Entering Link 1 = C:\G09W\l1.exe PID= 3580. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64W-G09RevC.01 23-Sep-2011 12-Mar-2013 ****************************************** %chk=\\ic.ac.uk\homes\mf2310\3rdYearCompLab\BUTADIENE_OPT2.chk --------------------------- # opt am1 geom=connectivity --------------------------- 1/14=-1,18=20,19=15,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,25=1,41=700000,71=1/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=700000,71=1,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: C -1.50314 -0.50979 0. H -1.10625 -1.53316 0. H -2.59848 -0.43788 0. C -0.72473 0.57487 0. H -1.18336 1.58052 0. C 0.72473 0.57487 0. C 1.50314 -0.50979 0. H 1.18336 1.58052 0. H 2.59848 -0.43788 0. H 1.10625 -1.53316 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0976 estimate D2E/DX2 ! ! R2 R(1,3) 1.0977 estimate D2E/DX2 ! ! R3 R(1,4) 1.3351 estimate D2E/DX2 ! ! R4 R(4,5) 1.1053 estimate D2E/DX2 ! ! R5 R(4,6) 1.4495 estimate D2E/DX2 ! ! R6 R(6,7) 1.3351 estimate D2E/DX2 ! ! R7 R(6,8) 1.1053 estimate D2E/DX2 ! ! R8 R(7,9) 1.0977 estimate D2E/DX2 ! ! R9 R(7,10) 1.0976 estimate D2E/DX2 ! ! A1 A(2,1,3) 114.9544 estimate D2E/DX2 ! ! A2 A(2,1,4) 123.1366 estimate D2E/DX2 ! ! A3 A(3,1,4) 121.909 estimate D2E/DX2 ! ! A4 A(1,4,5) 119.8193 estimate D2E/DX2 ! ! A5 A(1,4,6) 125.6653 estimate D2E/DX2 ! ! A6 A(5,4,6) 114.5154 estimate D2E/DX2 ! ! A7 A(4,6,7) 125.6653 estimate D2E/DX2 ! ! A8 A(4,6,8) 114.5154 estimate D2E/DX2 ! ! A9 A(7,6,8) 119.8193 estimate D2E/DX2 ! ! A10 A(6,7,9) 121.909 estimate D2E/DX2 ! ! A11 A(6,7,10) 123.1366 estimate D2E/DX2 ! ! A12 A(9,7,10) 114.9544 estimate D2E/DX2 ! ! D1 D(2,1,4,5) -179.9999 estimate D2E/DX2 ! ! D2 D(2,1,4,6) 0.0 estimate D2E/DX2 ! ! D3 D(3,1,4,5) 0.0 estimate D2E/DX2 ! ! D4 D(3,1,4,6) 180.0 estimate D2E/DX2 ! ! D5 D(1,4,6,7) 0.0003 estimate D2E/DX2 ! ! D6 D(1,4,6,8) -179.9998 estimate D2E/DX2 ! ! D7 D(5,4,6,7) -179.9998 estimate D2E/DX2 ! ! D8 D(5,4,6,8) 0.0002 estimate D2E/DX2 ! ! D9 D(4,6,7,9) 180.0 estimate D2E/DX2 ! ! D10 D(4,6,7,10) -0.0001 estimate D2E/DX2 ! ! D11 D(8,6,7,9) 0.0 estimate D2E/DX2 ! ! D12 D(8,6,7,10) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 43 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.503144 -0.509788 0.000000 2 1 0 -1.106245 -1.533155 0.000003 3 1 0 -2.598476 -0.437876 -0.000001 4 6 0 -0.724732 0.574873 -0.000001 5 1 0 -1.183360 1.580524 -0.000003 6 6 0 0.724732 0.574873 0.000001 7 6 0 1.503144 -0.509788 -0.000001 8 1 0 1.183360 1.580524 0.000003 9 1 0 2.598476 -0.437876 0.000000 10 1 0 1.106245 -1.533155 -0.000003 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.097638 0.000000 3 H 1.097690 1.851051 0.000000 4 C 1.335071 2.142273 2.129924 0.000000 5 H 2.114631 3.114634 2.465054 1.105293 0.000000 6 C 2.477886 2.792178 3.474100 1.449464 2.156884 7 C 3.006288 2.802890 4.102250 2.477886 3.403925 8 H 3.403925 3.864879 4.286750 2.156884 2.366720 9 H 4.102250 3.863236 5.196952 3.474100 4.286750 10 H 2.802890 2.212490 3.863236 2.792178 3.864879 6 7 8 9 10 6 C 0.000000 7 C 1.335071 0.000000 8 H 1.105293 2.114631 0.000000 9 H 2.129924 1.097690 2.465054 0.000000 10 H 2.142273 1.097638 3.114634 1.851051 0.000000 Stoichiometry C4H6 Framework group C2[X(C4H6)] Deg. of freedom 13 Full point group C2 NOp 2 Largest Abelian subgroup C2 NOp 2 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.000001 1.503144 -0.509788 2 1 0 -0.000004 1.106245 -1.533155 3 1 0 0.000000 2.598476 -0.437876 4 6 0 0.000001 0.724732 0.574873 5 1 0 0.000002 1.183360 1.580524 6 6 0 -0.000001 -0.724732 0.574873 7 6 0 0.000001 -1.503144 -0.509788 8 1 0 -0.000002 -1.183360 1.580524 9 1 0 0.000000 -2.598476 -0.437876 10 1 0 0.000004 -1.106245 -1.533155 --------------------------------------------------------------------- Rotational constants (GHZ): 20.7827885 5.8949106 4.5923256 Standard basis: VSTO-6G (5D, 7F) There are 11 symmetry adapted basis functions of A symmetry. There are 11 symmetry adapted basis functions of B symmetry. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. 22 basis functions, 132 primitive gaussians, 22 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 70.0073664368 Hartrees. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 22 RedAO= F NBF= 11 11 NBsUse= 22 1.00D-04 NBFU= 11 11 Simple Huckel Guess. Initial guess orbital symmetries: Occupied (A) (B) (A) (B) (A) (A) (B) (B) (B) (A) (A) Virtual (B) (A) (B) (A) (A) (B) (B) (A) (B) (A) (B) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=879868. Fock symm off for IB=2 I1= 1 I= 12 J= 9 Cut=1.00D-07 Err=3.09D-03 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RAM1) = 0.487971853487E-01 A.U. after 11 cycles Convg = 0.3505D-08 -V/T = 1.0036 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (B) (A) (B) (A) (A) (B) (B) (B) (A) (A) Virtual (B) (A) (B) (A) (B) (A) (B) (A) (A) (B) (B) The electronic state is 1-A. Alpha occ. eigenvalues -- -1.32733 -1.12531 -0.88834 -0.70104 -0.61967 Alpha occ. eigenvalues -- -0.55138 -0.51394 -0.44831 -0.44171 -0.43756 Alpha occ. eigenvalues -- -0.34381 Alpha virt. eigenvalues -- 0.01707 0.08501 0.14489 0.14520 0.15733 Alpha virt. eigenvalues -- 0.16932 0.18711 0.18932 0.20812 0.21075 Alpha virt. eigenvalues -- 0.21980 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.207979 0.000000 0.000000 0.000000 0.000000 0.000000 2 H 0.000000 0.888025 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.887322 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 4.136325 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.880349 0.000000 6 C 0.000000 0.000000 0.000000 0.000000 0.000000 4.136325 7 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 8 9 10 1 C 0.000000 0.000000 0.000000 0.000000 2 H 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 6 C 0.000000 0.000000 0.000000 0.000000 7 C 4.207979 0.000000 0.000000 0.000000 8 H 0.000000 0.880349 0.000000 0.000000 9 H 0.000000 0.000000 0.887322 0.000000 10 H 0.000000 0.000000 0.000000 0.888025 Mulliken atomic charges: 1 1 C -0.207979 2 H 0.111975 3 H 0.112678 4 C -0.136325 5 H 0.119651 6 C -0.136325 7 C -0.207979 8 H 0.119651 9 H 0.112678 10 H 0.111975 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.016674 4 C -0.016674 6 C -0.016674 7 C 0.016674 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.0414 Tot= 0.0414 N-N= 7.000736643682D+01 E-N=-1.117213037734D+02 KE=-1.339903702278D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000046782 -0.000007134 0.000000090 2 1 -0.000007135 -0.000002089 -0.000000040 3 1 -0.000019811 -0.000001355 -0.000000023 4 6 -0.000030420 0.000025510 -0.000000014 5 1 0.000008083 -0.000014932 -0.000000016 6 6 0.000030420 0.000025510 0.000000014 7 6 -0.000046782 -0.000007134 -0.000000090 8 1 -0.000008083 -0.000014932 0.000000016 9 1 0.000019811 -0.000001355 0.000000023 10 1 0.000007135 -0.000002089 0.000000040 ------------------------------------------------------------------- Cartesian Forces: Max 0.000046782 RMS 0.000017423 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000030095 RMS 0.000011466 Search for a local minimum. Step number 1 out of a maximum of 43 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01434 0.02227 0.02227 0.02948 0.02948 Eigenvalues --- 0.02948 0.02948 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.22000 0.22000 Eigenvalues --- 0.33103 0.33103 0.33939 0.33939 0.33945 Eigenvalues --- 0.33945 0.38315 0.58324 0.58324 RFO step: Lambda=-1.79672244D-08 EMin= 1.43444184D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00016406 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.10D-09 for atom 9. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.07423 0.00000 0.00000 0.00000 0.00000 2.07423 R2 2.07433 0.00002 0.00000 0.00006 0.00006 2.07439 R3 2.52292 0.00000 0.00000 -0.00001 -0.00001 2.52291 R4 2.08870 -0.00002 0.00000 -0.00005 -0.00005 2.08865 R5 2.73909 0.00000 0.00000 0.00001 0.00001 2.73910 R6 2.52292 0.00000 0.00000 -0.00001 -0.00001 2.52291 R7 2.08870 -0.00002 0.00000 -0.00005 -0.00005 2.08865 R8 2.07433 0.00002 0.00000 0.00006 0.00006 2.07439 R9 2.07423 0.00000 0.00000 0.00000 0.00000 2.07423 A1 2.00633 -0.00001 0.00000 -0.00004 -0.00004 2.00629 A2 2.14914 0.00001 0.00000 0.00005 0.00005 2.14919 A3 2.12771 0.00000 0.00000 -0.00001 -0.00001 2.12770 A4 2.09124 0.00002 0.00000 0.00008 0.00008 2.09132 A5 2.19327 -0.00003 0.00000 -0.00014 -0.00014 2.19314 A6 1.99867 0.00001 0.00000 0.00006 0.00006 1.99873 A7 2.19327 -0.00003 0.00000 -0.00014 -0.00014 2.19314 A8 1.99867 0.00001 0.00000 0.00006 0.00006 1.99873 A9 2.09124 0.00002 0.00000 0.00008 0.00008 2.09132 A10 2.12771 0.00000 0.00000 -0.00001 -0.00001 2.12770 A11 2.14914 0.00001 0.00000 0.00005 0.00005 2.14919 A12 2.00633 -0.00001 0.00000 -0.00004 -0.00004 2.00629 D1 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D3 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D4 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 -3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D7 -3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D10 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D11 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D12 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000030 0.000450 YES RMS Force 0.000011 0.000300 YES Maximum Displacement 0.000442 0.001800 YES RMS Displacement 0.000164 0.001200 YES Predicted change in Energy=-8.983612D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0976 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0977 -DE/DX = 0.0 ! ! R3 R(1,4) 1.3351 -DE/DX = 0.0 ! ! R4 R(4,5) 1.1053 -DE/DX = 0.0 ! ! R5 R(4,6) 1.4495 -DE/DX = 0.0 ! ! R6 R(6,7) 1.3351 -DE/DX = 0.0 ! ! R7 R(6,8) 1.1053 -DE/DX = 0.0 ! ! R8 R(7,9) 1.0977 -DE/DX = 0.0 ! ! R9 R(7,10) 1.0976 -DE/DX = 0.0 ! ! A1 A(2,1,3) 114.9544 -DE/DX = 0.0 ! ! A2 A(2,1,4) 123.1366 -DE/DX = 0.0 ! ! A3 A(3,1,4) 121.909 -DE/DX = 0.0 ! ! A4 A(1,4,5) 119.8193 -DE/DX = 0.0 ! ! A5 A(1,4,6) 125.6653 -DE/DX = 0.0 ! ! A6 A(5,4,6) 114.5154 -DE/DX = 0.0 ! ! A7 A(4,6,7) 125.6653 -DE/DX = 0.0 ! ! A8 A(4,6,8) 114.5154 -DE/DX = 0.0 ! ! A9 A(7,6,8) 119.8193 -DE/DX = 0.0 ! ! A10 A(6,7,9) 121.909 -DE/DX = 0.0 ! ! A11 A(6,7,10) 123.1366 -DE/DX = 0.0 ! ! A12 A(9,7,10) 114.9544 -DE/DX = 0.0 ! ! D1 D(2,1,4,5) 180.0001 -DE/DX = 0.0 ! ! D2 D(2,1,4,6) 0.0001 -DE/DX = 0.0 ! ! D3 D(3,1,4,5) 0.0 -DE/DX = 0.0 ! ! D4 D(3,1,4,6) -180.0 -DE/DX = 0.0 ! ! D5 D(1,4,6,7) 0.0002 -DE/DX = 0.0 ! ! D6 D(1,4,6,8) -179.9998 -DE/DX = 0.0 ! ! D7 D(5,4,6,7) -179.9998 -DE/DX = 0.0 ! ! D8 D(5,4,6,8) 0.0002 -DE/DX = 0.0 ! ! D9 D(4,6,7,9) -180.0 -DE/DX = 0.0 ! ! D10 D(4,6,7,10) 0.0001 -DE/DX = 0.0 ! ! D11 D(8,6,7,9) 0.0 -DE/DX = 0.0 ! ! D12 D(8,6,7,10) 180.0001 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.503144 -0.509788 0.000000 2 1 0 -1.106245 -1.533155 0.000003 3 1 0 -2.598476 -0.437876 -0.000001 4 6 0 -0.724732 0.574873 -0.000001 5 1 0 -1.183360 1.580524 -0.000003 6 6 0 0.724732 0.574873 0.000001 7 6 0 1.503144 -0.509788 0.000000 8 1 0 1.183360 1.580524 0.000003 9 1 0 2.598476 -0.437876 0.000001 10 1 0 1.106245 -1.533155 -0.000003 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.097638 0.000000 3 H 1.097690 1.851051 0.000000 4 C 1.335071 2.142273 2.129924 0.000000 5 H 2.114631 3.114634 2.465054 1.105293 0.000000 6 C 2.477886 2.792178 3.474100 1.449464 2.156884 7 C 3.006288 2.802890 4.102250 2.477886 3.403925 8 H 3.403925 3.864879 4.286750 2.156884 2.366720 9 H 4.102250 3.863236 5.196952 3.474100 4.286750 10 H 2.802890 2.212490 3.863236 2.792178 3.864879 6 7 8 9 10 6 C 0.000000 7 C 1.335071 0.000000 8 H 1.105293 2.114631 0.000000 9 H 2.129924 1.097690 2.465054 0.000000 10 H 2.142273 1.097638 3.114634 1.851051 0.000000 Stoichiometry C4H6 Framework group C2[X(C4H6)] Deg. of freedom 13 Full point group C2 NOp 2 Largest Abelian subgroup C2 NOp 2 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000002 1.503144 -0.509788 2 1 0 -0.000002 1.106245 -1.533155 3 1 0 0.000004 2.598476 -0.437876 4 6 0 0.000002 0.724732 0.574873 5 1 0 0.000004 1.183360 1.580524 6 6 0 -0.000002 -0.724732 0.574873 7 6 0 -0.000002 -1.503144 -0.509788 8 1 0 -0.000004 -1.183360 1.580524 9 1 0 -0.000004 -2.598476 -0.437876 10 1 0 0.000002 -1.106245 -1.533155 --------------------------------------------------------------------- Rotational constants (GHZ): 20.7827885 5.8949106 4.5923256 1|1|UNPC-CHWS-266|FOpt|RAM1|ZDO|C4H6|MF2310|12-Mar-2013|0||# opt am1 g eom=connectivity||Title Card Required||0,1|C,-1.503144,-0.509788,0.|H, -1.106245,-1.533155,0.000003|H,-2.598476,-0.437876,-0.000001|C,-0.7247 32,0.574873,-0.000001|H,-1.18336,1.580524,-0.000003|C,0.724732,0.57487 3,0.0000005333|C,1.503144,-0.509788,-0.0000004667|H,1.18336,1.580524,0 .0000025333|H,2.598476,-0.437876,0.0000005333|H,1.106245,-1.533155,-0. 0000034667||Version=EM64W-G09RevC.01|State=1-A|HF=0.0487972|RMSD=3.505 e-009|RMSF=1.742e-005|Dipole=0.,-0.0162963,0.|PG=C02 [X(C4H6)]||@ IF YOU GIVE EVERYONE A PIECE OF YOUR MIND, PRETTY SOON IT WILL BE ALL GONE. Job cpu time: 0 days 0 hours 0 minutes 2.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Tue Mar 12 15:30:22 2013.