 estimate D2E/DX2 ! ! D1 D(6,1,5,4) -179.9994 estimate D2E/DX2 ! ! D2 D(6,1,5,11) 0.0003 estimate D2E/DX2 ! ! D3 D(12,1,5,4) 0.0006 estimate D2E/DX2 ! ! D4 D(12,1,5,11) -179.9997 estimate D2E/DX2 ! ! D5 D(5,1,12,2) -0.0016 estimate D2E/DX2 ! ! D6 D(5,1,12,7) -179.9949 estimate D2E/DX2 ! ! D7 D(6,1,12,2) 179.9984 estimate D2E/DX2 ! ! D8 D(6,1,12,7) 0.0051 estimate D2E/DX2 ! ! D9 D(8,2,3,4) 179.9994 estimate D2E/DX2 ! ! D10 D(8,2,3,9) -0.0004 estimate D2E/DX2 ! ! D11 D(12,2,3,4) -0.0005 estimate D2E/DX2 ! ! D12 D(12,2,3,9) 179.9997 estimate D2E/DX2 ! ! D13 D(3,2,12,1) 0.0016 estimate D2E/DX2 ! ! D14 D(3,2,12,7) 179.9948 estimate D2E/DX2 ! ! D15 D(8,2,12,1) -179.9983 estimate D2E/DX2 ! ! D16 D(8,2,12,7) -0.005 estimate D2E/DX2 ! ! D17 D(2,3,4,5) -0.0006 estimate D2E/DX2 ! ! D18 D(2,3,4,10) -180.0 estimate D2E/DX2 ! ! D19 D(9,3,4,5) 179.9992 estimate D2E/DX2 ! ! D20 D(9,3,4,10) -0.0002 estimate D2E/DX2 ! ! D21 D(3,4,5,1) 0.0005 estimate D2E/DX2 ! ! D22 D(3,4,5,11) -179.9992 estimate D2E/DX2 ! ! D23 D(10,4,5,1) 179.9999 estimate D2E/DX2 ! ! D24 D(10,4,5,11) 0.0002 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.277743 -0.720534 0.000007 2 6 0 1.277747 -0.720529 0.000009 3 6 0 1.219534 0.677042 -0.000008 4 6 0 -0.000003 1.375070 -0.000011 5 6 0 -1.219537 0.677037 -0.000009 6 1 0 -2.282528 -1.160523 -0.000003 7 1 0 0.000004 -2.751528 -0.000040 8 1 0 2.282534 -1.160510 -0.000001 9 1 0 2.142040 1.270599 -0.000023 10 1 0 -0.000006 2.466544 -0.000025 11 1 0 -2.142046 1.270589 -0.000025 12 5 0 0.000004 -1.532738 0.000037 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 2.555490 0.000000 3 C 2.861750 1.398783 0.000000 4 C 2.454420 2.454421 1.405174 0.000000 5 C 1.398783 2.861751 2.439071 1.405174 0.000000 6 H 1.096897 3.587360 3.954881 3.411620 2.122870 7 H 2.399495 2.399497 3.639003 4.126598 3.639002 8 H 3.587360 1.096896 2.122867 3.411619 3.954881 9 H 3.957212 2.170620 1.096963 2.144589 3.413578 10 H 3.433668 3.433670 2.165547 1.091474 2.165546 11 H 2.170620 3.957213 3.413578 2.144590 1.096963 12 B 1.514039 1.514038 2.523961 2.907808 2.523962 6 7 8 9 10 6 H 0.000000 7 H 2.782310 0.000000 8 H 4.565062 2.782316 0.000000 9 H 5.048481 4.556953 2.435165 0.000000 10 H 4.285501 5.218072 4.285500 2.453293 0.000000 11 H 2.435167 4.556951 5.048480 4.284086 2.453292 12 B 2.312682 1.218790 2.312682 3.528033 3.999282 11 12 11 H 0.000000 12 B 3.528034 0.000000 Stoichiometry C5H6B(1-) Framework group C1[X(C5H6B)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.277743 -0.720534 -0.000007 2 6 0 -1.277747 -0.720529 -0.000009 3 6 0 -1.219534 0.677042 0.000008 4 6 0 0.000003 1.375070 0.000011 5 6 0 1.219537 0.677037 0.000009 6 1 0 2.282528 -1.160522 0.000003 7 1 0 -0.000003 -2.751528 0.000040 8 1 0 -2.282534 -1.160511 0.000001 9 1 0 -2.142040 1.270598 0.000023 10 1 0 0.000005 2.466544 0.000025 11 1 0 2.142046 1.270590 0.000025 12 5 0 -0.000003 -1.532738 -0.000037 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5102123 5.3407194 2.7120711 Standard basis: 6-31G(d,p) (6D, 7F) There are 120 symmetry adapted cartesian basis functions of A symmetry. There are 120 symmetry adapted basis functions of A symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 188.3715862965 Hartrees. NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 1.04D-03 NBF= 120 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 120 ExpMin= 1.27D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess = 0.0000 = 0.0000 = 0.0000 = 0.0000 S= 0.0000 Keep R1 and R2 ints in memory in canonical form, NReq=53724602. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(UB3LYP) = -219.020522884 A.U. after 13 cycles NFock= 13 Conv=0.43D-08 -V/T= 2.0096 = 0.0000 = 0.0000 = 0.0000 = 0.0000 S= 0.0000 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.0000, after 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Beta Orbitals: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -9.98371 -9.98370 -9.97444 -9.94512 -9.94511 Alpha occ. eigenvalues -- -6.47353 -0.60438 -0.51956 -0.46082 -0.36649 Alpha occ. eigenvalues -- -0.32170 -0.28948 -0.20933 -0.20376 -0.18998 Alpha occ. eigenvalues -- -0.16883 -0.13211 -0.09167 -0.08375 -0.03495 Alpha occ. eigenvalues -- 0.01095 Alpha virt. eigenvalues -- 0.21471 0.23249 0.26832 0.31516 0.33510 Alpha virt. eigenvalues -- 0.35286 0.35781 0.37026 0.41011 0.45223 Alpha virt. eigenvalues -- 0.48960 0.50924 0.51672 0.61212 0.61778 Alpha virt. eigenvalues -- 0.67922 0.69097 0.73805 0.76096 0.78824 Alpha virt. eigenvalues -- 0.80225 0.80419 0.81752 0.82599 0.83740 Alpha virt. eigenvalues -- 0.85613 0.86862 0.93698 0.98934 1.00620 Alpha virt. eigenvalues -- 1.01161 1.03234 1.03472 1.05599 1.11351 Alpha virt. eigenvalues -- 1.13412 1.16342 1.18813 1.26624 1.28278 Alpha virt. eigenvalues -- 1.30644 1.39431 1.39746 1.40916 1.48835 Alpha virt. eigenvalues -- 1.55974 1.58319 1.61775 1.62222 1.63728 Alpha virt. eigenvalues -- 1.75576 1.84659 1.86810 2.00398 2.06999 Alpha virt. eigenvalues -- 2.07255 2.08982 2.11648 2.11765 2.15273 Alpha virt. eigenvalues -- 2.18613 2.20393 2.28178 2.36350 2.45620 Alpha virt. eigenvalues -- 2.48193 2.50348 2.52051 2.52997 2.53651 Alpha virt. eigenvalues -- 2.58790 2.59182 2.60324 2.66645 2.66842 Alpha virt. eigenvalues -- 2.67677 2.73894 2.74831 2.77910 2.81024 Alpha virt. eigenvalues -- 2.88087 2.91974 2.93095 3.13317 3.19467 Alpha virt. eigenvalues -- 3.24183 3.31647 3.41487 3.42249 3.50865 Alpha virt. eigenvalues -- 3.61994 3.66279 3.86824 4.07545 4.38385 Alpha virt. eigenvalues -- 4.41712 4.61098 4.68162 4.95135 Beta occ. eigenvalues -- -9.98371 -9.98370 -9.97444 -9.94512 -9.94511 Beta occ. eigenvalues -- -6.47353 -0.60438 -0.51956 -0.46082 -0.36649 Beta occ. eigenvalues -- -0.32170 -0.28948 -0.20933 -0.20376 -0.18998 Beta occ. eigenvalues -- -0.16883 -0.13211 -0.09167 -0.08375 -0.03495 Beta occ. eigenvalues -- 0.01095 Beta virt. eigenvalues -- 0.21471 0.23249 0.26832 0.31516 0.33510 Beta virt. eigenvalues -- 0.35286 0.35781 0.37026 0.41011 0.45223 Beta virt. eigenvalues -- 0.48960 0.50924 0.51672 0.61212 0.61778 Beta virt. eigenvalues -- 0.67922 0.69097 0.73805 0.76096 0.78824 Beta virt. eigenvalues -- 0.80225 0.80419 0.81752 0.82599 0.83740 Beta virt. eigenvalues -- 0.85613 0.86862 0.93698 0.98934 1.00620 Beta virt. eigenvalues -- 1.01161 1.03234 1.03472 1.05599 1.11351 Beta virt. eigenvalues -- 1.13412 1.16342 1.18813 1.26624 1.28278 Beta virt. eigenvalues -- 1.30644 1.39431 1.39746 1.40916 1.48835 Beta virt. eigenvalues -- 1.55974 1.58319 1.61775 1.62222 1.63728 Beta virt. eigenvalues -- 1.75576 1.84659 1.86810 2.00398 2.06999 Beta virt. eigenvalues -- 2.07255 2.08982 2.11648 2.11765 2.15273 Beta virt. eigenvalues -- 2.18613 2.20393 2.28178 2.36350 2.45620 Beta virt. eigenvalues -- 2.48193 2.50348 2.52051 2.52997 2.53651 Beta virt. eigenvalues -- 2.58790 2.59182 2.60324 2.66645 2.66842 Beta virt. eigenvalues -- 2.67677 2.73894 2.74831 2.77910 2.81024 Beta virt. eigenvalues -- 2.88087 2.91974 2.93095 3.13317 3.19467 Beta virt. eigenvalues -- 3.24183 3.31647 3.41487 3.42249 3.50865 Beta virt. eigenvalues -- 3.61994 3.66279 3.86824 4.07545 4.38385 Beta virt. eigenvalues -- 4.41712 4.61098 4.68162 4.95135 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.812597 -0.011775 -0.031091 -0.037410 0.574427 0.310681 2 C -0.011775 4.812596 0.574427 -0.037410 -0.031091 0.003114 3 C -0.031091 0.574427 4.860385 0.528397 -0.039753 0.000827 4 C -0.037410 -0.037410 0.528397 4.990321 0.528396 0.008777 5 C 0.574427 -0.031091 -0.039753 0.528396 4.860385 -0.043550 6 H 0.310681 0.003114 0.000827 0.008777 -0.043550 0.840686 7 H -0.026251 -0.026251 0.001129 0.001588 0.001129 -0.002387 8 H 0.003114 0.310681 -0.043551 0.008777 0.000827 -0.000154 9 H 0.000212 -0.052686 0.322507 -0.070264 0.007304 0.000018 10 H 0.006201 0.006201 -0.054926 0.340026 -0.054926 -0.000282 11 H -0.052686 0.000212 0.007304 -0.070264 0.322507 -0.016093 12 B 0.559749 0.559749 -0.017386 -0.078140 -0.017386 -0.060617 7 8 9 10 11 12 1 C -0.026251 0.003114 0.000212 0.006201 -0.052686 0.559749 2 C -0.026251 0.310681 -0.052686 0.006201 0.000212 0.559749 3 C 0.001129 -0.043551 0.322507 -0.054926 0.007304 -0.017386 4 C 0.001588 0.008777 -0.070264 0.340026 -0.070264 -0.078140 5 C 0.001129 0.000827 0.007304 -0.054926 0.322507 -0.017386 6 H -0.002387 -0.000154 0.000018 -0.000282 -0.016093 -0.060617 7 H 0.957774 -0.002387 -0.000189 0.000012 -0.000189 0.320814 8 H -0.002387 0.840686 -0.016093 -0.000282 0.000018 -0.060618 9 H -0.000189 -0.016093 0.836393 -0.009969 -0.000270 0.009121 10 H 0.000012 -0.000282 -0.009969 0.803728 -0.009969 0.000676 11 H -0.000189 0.000018 -0.000270 -0.009969 0.836393 0.009121 12 B 0.320814 -0.060618 0.009121 0.000676 0.009121 3.844562 Atomic-Atomic Spin Densities. 1 2 3 4 5 6 1 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 11 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 12 B 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 8 9 10 11 12 1 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 2 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 3 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 5 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 6 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 11 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 12 B 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Mulliken charges and spin densities: 1 2 1 C -0.107768 0.000000 2 C -0.107768 0.000000 3 C -0.108270 0.000000 4 C -0.112793 0.000000 5 C -0.108269 0.000000 6 H -0.041018 0.000000 7 H -0.224791 0.000000 8 H -0.041018 0.000000 9 H -0.026084 0.000000 10 H -0.026490 0.000000 11 H -0.026084 0.000000 12 B -0.069647 0.000000 Sum of Mulliken charges = -1.00000 0.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 1 C -0.148786 0.000000 2 C -0.148786 0.000000 3 C -0.134353 0.000000 4 C -0.139284 0.000000 5 C -0.134353 0.000000 12 B -0.294438 0.000000 Electronic spatial extent (au): = 498.8971 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 2.8462 Z= 0.0000 Tot= 2.8462 Quadrupole moment (field-independent basis, Debye-Ang): XX= -43.8554 YY= -49.9625 ZZ= -41.9733 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.4083 YY= -4.6987 ZZ= 3.2904 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 28.3969 ZZZ= 0.0002 XYY= 0.0000 XXY= 4.6400 XXZ= 0.0002 XZZ= 0.0000 YZZ= 2.6213 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -364.7610 YYYY= -431.1564 ZZZZ= -47.1656 XXXY= 0.0000 XXXZ= -0.0001 YYYX= -0.0001 YYYZ= -0.0014 ZZZX= -0.0001 ZZZY= -0.0017 XXYY= -124.8732 XXZZ= -70.9428 YYZZ= -73.2483 XXYZ= -0.0006 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.883715862965D+02 E-N=-8.921743141348D+02 KE= 2.169332350234D+02 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 C(13) 0.00000 0.00000 0.00000 0.00000 2 C(13) 0.00000 0.00000 0.00000 0.00000 3 C(13) 0.00000 0.00000 0.00000 0.00000 4 C(13) 0.00000 0.00000 0.00000 0.00000 5 C(13) 0.00000 0.00000 0.00000 0.00000 6 H(1) 0.00000 0.00000 0.00000 0.00000 7 H(1) 0.00000 0.00000 0.00000 0.00000 8 H(1) 0.00000 0.00000 0.00000 0.00000 9 H(1) 0.00000 0.00000 0.00000 0.00000 10 H(1) 0.00000 0.00000 0.00000 0.00000 11 H(1) 0.00000 0.00000 0.00000 0.00000 12 B(11) 0.00000 0.00000 0.00000 0.00000 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 2 Atom 0.000000 0.000000 0.000000 3 Atom 0.000000 0.000000 0.000000 4 Atom 0.000000 0.000000 0.000000 5 Atom 0.000000 0.000000 0.000000 6 Atom 0.000000 0.000000 0.000000 7 Atom 0.000000 0.000000 0.000000 8 Atom 0.000000 0.000000 0.000000 9 Atom 0.000000 0.000000 0.000000 10 Atom 0.000000 0.000000 0.000000 11 Atom 0.000000 0.000000 0.000000 12 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 2 Atom 0.000000 0.000000 0.000000 3 Atom 0.000000 0.000000 0.000000 4 Atom 0.000000 0.000000 0.000000 5 Atom 0.000000 0.000000 0.000000 6 Atom 0.000000 0.000000 0.000000 7 Atom 0.000000 0.000000 0.000000 8 Atom 0.000000 0.000000 0.000000 9 Atom 0.000000 0.000000 0.000000 10 Atom 0.000000 0.000000 0.000000 11 Atom 0.000000 0.000000 0.000000 12 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 1 C(13) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 2 C(13) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 3 C(13) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 4 C(13) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 5 C(13) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 6 H(1) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 7 H(1) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 8 H(1) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 9 H(1) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 10 H(1) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 11 H(1) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 Baa 0.0000 0.000 0.000 0.000 1.0000 0.0000 0.0000 12 B(11) Bbb 0.0000 0.000 0.000 0.000 0.0000 1.0000 0.0000 Bcc 0.0000 0.000 0.000 0.000 0.0000 0.0000 1.0000 --------------------------------------------------------------------------------- Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 1 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000048780 -0.000071883 0.000001737 2 6 0.000048402 -0.000071084 0.000001564 3 6 -0.000003867 0.000035241 0.000000736 4 6 0.000000025 0.000032736 -0.000000268 5 6 0.000003718 0.000034947 0.000000631 6 1 0.000033180 0.000050365 -0.000000030 7 1 0.000000152 0.000132668 0.000003620 8 1 -0.000032495 0.000049794 0.000000032 9 1 -0.000035094 -0.000024138 -0.000000034 10 1 0.000000087 0.000019023 -0.000000098 11 1 0.000035060 -0.000023992 -0.000000012 12 5 -0.000000388 -0.000163678 -0.000007879 ------------------------------------------------------------------- Cartesian Forces: Max 0.000163678 RMS 0.000045379 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000132669 RMS 0.000027902 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01110 0.01335 0.01514 0.01603 0.01898 Eigenvalues --- 0.02020 0.02043 0.02064 0.02071 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.23343 0.30116 Eigenvalues --- 0.30580 0.34020 0.34020 0.34028 0.34028 Eigenvalues --- 0.34643 0.42357 0.42939 0.45039 0.45821 RFO step: Lambda=-1.72480209D-07 EMin= 1.10954949D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00012941 RMS(Int)= 0.00000002 Iteration 2 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64332 0.00004 0.00000 0.00008 0.00008 2.64340 R2 2.07284 -0.00005 0.00000 -0.00015 -0.00015 2.07269 R3 2.86112 0.00002 0.00000 0.00006 0.00006 2.86118 R4 2.64332 0.00004 0.00000 0.00008 0.00008 2.64340 R5 2.07283 -0.00005 0.00000 -0.00015 -0.00015 2.07269 R6 2.86112 0.00002 0.00000 0.00006 0.00006 2.86118 R7 2.65539 -0.00002 0.00000 -0.00004 -0.00004 2.65535 R8 2.07296 -0.00004 0.00000 -0.00013 -0.00013 2.07283 R9 2.65539 -0.00002 0.00000 -0.00004 -0.00004 2.65535 R10 2.06259 0.00002 0.00000 0.00005 0.00005 2.06264 R11 2.07296 -0.00004 0.00000 -0.00012 -0.00012 2.07283 R12 2.30318 -0.00013 0.00000 -0.00057 -0.00057 2.30261 A1 2.02516 -0.00004 0.00000 -0.00023 -0.00023 2.02494 A2 2.09540 0.00000 0.00000 0.00003 0.00003 2.09542 A3 2.16263 0.00003 0.00000 0.00020 0.00020 2.16283 A4 2.02516 -0.00004 0.00000 -0.00022 -0.00022 2.02493 A5 2.09540 0.00000 0.00000 0.00003 0.00003 2.09542 A6 2.16263 0.00003 0.00000 0.00020 0.00020 2.16283 A7 2.13228 0.00003 0.00000 0.00014 0.00014 2.13242 A8 2.10090 -0.00002 0.00000 -0.00008 -0.00008 2.10082 A9 2.05000 -0.00001 0.00000 -0.00006 -0.00006 2.04994 A10 2.10188 -0.00004 0.00000 -0.00019 -0.00019 2.10168 A11 2.09066 0.00002 0.00000 0.00009 0.00009 2.09075 A12 2.09065 0.00002 0.00000 0.00010 0.00010 2.09075 A13 2.13228 0.00003 0.00000 0.00014 0.00014 2.13242 A14 2.10090 -0.00002 0.00000 -0.00008 -0.00008 2.10083 A15 2.05000 -0.00001 0.00000 -0.00006 -0.00006 2.04994 A16 2.00914 -0.00003 0.00000 -0.00013 -0.00013 2.00901 A17 2.13702 0.00002 0.00000 0.00007 0.00007 2.13709 A18 2.13702 0.00002 0.00000 0.00007 0.00007 2.13709 D1 -3.14158 0.00000 0.00000 -0.00003 -0.00003 3.14158 D2 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00001 D3 0.00001 0.00000 0.00000 -0.00003 -0.00003 -0.00002 D4 -3.14159 0.00000 0.00000 -0.00002 -0.00002 3.14158 D5 -0.00003 0.00000 0.00000 0.00008 0.00008 0.00005 D6 -3.14150 0.00000 0.00000 -0.00016 -0.00016 3.14152 D7 3.14157 0.00000 0.00000 0.00007 0.00007 -3.14155 D8 0.00009 0.00000 0.00000 -0.00016 -0.00016 -0.00007 D9 3.14158 0.00000 0.00000 0.00003 0.00003 -3.14158 D10 -0.00001 0.00000 0.00000 0.00002 0.00002 0.00001 D11 -0.00001 0.00000 0.00000 0.00003 0.00003 0.00002 D12 3.14159 0.00000 0.00000 0.00002 0.00002 -3.14158 D13 0.00003 0.00000 0.00000 -0.00007 -0.00007 -0.00005 D14 3.14150 0.00000 0.00000 0.00016 0.00016 -3.14152 D15 -3.14156 0.00000 0.00000 -0.00008 -0.00008 3.14155 D16 -0.00009 0.00000 0.00000 0.00016 0.00016 0.00007 D17 -0.00001 0.00000 0.00000 0.00003 0.00003 0.00002 D18 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14158 0.00000 0.00000 0.00003 0.00003 -3.14157 D20 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 D21 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00002 D22 -3.14158 0.00000 0.00000 -0.00003 -0.00003 3.14157 D23 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D24 0.00000 0.00000 0.00000 -0.00001 -0.00001 0.00000 Item Value Threshold Converged? Maximum Force 0.000133 0.000450 YES RMS Force 0.000028 0.000300 YES Maximum Displacement 0.000401 0.001800 YES RMS Displacement 0.000129 0.001200 YES Predicted change in Energy=-8.623997D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,5) 1.3988 -DE/DX = 0.0 ! ! R2 R(1,6) 1.0969 -DE/DX = -0.0001 ! ! R3 R(1,12) 1.514 -DE/DX = 0.0 ! ! R4 R(2,3) 1.3988 -DE/DX = 0.0 ! ! R5 R(2,8) 1.0969 -DE/DX = 0.0 ! ! R6 R(2,12) 1.514 -DE/DX = 0.0 ! ! R7 R(3,4) 1.4052 -DE/DX = 0.0 ! ! R8 R(3,9) 1.097 -DE/DX = 0.0 ! ! R9 R(4,5) 1.4052 -DE/DX = 0.0 ! ! R10 R(4,10) 1.0915 -DE/DX = 0.0 ! ! R11 R(5,11) 1.097 -DE/DX = 0.0 ! ! R12 R(7,12) 1.2188 -DE/DX = -0.0001 ! ! A1 A(5,1,6) 116.0332 -DE/DX = 0.0 ! ! A2 A(5,1,12) 120.0573 -DE/DX = 0.0 ! ! A3 A(6,1,12) 123.9095 -DE/DX = 0.0 ! ! A4 A(3,2,8) 116.033 -DE/DX = 0.0 ! ! A5 A(3,2,12) 120.0573 -DE/DX = 0.0 ! ! A6 A(8,2,12) 123.9097 -DE/DX = 0.0 ! ! A7 A(2,3,4) 122.1707 -DE/DX = 0.0 ! ! A8 A(2,3,9) 120.3728 -DE/DX = 0.0 ! ! A9 A(4,3,9) 117.4565 -DE/DX = 0.0 ! ! A10 A(3,4,5) 120.4286 -DE/DX = 0.0 ! ! A11 A(3,4,10) 119.7857 -DE/DX = 0.0 ! ! A12 A(5,4,10) 119.7857 -DE/DX = 0.0 ! ! A13 A(1,5,4) 122.1707 -DE/DX = 0.0 ! ! A14 A(1,5,11) 120.3728 -DE/DX = 0.0 ! ! A15 A(4,5,11) 117.4565 -DE/DX = 0.0 ! ! A16 A(1,12,2) 115.1153 -DE/DX = 0.0 ! ! A17 A(1,12,7) 122.4422 -DE/DX = 0.0 ! ! A18 A(2,12,7) 122.4425 -DE/DX = 0.0 ! ! D1 D(6,1,5,4) 180.0006 -DE/DX = 0.0 ! ! D2 D(6,1,5,11) 0.0003 -DE/DX = 0.0 ! ! D3 D(12,1,5,4) 0.0006 -DE/DX = 0.0 ! ! D4 D(12,1,5,11) 180.0003 -DE/DX = 0.0 ! ! D5 D(5,1,12,2) -0.0016 -DE/DX = 0.0 ! ! D6 D(5,1,12,7) 180.0051 -DE/DX = 0.0 ! ! D7 D(6,1,12,2) -180.0016 -DE/DX = 0.0 ! ! D8 D(6,1,12,7) 0.0051 -DE/DX = 0.0 ! ! D9 D(8,2,3,4) -180.0006 -DE/DX = 0.0 ! ! D10 D(8,2,3,9) -0.0004 -DE/DX = 0.0 ! ! D11 D(12,2,3,4) -0.0005 -DE/DX = 0.0 ! ! D12 D(12,2,3,9) -180.0003 -DE/DX = 0.0 ! ! D13 D(3,2,12,1) 0.0016 -DE/DX = 0.0 ! ! D14 D(3,2,12,7) -180.0052 -DE/DX = 0.0 ! ! D15 D(8,2,12,1) 180.0017 -DE/DX = 0.0 ! ! D16 D(8,2,12,7) -0.005 -DE/DX = 0.0 ! ! D17 D(2,3,4,5) -0.0006 -DE/DX = 0.0 ! ! D18 D(2,3,4,10) 180.0 -DE/DX = 0.0 ! ! D19 D(9,3,4,5) -180.0008 -DE/DX = 0.0 ! ! D20 D(9,3,4,10) -0.0002 -DE/DX = 0.0 ! ! D21 D(3,4,5,1) 0.0005 -DE/DX = 0.0 ! ! D22 D(3,4,5,11) 180.0008 -DE/DX = 0.0 ! ! D23 D(10,4,5,1) -180.0001 -DE/DX = 0.0 ! ! D24 D(10,4,5,11) 0.0002 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.277743 -0.720534 0.000007 2 6 0 1.277747 -0.720529 0.000009 3 6 0 1.219534 0.677042 -0.000008 4 6 0 -0.000003 1.375070 -0.000011 5 6 0 -1.219537 0.677037 -0.000009 6 1 0 -2.282528 -1.160523 -0.000003 7 1 0 0.000004 -2.751528 -0.000040 8 1 0 2.282534 -1.160510 -0.000001 9 1 0 2.142040 1.270599 -0.000023 10 1 0 -0.000006 2.466544 -0.000025 11 1 0 -2.142046 1.270589 -0.000025 12 5 0 0.000004 -1.532738 0.000037 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 2.555490 0.000000 3 C 2.861750 1.398783 0.000000 4 C 2.454420 2.454421 1.405174 0.000000 5 C 1.398783 2.861751 2.439071 1.405174 0.000000 6 H 1.096897 3.587360 3.954881 3.411620 2.122870 7 H 2.399495 2.399497 3.639003 4.126598 3.639002 8 H 3.587360 1.096896 2.122867 3.411619 3.954881 9 H 3.957212 2.170620 1.096963 2.144589 3.413578 10 H 3.433668 3.433670 2.165547 1.091474 2.165546 11 H 2.170620 3.957213 3.413578 2.144590 1.096963 12 B 1.514039 1.514038 2.523961 2.907808 2.523962 6 7 8 9 10 6 H 0.000000 7 H 2.782310 0.000000 8 H 4.565062 2.782316 0.000000 9 H 5.048481 4.556953 2.435165 0.000000 10 H 4.285501 5.218072 4.285500 2.453293 0.000000 11 H 2.435167 4.556951 5.048480 4.284086 2.453292 12 B 2.312682 1.218790 2.312682 3.528033 3.999282 11 12 11 H 0.000000 12 B 3.528034 0.000000 Stoichiometry C5H6B(1-) Framework group C1[X(C5H6B)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.277743 -0.720534 -0.000007 2 6 0 -1.277747 -0.720529 -0.000009 3 6 0 -1.219534 0.677042 0.000008 4 6 0 0.000003 1.375070 0.000011 5 6 0 1.219537 0.677037 0.000009 6 1 0 2.282528 -1.160522 0.000003 7 1 0 -0.000003 -2.751528 0.000040 8 1 0 -2.282534 -1.160511 0.000001 9 1 0 -2.142040 1.270598 0.000023 10 1 0 0.000005 2.466544 0.000025 11 1 0 2.142046 1.270590 0.000025 12 5 0 -0.000003 -1.532738 -0.000037 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5102123 5.3407194 2.7120711 1|1| IMPERIAL COLLEGE-CHWS-289|FOpt|UB3LYP|6-31G(d,p)|C5H6B1(1-)|EJ410 |20-Oct-2014|0||# opt ub3lyp/6-31g(d,p) geom=connectivity integral=gri d=ultrafine||Boratabenzene_6-31G(d,p)||-1,1|C,-1.277743,-0.720534,0.00 0007|C,1.277747,-0.720529,0.000009|C,1.219534,0.677042,-0.000008|C,-0. 000003,1.37507,-0.000011|C,-1.219537,0.677037,-0.000009|H,-2.282528,-1 .160523,-0.000003|H,0.000004,-2.751528,-0.00004|H,2.282534,-1.16051,-0 .000001|H,2.14204,1.270599,-0.000023|H,-0.000006,2.466544,-0.000025|H, -2.142046,1.270589,-0.000025|B,0.000004,-1.532738,0.000037||Version=EM 64W-G09RevD.01|State=1-A|HF=-219.0205229|S2=0.|S2-1=0.|S2A=0.|RMSD=4.2 57e-009|RMSF=4.538e-005|Dipole=-0.0000018,1.1197687,-0.0000041|Quadrup ole=1.0470602,-3.493405,2.4463447,0.0000078,-0.0000021,-0.0000166|PG=C 01 [X(C5H6B1)]||@ MAN IS A SINGULAR CREATURE. HE HAS A SET OF GIFTS WHICH MAKE HIM UNIQUE AMONG THE ANIMALS: SO THAT, UNLIKE THEM, HE IS NOT A FIGURE IN THE LANDSCAPE -- HE IS A SHAPER OF THE LANDSCAPE. -- JACOB BRONOWSKI Job cpu time: 0 days 0 hours 0 minutes 37.0 seconds. File lengths (MBytes): RWF= 12 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Mon Oct 20 19:58:49 2014.