Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7372. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 02-Mar-2017 ****************************************** %chk=\\icnas3.cc.ic.ac.uk\sl7514\Desktop\Transition States Lab\Exercise 2\Transi tion State Diels-Alder Endo DFT.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt=(calcfc,ts,noeigen) freq b3lyp/6-31g(d) geom=connectivity integr al=grid=ultrafine ---------------------------------------------------------------------- 1/5=1,10=4,11=1,14=-1,18=20,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,71=2,74=-5,75=-5,140=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,11=1,14=-1,18=20,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,11=1,14=-1,18=20,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 2.02351 0.7031 -0.70254 C 1.09424 1.35482 0.10099 C 1.09406 -1.35482 0.10102 C 2.02343 -0.70322 -0.70253 H 2.61822 1.24816 -1.42863 H 0.93488 2.42868 0.00808 H 0.93466 -2.42867 0.00819 H 2.61809 -1.24837 -1.4286 C 0.70318 -0.77044 1.43446 H 1.42196 -1.14214 2.19445 H -0.28815 -1.16034 1.74141 C 0.70313 0.77055 1.4344 H 1.42174 1.14236 2.19449 H -0.2883 1.1604 1.74111 C -0.62814 -0.70036 -0.99619 H -0.36799 -1.41646 -1.75235 C -0.62835 0.70051 -0.99629 H -0.36808 1.41667 -1.75234 O -1.69747 1.165 -0.19875 O -1.69731 -1.16505 -0.19884 C -2.36129 -0.00008 0.35918 H -2.21812 -0.00018 1.44737 H -3.40331 -0.00011 0.01245 Add virtual bond connecting atoms C15 and C3 Dist= 4.05D+00. Add virtual bond connecting atoms C17 and C2 Dist= 4.05D+00. Add virtual bond connecting atoms H22 and H11 Dist= 4.29D+00. Add virtual bond connecting atoms H22 and H14 Dist= 4.29D+00. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3907 calculate D2E/DX2 analytically ! ! R2 R(1,4) 1.4063 calculate D2E/DX2 analytically ! ! R3 R(1,5) 1.0853 calculate D2E/DX2 analytically ! ! R4 R(2,6) 1.0896 calculate D2E/DX2 analytically ! ! R5 R(2,12) 1.5074 calculate D2E/DX2 analytically ! ! R6 R(2,17) 2.1446 calculate D2E/DX2 analytically ! ! R7 R(3,4) 1.3907 calculate D2E/DX2 analytically ! ! R8 R(3,7) 1.0896 calculate D2E/DX2 analytically ! ! R9 R(3,9) 1.5074 calculate D2E/DX2 analytically ! ! R10 R(3,15) 2.1443 calculate D2E/DX2 analytically ! ! R11 R(4,8) 1.0853 calculate D2E/DX2 analytically ! ! R12 R(9,10) 1.1101 calculate D2E/DX2 analytically ! ! R13 R(9,11) 1.1086 calculate D2E/DX2 analytically ! ! R14 R(9,12) 1.541 calculate D2E/DX2 analytically ! ! R15 R(11,22) 2.2709 calculate D2E/DX2 analytically ! ! R16 R(12,13) 1.1101 calculate D2E/DX2 analytically ! ! R17 R(12,14) 1.1086 calculate D2E/DX2 analytically ! ! R18 R(14,22) 2.271 calculate D2E/DX2 analytically ! ! R19 R(15,16) 1.0734 calculate D2E/DX2 analytically ! ! R20 R(15,17) 1.4009 calculate D2E/DX2 analytically ! ! R21 R(15,20) 1.4124 calculate D2E/DX2 analytically ! ! R22 R(17,18) 1.0734 calculate D2E/DX2 analytically ! ! R23 R(17,19) 1.4124 calculate D2E/DX2 analytically ! ! R24 R(19,21) 1.4524 calculate D2E/DX2 analytically ! ! R25 R(20,21) 1.4524 calculate D2E/DX2 analytically ! ! R26 R(21,22) 1.0976 calculate D2E/DX2 analytically ! ! R27 R(21,23) 1.0982 calculate D2E/DX2 analytically ! ! A1 A(2,1,4) 117.9436 calculate D2E/DX2 analytically ! ! A2 A(2,1,5) 121.1537 calculate D2E/DX2 analytically ! ! A3 A(4,1,5) 120.1482 calculate D2E/DX2 analytically ! ! A4 A(1,2,6) 120.6867 calculate D2E/DX2 analytically ! ! A5 A(1,2,12) 120.1874 calculate D2E/DX2 analytically ! ! A6 A(1,2,17) 95.6307 calculate D2E/DX2 analytically ! ! A7 A(6,2,12) 114.8019 calculate D2E/DX2 analytically ! ! A8 A(6,2,17) 98.0238 calculate D2E/DX2 analytically ! ! A9 A(12,2,17) 97.234 calculate D2E/DX2 analytically ! ! A10 A(4,3,7) 120.6853 calculate D2E/DX2 analytically ! ! A11 A(4,3,9) 120.1833 calculate D2E/DX2 analytically ! ! A12 A(4,3,15) 95.6286 calculate D2E/DX2 analytically ! ! A13 A(7,3,9) 114.8026 calculate D2E/DX2 analytically ! ! A14 A(7,3,15) 98.0306 calculate D2E/DX2 analytically ! ! A15 A(9,3,15) 97.2411 calculate D2E/DX2 analytically ! ! A16 A(1,4,3) 117.9426 calculate D2E/DX2 analytically ! ! A17 A(1,4,8) 120.1487 calculate D2E/DX2 analytically ! ! A18 A(3,4,8) 121.1543 calculate D2E/DX2 analytically ! ! A19 A(3,9,10) 107.9314 calculate D2E/DX2 analytically ! ! A20 A(3,9,11) 109.9047 calculate D2E/DX2 analytically ! ! A21 A(3,9,12) 112.8074 calculate D2E/DX2 analytically ! ! A22 A(10,9,11) 105.764 calculate D2E/DX2 analytically ! ! A23 A(10,9,12) 109.5649 calculate D2E/DX2 analytically ! ! A24 A(11,9,12) 110.5911 calculate D2E/DX2 analytically ! ! A25 A(9,11,22) 122.9856 calculate D2E/DX2 analytically ! ! A26 A(2,12,9) 112.8068 calculate D2E/DX2 analytically ! ! A27 A(2,12,13) 107.9311 calculate D2E/DX2 analytically ! ! A28 A(2,12,14) 109.9048 calculate D2E/DX2 analytically ! ! A29 A(9,12,13) 109.5657 calculate D2E/DX2 analytically ! ! A30 A(9,12,14) 110.5898 calculate D2E/DX2 analytically ! ! A31 A(13,12,14) 105.7653 calculate D2E/DX2 analytically ! ! A32 A(12,14,22) 122.9877 calculate D2E/DX2 analytically ! ! A33 A(3,15,16) 87.8333 calculate D2E/DX2 analytically ! ! A34 A(3,15,17) 107.7796 calculate D2E/DX2 analytically ! ! A35 A(3,15,20) 102.6325 calculate D2E/DX2 analytically ! ! A36 A(16,15,17) 131.8436 calculate D2E/DX2 analytically ! ! A37 A(16,15,20) 111.2025 calculate D2E/DX2 analytically ! ! A38 A(17,15,20) 109.2038 calculate D2E/DX2 analytically ! ! A39 A(2,17,15) 107.7544 calculate D2E/DX2 analytically ! ! A40 A(2,17,18) 87.8258 calculate D2E/DX2 analytically ! ! A41 A(2,17,19) 102.6359 calculate D2E/DX2 analytically ! ! A42 A(15,17,18) 131.8499 calculate D2E/DX2 analytically ! ! A43 A(15,17,19) 109.2049 calculate D2E/DX2 analytically ! ! A44 A(18,17,19) 111.2136 calculate D2E/DX2 analytically ! ! A45 A(17,19,21) 107.4023 calculate D2E/DX2 analytically ! ! A46 A(15,20,21) 107.4023 calculate D2E/DX2 analytically ! ! A47 A(19,21,20) 106.6725 calculate D2E/DX2 analytically ! ! A48 A(19,21,22) 108.7433 calculate D2E/DX2 analytically ! ! A49 A(19,21,23) 108.205 calculate D2E/DX2 analytically ! ! A50 A(20,21,22) 108.7365 calculate D2E/DX2 analytically ! ! A51 A(20,21,23) 108.2071 calculate D2E/DX2 analytically ! ! A52 A(22,21,23) 115.9 calculate D2E/DX2 analytically ! ! A53 A(11,22,14) 61.4551 calculate D2E/DX2 analytically ! ! A54 A(11,22,21) 103.8439 calculate D2E/DX2 analytically ! ! A55 A(14,22,21) 103.8296 calculate D2E/DX2 analytically ! ! D1 D(4,1,2,6) -169.2643 calculate D2E/DX2 analytically ! ! D2 D(4,1,2,12) 35.2947 calculate D2E/DX2 analytically ! ! D3 D(4,1,2,17) -66.4608 calculate D2E/DX2 analytically ! ! D4 D(5,1,2,6) 0.7986 calculate D2E/DX2 analytically ! ! D5 D(5,1,2,12) -154.6424 calculate D2E/DX2 analytically ! ! D6 D(5,1,2,17) 103.6021 calculate D2E/DX2 analytically ! ! D7 D(2,1,4,3) 0.0009 calculate D2E/DX2 analytically ! ! D8 D(2,1,4,8) 170.1675 calculate D2E/DX2 analytically ! ! D9 D(5,1,4,3) -170.1658 calculate D2E/DX2 analytically ! ! D10 D(5,1,4,8) 0.0008 calculate D2E/DX2 analytically ! ! D11 D(1,2,12,9) -33.6163 calculate D2E/DX2 analytically ! ! D12 D(1,2,12,13) 87.5758 calculate D2E/DX2 analytically ! ! D13 D(1,2,12,14) -157.534 calculate D2E/DX2 analytically ! ! D14 D(6,2,12,9) 169.5717 calculate D2E/DX2 analytically ! ! D15 D(6,2,12,13) -69.2363 calculate D2E/DX2 analytically ! ! D16 D(6,2,12,14) 45.654 calculate D2E/DX2 analytically ! ! D17 D(17,2,12,9) 67.235 calculate D2E/DX2 analytically ! ! D18 D(17,2,12,13) -171.573 calculate D2E/DX2 analytically ! ! D19 D(17,2,12,14) -56.6827 calculate D2E/DX2 analytically ! ! D20 D(1,2,17,15) 58.2577 calculate D2E/DX2 analytically ! ! D21 D(1,2,17,18) -75.2851 calculate D2E/DX2 analytically ! ! D22 D(1,2,17,19) 173.456 calculate D2E/DX2 analytically ! ! D23 D(6,2,17,15) -179.6161 calculate D2E/DX2 analytically ! ! D24 D(6,2,17,18) 46.8411 calculate D2E/DX2 analytically ! ! D25 D(6,2,17,19) -64.4178 calculate D2E/DX2 analytically ! ! D26 D(12,2,17,15) -63.1978 calculate D2E/DX2 analytically ! ! D27 D(12,2,17,18) 163.2594 calculate D2E/DX2 analytically ! ! D28 D(12,2,17,19) 52.0005 calculate D2E/DX2 analytically ! ! D29 D(7,3,4,1) 169.2704 calculate D2E/DX2 analytically ! ! D30 D(7,3,4,8) -0.7924 calculate D2E/DX2 analytically ! ! D31 D(9,3,4,1) -35.3013 calculate D2E/DX2 analytically ! ! D32 D(9,3,4,8) 154.6359 calculate D2E/DX2 analytically ! ! D33 D(15,3,4,1) 66.4604 calculate D2E/DX2 analytically ! ! D34 D(15,3,4,8) -103.6023 calculate D2E/DX2 analytically ! ! D35 D(4,3,9,10) -87.5574 calculate D2E/DX2 analytically ! ! D36 D(4,3,9,11) 157.5538 calculate D2E/DX2 analytically ! ! D37 D(4,3,9,12) 33.6341 calculate D2E/DX2 analytically ! ! D38 D(7,3,9,10) 69.2423 calculate D2E/DX2 analytically ! ! D39 D(7,3,9,11) -45.6465 calculate D2E/DX2 analytically ! ! D40 D(7,3,9,12) -169.5661 calculate D2E/DX2 analytically ! ! D41 D(15,3,9,10) 171.5904 calculate D2E/DX2 analytically ! ! D42 D(15,3,9,11) 56.7016 calculate D2E/DX2 analytically ! ! D43 D(15,3,9,12) -67.218 calculate D2E/DX2 analytically ! ! D44 D(4,3,15,16) 75.2788 calculate D2E/DX2 analytically ! ! D45 D(4,3,15,17) -58.2666 calculate D2E/DX2 analytically ! ! D46 D(4,3,15,20) -173.4721 calculate D2E/DX2 analytically ! ! D47 D(7,3,15,16) -46.8469 calculate D2E/DX2 analytically ! ! D48 D(7,3,15,17) 179.6077 calculate D2E/DX2 analytically ! ! D49 D(7,3,15,20) 64.4022 calculate D2E/DX2 analytically ! ! D50 D(9,3,15,16) -163.2689 calculate D2E/DX2 analytically ! ! D51 D(9,3,15,17) 63.1857 calculate D2E/DX2 analytically ! ! D52 D(9,3,15,20) -52.0199 calculate D2E/DX2 analytically ! ! D53 D(3,9,11,22) -98.6433 calculate D2E/DX2 analytically ! ! D54 D(10,9,11,22) 145.0964 calculate D2E/DX2 analytically ! ! D55 D(12,9,11,22) 26.5568 calculate D2E/DX2 analytically ! ! D56 D(3,9,12,2) -0.0111 calculate D2E/DX2 analytically ! ! D57 D(3,9,12,13) -120.2696 calculate D2E/DX2 analytically ! ! D58 D(3,9,12,14) 123.5281 calculate D2E/DX2 analytically ! ! D59 D(10,9,12,2) 120.2475 calculate D2E/DX2 analytically ! ! D60 D(10,9,12,13) -0.011 calculate D2E/DX2 analytically ! ! D61 D(10,9,12,14) -116.2133 calculate D2E/DX2 analytically ! ! D62 D(11,9,12,2) -123.5516 calculate D2E/DX2 analytically ! ! D63 D(11,9,12,13) 116.1899 calculate D2E/DX2 analytically ! ! D64 D(11,9,12,14) -0.0124 calculate D2E/DX2 analytically ! ! D65 D(9,11,22,14) -29.1286 calculate D2E/DX2 analytically ! ! D66 D(9,11,22,21) 69.2781 calculate D2E/DX2 analytically ! ! D67 D(2,12,14,22) 98.662 calculate D2E/DX2 analytically ! ! D68 D(9,12,14,22) -26.5366 calculate D2E/DX2 analytically ! ! D69 D(13,12,14,22) -145.0772 calculate D2E/DX2 analytically ! ! D70 D(12,14,22,11) 29.1201 calculate D2E/DX2 analytically ! ! D71 D(12,14,22,21) -69.3104 calculate D2E/DX2 analytically ! ! D72 D(3,15,17,2) 0.0052 calculate D2E/DX2 analytically ! ! D73 D(3,15,17,18) 103.4969 calculate D2E/DX2 analytically ! ! D74 D(3,15,17,19) -110.7737 calculate D2E/DX2 analytically ! ! D75 D(16,15,17,2) -103.5192 calculate D2E/DX2 analytically ! ! D76 D(16,15,17,18) -0.0275 calculate D2E/DX2 analytically ! ! D77 D(16,15,17,19) 145.7019 calculate D2E/DX2 analytically ! ! D78 D(20,15,17,2) 110.7921 calculate D2E/DX2 analytically ! ! D79 D(20,15,17,18) -145.7162 calculate D2E/DX2 analytically ! ! D80 D(20,15,17,19) 0.0132 calculate D2E/DX2 analytically ! ! D81 D(3,15,20,21) 112.0777 calculate D2E/DX2 analytically ! ! D82 D(16,15,20,21) -155.321 calculate D2E/DX2 analytically ! ! D83 D(17,15,20,21) -2.0917 calculate D2E/DX2 analytically ! ! D84 D(2,17,19,21) -112.0721 calculate D2E/DX2 analytically ! ! D85 D(15,17,19,21) 2.0707 calculate D2E/DX2 analytically ! ! D86 D(18,17,19,21) 155.3308 calculate D2E/DX2 analytically ! ! D87 D(17,19,21,20) -3.2886 calculate D2E/DX2 analytically ! ! D88 D(17,19,21,22) 113.8223 calculate D2E/DX2 analytically ! ! D89 D(17,19,21,23) -119.5105 calculate D2E/DX2 analytically ! ! D90 D(15,20,21,19) 3.2965 calculate D2E/DX2 analytically ! ! D91 D(15,20,21,22) -113.819 calculate D2E/DX2 analytically ! ! D92 D(15,20,21,23) 119.5169 calculate D2E/DX2 analytically ! ! D93 D(19,21,22,11) -89.6409 calculate D2E/DX2 analytically ! ! D94 D(19,21,22,14) -26.1392 calculate D2E/DX2 analytically ! ! D95 D(20,21,22,11) 26.1455 calculate D2E/DX2 analytically ! ! D96 D(20,21,22,14) 89.6472 calculate D2E/DX2 analytically ! ! D97 D(23,21,22,11) 148.251 calculate D2E/DX2 analytically ! ! D98 D(23,21,22,14) -148.2473 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 138 maximum allowed number of steps= 138. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 2.023510 0.703099 -0.702538 2 6 0 1.094244 1.354824 0.100988 3 6 0 1.094063 -1.354815 0.101015 4 6 0 2.023433 -0.703222 -0.702525 5 1 0 2.618216 1.248164 -1.428630 6 1 0 0.934882 2.428675 0.008079 7 1 0 0.934658 -2.428667 0.008185 8 1 0 2.618087 -1.248373 -1.428595 9 6 0 0.703175 -0.770438 1.434464 10 1 0 1.421959 -1.142141 2.194446 11 1 0 -0.288151 -1.160341 1.741413 12 6 0 0.703131 0.770546 1.434404 13 1 0 1.421743 1.142364 2.194490 14 1 0 -0.288297 1.160395 1.741113 15 6 0 -0.628142 -0.700364 -0.996191 16 1 0 -0.367991 -1.416458 -1.752348 17 6 0 -0.628353 0.700509 -0.996286 18 1 0 -0.368080 1.416669 -1.752343 19 8 0 -1.697471 1.165002 -0.198751 20 8 0 -1.697308 -1.165045 -0.198836 21 6 0 -2.361289 -0.000078 0.359180 22 1 0 -2.218120 -0.000182 1.447373 23 1 0 -3.403305 -0.000112 0.012448 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.390660 0.000000 3 C 2.396785 2.709639 0.000000 4 C 1.406321 2.396785 1.390676 0.000000 5 H 1.085348 2.161851 3.382064 2.165387 0.000000 6 H 2.160486 1.089580 3.787977 3.390970 2.508257 7 H 3.390971 3.787992 1.089580 2.160486 4.291607 8 H 2.165392 3.382064 2.161871 1.085348 2.496537 9 C 2.912280 2.539258 1.507440 2.512831 3.992423 10 H 3.487017 3.274874 2.129601 2.991131 4.502363 11 H 3.845658 3.305762 2.153890 3.394880 4.929203 12 C 2.512861 1.507431 2.539274 2.912328 3.477446 13 H 2.991295 2.129588 3.275044 3.487250 3.817033 14 H 3.394849 2.153888 3.305620 3.845586 4.301487 15 C 3.014498 2.897277 2.144331 2.667789 3.810854 16 H 3.363614 3.640466 2.361431 2.707350 4.015275 17 C 2.668084 2.144640 2.897437 3.014751 3.320701 18 H 2.707577 2.361578 3.640594 3.363836 3.008513 19 O 3.783233 2.814169 3.772532 4.193945 4.488282 20 O 4.193825 3.772585 2.813836 3.782975 5.095068 21 C 4.565979 3.720636 3.720406 4.565897 5.435977 22 H 4.807093 3.823683 3.823384 4.806984 5.763671 23 H 5.518698 4.698046 4.697806 5.518608 6.316139 6 7 8 9 10 6 H 0.000000 7 H 4.857342 0.000000 8 H 4.291607 2.508259 0.000000 9 C 3.510354 2.199450 3.477415 0.000000 10 H 4.215231 2.583089 3.816862 1.110129 0.000000 11 H 4.169088 2.471435 4.301502 1.108589 1.769194 12 C 2.199432 3.510366 3.992475 1.540984 2.180080 13 H 2.583026 4.215382 4.502622 2.180090 2.284505 14 H 2.471459 4.168936 4.929126 2.192069 2.903818 15 C 3.639023 2.537350 3.320435 2.772255 3.818147 16 H 4.425113 2.412662 3.008277 3.423523 4.342390 17 C 2.537521 3.639191 3.811090 3.137706 4.216623 18 H 2.412665 4.425290 4.015527 4.010831 5.032782 19 O 2.927274 4.459303 5.095188 3.489473 4.558634 20 O 4.459379 2.926917 4.487971 2.930137 3.931685 21 C 4.109362 4.109076 5.435859 3.337758 4.357232 22 H 4.232297 4.231880 5.763512 3.021163 3.887462 23 H 4.971810 4.971501 6.316005 4.413469 5.417427 11 12 13 14 15 11 H 0.000000 12 C 2.192081 0.000000 13 H 2.903699 1.110127 0.000000 14 H 2.320736 1.108595 1.769212 0.000000 15 C 2.796721 3.137460 4.216411 3.327274 0.000000 16 H 3.504046 4.010695 5.032718 4.341750 1.073426 17 C 3.327686 2.772365 3.818269 2.796513 1.400873 18 H 4.342085 3.423496 4.342373 3.503752 2.263013 19 O 3.340305 2.930133 3.931617 2.397679 2.293243 20 O 2.397981 3.489426 4.558577 3.340118 1.412381 21 C 2.748578 3.337759 4.357163 2.748405 2.308946 22 H 2.270949 3.021241 3.887441 2.271000 2.998214 23 H 3.746950 4.413467 5.417347 3.746776 3.034672 16 17 18 19 20 16 H 0.000000 17 C 2.262955 0.000000 18 H 2.833127 1.073429 0.000000 19 O 3.293192 1.412384 2.060161 0.000000 20 O 2.060022 2.293225 3.293247 2.330047 0.000000 21 C 3.230777 2.308934 3.230880 1.452361 1.452378 22 H 3.958160 2.998299 3.958320 2.082895 2.082824 23 H 3.785984 3.034596 3.786073 2.076527 2.076568 21 22 23 21 C 0.000000 22 H 1.097571 0.000000 23 H 1.098190 1.861095 0.000000 Stoichiometry C9H12O2 Framework group C1[X(C9H12O2)] Deg. of freedom 63 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 2.023510 0.703099 -0.702538 2 6 0 1.094244 1.354824 0.100988 3 6 0 1.094063 -1.354815 0.101015 4 6 0 2.023433 -0.703222 -0.702525 5 1 0 2.618216 1.248164 -1.428630 6 1 0 0.934882 2.428675 0.008079 7 1 0 0.934658 -2.428667 0.008185 8 1 0 2.618087 -1.248373 -1.428595 9 6 0 0.703175 -0.770438 1.434464 10 1 0 1.421959 -1.142141 2.194446 11 1 0 -0.288151 -1.160341 1.741413 12 6 0 0.703131 0.770546 1.434404 13 1 0 1.421743 1.142364 2.194490 14 1 0 -0.288297 1.160395 1.741113 15 6 0 -0.628142 -0.700364 -0.996191 16 1 0 -0.367991 -1.416458 -1.752348 17 6 0 -0.628353 0.700509 -0.996286 18 1 0 -0.368080 1.416669 -1.752343 19 8 0 -1.697471 1.165002 -0.198751 20 8 0 -1.697308 -1.165045 -0.198836 21 6 0 -2.361289 -0.000079 0.359180 22 1 0 -2.218120 -0.000183 1.447373 23 1 0 -3.403305 -0.000113 0.012448 --------------------------------------------------------------------- Rotational constants (GHZ): 1.9000228 1.0977921 1.0231740 Standard basis: 6-31G(d) (6D, 7F) There are 189 symmetry adapted cartesian basis functions of A symmetry. There are 189 symmetry adapted basis functions of A symmetry. 189 basis functions, 356 primitive gaussians, 189 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 660.4890775849 Hartrees. NAtoms= 23 NActive= 23 NUniq= 23 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 189 RedAO= T EigKep= 8.06D-04 NBF= 189 NBsUse= 189 1.00D-06 EigRej= -1.00D+00 NBFU= 189 ExpMin= 1.61D-01 ExpMax= 5.48D+03 ExpMxC= 8.25D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=164757679. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.481865520 A.U. after 15 cycles NFock= 15 Conv=0.36D-08 -V/T= 2.0094 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 189 NBasis= 189 NAE= 41 NBE= 41 NFC= 0 NFV= 0 NROrb= 189 NOA= 41 NOB= 41 NVA= 148 NVB= 148 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00