

Why do computational chemistry?

Lab work vs *in silico*

VS

Evolution of computational chemistry

Evolution of computational chemistry

What computational chemistry brings

Computational chemistry can

- Explains chemical behaviours which might not be obvious to our chemical intuition.
- Predicts chemical behaviours from molecular properties and stability to reactivity and selectivity.
- Give us direct access to species which are not possible to observe with any physical or chemical techniques, i.e. transition states.

Some examples

- Energy minimisation and molecule visualisation, leading to insights about reactivity and stereocontrol.
- Comparison of energies of isomers of starting material/product can help understand and predict reaction outcomes.

$$\Delta E \longrightarrow Equilibrium constant K$$

Some examples

 Spectroscopic prediction can help assignment of complex molecules.

Rzepa and Braddock, *J. Nat. Prod.* **2008**, *71*, 728.

Some examples

 Molecular orbital calculations allow determination of their energy levels and visualisation of key orbitals to improve our understanding of bonding and reactivity (HOMO and LUMO).

http://www.chemtube3d.com/Cycloaddition2.html

Transition state modelling

The course structure

- Module 1: Structure and Spectroscopy
 - Problems
 - Mini project
- Module 2: Bonding
 - Problems
 - Mini project
- Module 3: Transition States and Reactivity
 - Problems