Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/86468/Gau-25696.inp" -scrdir="/home/scan-user-1/run/86468/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 25697. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 26-Jan-2014 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.6345751.cx1b/rwf ---------------------------------------------------------------------- # CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,solvent=chloroform ) CPHF=RdFreq ---------------------------------------------------------------------- 1/38=1,83=21/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=1114,11=2,16=1,25=1,30=1,36=2,70=2101,72=7,74=-40/1,2,3; 4//1; 5/5=2,38=5,53=7,96=-2,98=1/2; 8/6=4,10=90,11=11/1; 10/6=1,13=10,46=8,60=-2,72=3/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------------- Title line, ie Optical rotation for literature compound ------------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 2.69744 -4.21705 -0.09763 C 2.44494 -5.42532 0.54525 C 3.42917 -6.00311 1.34197 C 4.6656 -5.36975 1.49414 C 4.94721 -4.14834 0.85744 C 3.93579 -3.58903 0.05808 C 6.28915 -3.47271 1.01785 C 6.63821 -2.84182 2.35185 O 6.29731 -2.04542 1.213 H 1.93279 -3.75952 -0.71974 H 1.48227 -5.9151 0.42587 H 3.23667 -6.94663 1.84578 H 5.42387 -5.8365 2.11927 H 4.11914 -2.64247 -0.44755 C 7.39759 -3.9427 0.12198 H 7.67138 -2.83967 2.67511 H 5.91757 -2.88661 3.15932 H 7.63093 -4.99423 0.31911 H 7.11104 -3.84427 -0.93042 H 8.31521 -3.36347 0.27278 Using perturbation frequencies: 0.077357 0.124831 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 2.697440 -4.217050 -0.097630 2 6 0 2.444940 -5.425320 0.545250 3 6 0 3.429170 -6.003110 1.341970 4 6 0 4.665600 -5.369750 1.494140 5 6 0 4.947210 -4.148340 0.857440 6 6 0 3.935790 -3.589030 0.058080 7 6 0 6.289150 -3.472710 1.017850 8 6 0 6.638210 -2.841820 2.351850 9 8 0 6.297310 -2.045420 1.213000 10 1 0 1.932790 -3.759520 -0.719740 11 1 0 1.482270 -5.915100 0.425870 12 1 0 3.236670 -6.946630 1.845780 13 1 0 5.423870 -5.836500 2.119270 14 1 0 4.119140 -2.642470 -0.447550 15 6 0 7.397590 -3.942700 0.121980 16 1 0 7.671380 -2.839670 2.675110 17 1 0 5.917570 -2.886610 3.159320 18 1 0 7.630930 -4.994230 0.319110 19 1 0 7.111040 -3.844270 -0.930420 20 1 0 8.315210 -3.363470 0.272780 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.391750 0.000000 3 C 2.407880 1.391874 0.000000 4 C 2.781385 2.415535 1.397519 0.000000 5 C 2.445065 2.826570 2.445278 1.405892 0.000000 6 C 1.397199 2.414939 2.780795 2.401219 1.405267 7 C 3.833891 4.337509 3.832423 2.541953 1.510963 8 C 4.839512 5.246121 4.616443 3.319230 2.607630 9 O 4.403725 5.168207 4.889394 3.713851 2.524176 10 H 1.086759 2.153459 3.394628 3.868120 3.424238 11 H 2.152688 1.086678 2.153463 3.401793 3.913247 12 H 3.393850 2.152347 1.086789 2.156859 3.425374 13 H 3.869197 3.394206 2.147273 1.087941 2.160857 14 H 2.150111 3.396005 3.869411 3.392173 2.157856 15 C 4.713269 5.187105 4.634870 3.373880 2.566623 16 H 5.858783 6.207863 5.457193 4.102525 3.526704 17 H 4.769385 5.033644 4.382633 3.241333 2.798609 18 H 5.011687 5.208788 4.440593 3.211681 2.864905 19 H 4.506925 5.142938 4.835340 3.766398 2.823307 20 H 5.694308 6.227803 5.655462 4.340107 3.507317 6 7 8 9 10 6 C 0.000000 7 C 2.544208 0.000000 8 C 3.622537 1.516384 0.000000 9 O 3.048499 1.440593 1.430890 0.000000 10 H 2.155477 4.698867 5.693665 5.071751 0.000000 11 H 3.400828 5.424187 6.303822 6.227247 2.482321 12 H 3.867573 4.698002 5.355002 5.812898 4.294143 13 H 3.393230 2.747606 3.239880 3.994560 4.955952 14 H 1.088694 2.746933 3.771219 2.803269 2.470226 15 C 3.480406 1.500704 2.600176 2.449615 5.532277 16 H 4.622231 2.248958 1.082563 2.157931 6.730717 17 H 3.746803 2.251106 1.083206 2.154058 5.629170 18 H 3.961917 2.145608 3.122562 3.357538 5.922205 19 H 3.335340 2.146932 3.464357 2.914149 5.183227 20 H 4.390478 2.161477 2.721577 2.587120 6.471262 11 12 13 14 15 11 H 0.000000 12 H 2.481556 0.000000 13 H 4.290687 2.468001 0.000000 14 H 4.292558 4.956199 4.300315 0.000000 15 C 6.242894 5.413717 3.386918 3.572562 0.000000 16 H 7.267904 6.100948 3.786984 4.733741 2.794657 17 H 6.026225 5.039482 3.166590 4.037755 3.539946 18 H 6.218152 5.045008 2.970035 4.295487 1.094999 19 H 6.149058 5.687061 4.014490 3.260207 1.095146 20 H 7.295432 6.411313 4.229096 4.318069 1.095570 16 17 18 19 20 16 H 0.000000 17 H 1.820031 0.000000 18 H 3.192883 3.929944 0.000000 19 H 3.784580 4.366630 1.775956 0.000000 20 H 2.541667 3.782616 1.769114 1.768865 0.000000 Stoichiometry C9H10O Framework group C1[X(C9H10O)] Deg. of freedom 54 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 2.170731 1.207050 0.086570 2 6 0 2.884643 0.020617 -0.053684 3 6 0 2.203144 -1.189935 -0.139924 4 6 0 0.806830 -1.210836 -0.085780 5 6 0 0.060548 -0.027628 0.054281 6 6 0 0.774849 1.179476 0.140585 7 6 0 -1.448619 -0.056983 0.121824 8 6 0 -2.232995 -0.386633 -1.133368 9 8 0 -2.168288 0.947125 -0.619223 10 1 0 2.696451 2.155886 0.152700 11 1 0 3.970308 0.039962 -0.096439 12 1 0 2.756338 -2.118980 -0.249295 13 1 0 0.290668 -2.166178 -0.152976 14 1 0 0.228364 2.115043 0.247002 15 6 0 -2.063127 -0.342349 1.460875 16 1 0 -3.172487 -0.916181 -1.039154 17 1 0 -1.695080 -0.590983 -2.051096 18 1 0 -1.785926 -1.344259 1.804910 19 1 0 -1.721375 0.384834 2.205023 20 1 0 -3.156984 -0.292827 1.424839 --------------------------------------------------------------------- Rotational constants (GHZ): 2.9451892 0.8943609 0.8292770 Standard basis: 6-311++G(2df,p) (5D, 7F) There are 460 symmetry adapted cartesian basis functions of A symmetry. There are 410 symmetry adapted basis functions of A symmetry. 410 basis functions, 610 primitive gaussians, 460 cartesian basis functions 36 alpha electrons 36 beta electrons nuclear repulsion energy 494.2430501058 Hartrees. NAtoms= 20 NActive= 20 NUniq= 20 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : C-PCM. Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : On-the-fly selection. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 20. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Chloroform, Eps= 4.711300 Eps(inf)= 2.090627 ------------------------------------------------------------------------------ Spheres list: ISph on Nord Re0 Alpha Xe Ye Ze 1 C 1 1.9255 1.100 2.170731 1.207050 0.086570 2 C 2 1.9255 1.100 2.884643 0.020617 -0.053684 3 C 3 1.9255 1.100 2.203144 -1.189935 -0.139924 4 C 4 1.9255 1.100 0.806830 -1.210836 -0.085780 5 C 5 1.9255 1.100 0.060548 -0.027628 0.054281 6 C 6 1.9255 1.100 0.774849 1.179476 0.140585 7 C 7 1.9255 1.100 -1.448619 -0.056983 0.121824 8 C 8 1.9255 1.100 -2.232995 -0.386633 -1.133368 9 O 9 1.7500 1.100 -2.168288 0.947125 -0.619223 10 H 10 1.4430 1.100 2.696451 2.155886 0.152700 11 H 11 1.4430 1.100 3.970308 0.039962 -0.096439 12 H 12 1.4430 1.100 2.756338 -2.118980 -0.249295 13 H 13 1.4430 1.100 0.290668 -2.166178 -0.152976 14 H 14 1.4430 1.100 0.228364 2.115043 0.247002 15 C 15 1.9255 1.100 -2.063127 -0.342349 1.460875 16 H 16 1.4430 1.100 -3.172487 -0.916181 -1.039154 17 H 17 1.4430 1.100 -1.695080 -0.590983 -2.051096 18 H 18 1.4430 1.100 -1.785926 -1.344259 1.804910 19 H 19 1.4430 1.100 -1.721375 0.384834 2.205023 20 H 20 1.4430 1.100 -3.156984 -0.292827 1.424839 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 410 RedAO= T EigKep= 2.51D-06 NBF= 410 NBsUse= 409 1.00D-06 EigRej= 6.85D-07 NBFU= 409 ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor=20419 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor=20419 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Inv3: Mode=1 IEnd= 7670403. Iteration 1 A*A^-1 deviation from unit magnitude is 4.66D-15 for 1580. Iteration 1 A*A^-1 deviation from orthogonality is 2.09D-15 for 1583 1402. Iteration 1 A^-1*A deviation from unit magnitude is 4.44D-15 for 1580. Iteration 1 A^-1*A deviation from orthogonality is 2.10D-15 for 890 424. Error on total polarization charges = 0.01223 SCF Done: E(RCAM-B3LYP) = -424.069562696 A.U. after 13 cycles NFock= 13 Conv=0.95D-08 -V/T= 2.0045 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 409 NBasis= 410 NAE= 36 NBE= 36 NFC= 0 NFV= 0 NROrb= 409 NOA= 36 NOB= 36 NVA= 373 NVB= 373 **** Warning!!: The largest alpha MO coefficient is 0.12133580D+03 NEqPCM: Using non-equilibrium solvation (IEInf=1, Eps= 4.7113, EpsInf= 2.0906) Inv3: Mode=1 IEnd= 7670403. Iteration 1 A*A^-1 deviation from unit magnitude is 4.66D-15 for 1580. Iteration 1 A*A^-1 deviation from orthogonality is 2.09D-15 for 1583 1402. Iteration 1 A^-1*A deviation from unit magnitude is 4.44D-15 for 1580. Iteration 1 A^-1*A deviation from orthogonality is 2.10D-15 for 890 424. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=T KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 6. LinEq1: Iter= 0 NonCon= 6 RMS=7.48D-02 Max=2.70D+00 NDo= 6 AX will form 6 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 6 RMS=8.76D-03 Max=4.08D-01 NDo= 6 LinEq1: Iter= 2 NonCon= 6 RMS=8.67D-03 Max=7.13D-01 NDo= 6 LinEq1: Iter= 3 NonCon= 6 RMS=2.56D-03 Max=1.50D-01 NDo= 6 LinEq1: Iter= 4 NonCon= 6 RMS=1.41D-03 Max=5.37D-02 NDo= 6 LinEq1: Iter= 5 NonCon= 6 RMS=9.24D-04 Max=4.41D-02 NDo= 6 LinEq1: Iter= 6 NonCon= 6 RMS=3.00D-04 Max=1.19D-02 NDo= 6 LinEq1: Iter= 7 NonCon= 6 RMS=1.55D-04 Max=6.89D-03 NDo= 6 LinEq1: Iter= 8 NonCon= 6 RMS=7.33D-05 Max=5.43D-03 NDo= 6 LinEq1: Iter= 9 NonCon= 6 RMS=3.60D-05 Max=2.44D-03 NDo= 6 LinEq1: Iter= 10 NonCon= 6 RMS=2.17D-05 Max=1.12D-03 NDo= 6 LinEq1: Iter= 11 NonCon= 6 RMS=1.10D-05 Max=4.60D-04 NDo= 6 LinEq1: Iter= 12 NonCon= 6 RMS=5.86D-06 Max=2.14D-04 NDo= 6 LinEq1: Iter= 13 NonCon= 6 RMS=2.45D-06 Max=1.37D-04 NDo= 6 LinEq1: Iter= 14 NonCon= 6 RMS=1.09D-06 Max=5.35D-05 NDo= 6 LinEq1: Iter= 15 NonCon= 6 RMS=6.10D-07 Max=3.38D-05 NDo= 6 LinEq1: Iter= 16 NonCon= 6 RMS=2.20D-07 Max=1.26D-05 NDo= 6 LinEq1: Iter= 17 NonCon= 6 RMS=1.07D-07 Max=5.11D-06 NDo= 6 LinEq1: Iter= 18 NonCon= 6 RMS=5.00D-08 Max=3.13D-06 NDo= 6 LinEq1: Iter= 19 NonCon= 5 RMS=1.60D-08 Max=7.82D-07 NDo= 6 LinEq1: Iter= 20 NonCon= 3 RMS=7.73D-09 Max=3.85D-07 NDo= 5 LinEq1: Iter= 21 NonCon= 1 RMS=3.85D-09 Max=1.20D-07 NDo= 3 LinEq1: Iter= 22 NonCon= 0 RMS=1.21D-09 Max=2.83D-08 NDo= 1 Linear equations converged to 1.000D-08 1.000D-07 after 22 iterations. Dipole-magnetic dipole polarizability for W= 0.077357: 1 2 3 1 -0.104331D+01 0.581489D+01 0.596413D+01 2 -0.164889D+02 0.471527D+01 -0.136439D+02 3 -0.586136D+01 -0.649034D+02 -0.249479D+01 w= 0.077357 a.u., Optical Rotation Beta= -0.3924 au. Molar Mass = 134.1774 grams/mole, [Alpha] ( 5890.0 A) = -113.15 deg. Dipole-magnetic dipole polarizability for W= 0.124831: 1 2 3 1 -0.671582D+00 0.611492D+01 0.642764D+01 2 -0.181838D+02 0.565497D+01 -0.131857D+02 3 -0.587696D+01 -0.780191D+02 -0.324589D+01 w= 0.124831 a.u., Optical Rotation Beta= -0.5792 au. Molar Mass = 134.1774 grams/mole, [Alpha] ( 3650.0 A) = -434.90 deg. End of Minotr F.D. properties on file 721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 -0.104331D+01 0.581489D+01 0.596413D+01 2 -0.164889D+02 0.471527D+01 -0.136439D+02 3 -0.586136D+01 -0.649034D+02 -0.249479D+01 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 -0.671582D+00 0.611492D+01 0.642764D+01 2 -0.181838D+02 0.565497D+01 -0.131857D+02 3 -0.587696D+01 -0.780191D+02 -0.324589D+01 End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.21646 -10.31862 -10.29778 -10.26613 -10.25547 Alpha occ. eigenvalues -- -10.25405 -10.25340 -10.25273 -10.25156 -10.24069 Alpha occ. eigenvalues -- -1.16035 -0.94815 -0.86265 -0.83255 -0.81384 Alpha occ. eigenvalues -- -0.74624 -0.70944 -0.68452 -0.64550 -0.59949 Alpha occ. eigenvalues -- -0.56390 -0.54682 -0.53380 -0.51853 -0.49853 Alpha occ. eigenvalues -- -0.49072 -0.47917 -0.46248 -0.44662 -0.44061 Alpha occ. eigenvalues -- -0.41488 -0.41290 -0.36297 -0.35052 -0.31684 Alpha occ. eigenvalues -- -0.31177 Alpha virt. eigenvalues -- 0.01521 0.01887 0.02325 0.02671 0.03052 Alpha virt. eigenvalues -- 0.03763 0.04537 0.04887 0.05806 0.07055 Alpha virt. eigenvalues -- 0.07276 0.07733 0.08509 0.08659 0.09909 Alpha virt. eigenvalues -- 0.11734 0.12210 0.12561 0.12944 0.13281 Alpha virt. eigenvalues -- 0.13662 0.14209 0.14445 0.14837 0.15166 Alpha virt. eigenvalues -- 0.15455 0.15704 0.15776 0.15969 0.16794 Alpha virt. eigenvalues -- 0.17154 0.17761 0.18684 0.18907 0.19232 Alpha virt. eigenvalues -- 0.19783 0.20287 0.20857 0.21382 0.21715 Alpha virt. eigenvalues -- 0.22251 0.22904 0.24052 0.24825 0.25099 Alpha virt. eigenvalues -- 0.25225 0.26054 0.26292 0.27048 0.27604 Alpha virt. eigenvalues -- 0.28132 0.30542 0.31033 0.31851 0.32592 Alpha virt. eigenvalues -- 0.33388 0.33910 0.34152 0.34519 0.35151 Alpha virt. eigenvalues -- 0.36199 0.36441 0.36762 0.38722 0.39219 Alpha virt. eigenvalues -- 0.40092 0.40388 0.42484 0.43614 0.44406 Alpha virt. eigenvalues -- 0.46349 0.50860 0.51638 0.52795 0.54188 Alpha virt. eigenvalues -- 0.55232 0.56223 0.56916 0.57490 0.58300 Alpha virt. eigenvalues -- 0.58597 0.58776 0.59641 0.60288 0.61032 Alpha virt. eigenvalues -- 0.63182 0.65005 0.65421 0.65512 0.66806 Alpha virt. eigenvalues -- 0.67808 0.68421 0.69008 0.69819 0.70504 Alpha virt. eigenvalues -- 0.70685 0.71318 0.72949 0.73283 0.74505 Alpha virt. eigenvalues -- 0.74979 0.75324 0.75954 0.77582 0.79596 Alpha virt. eigenvalues -- 0.79676 0.82167 0.83278 0.83767 0.84807 Alpha virt. eigenvalues -- 0.85312 0.86032 0.88318 0.88392 0.88892 Alpha virt. eigenvalues -- 0.89565 0.90120 0.91282 0.92181 0.92935 Alpha virt. eigenvalues -- 0.95836 0.96731 1.02933 1.03705 1.04027 Alpha virt. eigenvalues -- 1.07641 1.09158 1.11963 1.13065 1.14047 Alpha virt. eigenvalues -- 1.14946 1.17665 1.18846 1.19090 1.22218 Alpha virt. eigenvalues -- 1.23260 1.26158 1.27552 1.27774 1.29283 Alpha virt. eigenvalues -- 1.31862 1.34393 1.35055 1.37337 1.37634 Alpha virt. eigenvalues -- 1.38348 1.39659 1.40616 1.41986 1.43041 Alpha virt. eigenvalues -- 1.43471 1.44885 1.46427 1.48993 1.50727 Alpha virt. eigenvalues -- 1.53418 1.54540 1.55259 1.57454 1.60937 Alpha virt. eigenvalues -- 1.61709 1.63105 1.64780 1.68020 1.70170 Alpha virt. eigenvalues -- 1.71326 1.75741 1.77653 1.80311 1.83382 Alpha virt. eigenvalues -- 1.84003 1.85454 1.89918 1.94727 1.96060 Alpha virt. eigenvalues -- 1.98489 2.02462 2.03950 2.05334 2.07355 Alpha virt. eigenvalues -- 2.13795 2.18680 2.24100 2.25373 2.26665 Alpha virt. eigenvalues -- 2.29582 2.30234 2.31548 2.35418 2.37632 Alpha virt. eigenvalues -- 2.38128 2.38614 2.42049 2.42470 2.46178 Alpha virt. eigenvalues -- 2.49013 2.50739 2.51468 2.53196 2.53500 Alpha virt. eigenvalues -- 2.57816 2.59713 2.60453 2.62297 2.62718 Alpha virt. eigenvalues -- 2.65167 2.65708 2.67554 2.68815 2.69272 Alpha virt. eigenvalues -- 2.71062 2.71940 2.72190 2.76718 2.78382 Alpha virt. eigenvalues -- 2.80164 2.82379 2.83760 2.84834 2.86156 Alpha virt. eigenvalues -- 2.87026 2.87586 2.89967 2.90462 2.91939 Alpha virt. eigenvalues -- 2.92095 2.92598 2.93499 2.95789 2.97053 Alpha virt. eigenvalues -- 2.98325 2.99088 3.00445 3.01933 3.02843 Alpha virt. eigenvalues -- 3.03491 3.04947 3.08159 3.09561 3.11470 Alpha virt. eigenvalues -- 3.15083 3.18073 3.18540 3.19604 3.20501 Alpha virt. eigenvalues -- 3.23409 3.24055 3.26428 3.28912 3.30935 Alpha virt. eigenvalues -- 3.32862 3.34096 3.34294 3.35768 3.36428 Alpha virt. eigenvalues -- 3.37583 3.38913 3.39795 3.41928 3.43307 Alpha virt. eigenvalues -- 3.43867 3.45070 3.45400 3.47680 3.48008 Alpha virt. eigenvalues -- 3.48911 3.50140 3.52373 3.53542 3.55507 Alpha virt. eigenvalues -- 3.56325 3.58482 3.59731 3.60141 3.60727 Alpha virt. eigenvalues -- 3.61291 3.63044 3.63518 3.64698 3.66802 Alpha virt. eigenvalues -- 3.69134 3.71801 3.72813 3.73271 3.74852 Alpha virt. eigenvalues -- 3.75770 3.78678 3.79242 3.79571 3.81551 Alpha virt. eigenvalues -- 3.82992 3.85423 3.87192 3.90127 3.90360 Alpha virt. eigenvalues -- 3.91639 3.94210 3.96800 3.97061 3.98787 Alpha virt. eigenvalues -- 4.00709 4.03676 4.06088 4.11391 4.13925 Alpha virt. eigenvalues -- 4.19541 4.21735 4.22660 4.23425 4.27449 Alpha virt. eigenvalues -- 4.28357 4.29797 4.34205 4.37803 4.40006 Alpha virt. eigenvalues -- 4.40755 4.41944 4.48598 4.52864 4.53114 Alpha virt. eigenvalues -- 4.55170 4.56783 4.57443 4.60709 4.62380 Alpha virt. eigenvalues -- 4.62578 4.70754 4.73422 4.76362 4.79237 Alpha virt. eigenvalues -- 4.81778 4.84089 4.90658 4.94581 4.98265 Alpha virt. eigenvalues -- 5.01984 5.09448 5.18657 5.21968 5.27056 Alpha virt. eigenvalues -- 5.30426 5.31882 5.33703 5.35069 5.38181 Alpha virt. eigenvalues -- 5.42328 5.46350 5.52219 5.53033 5.61223 Alpha virt. eigenvalues -- 5.71189 5.73928 5.79953 5.90723 5.99504 Alpha virt. eigenvalues -- 6.46363 6.48511 6.60683 7.16437 7.20301 Alpha virt. eigenvalues -- 7.42352 7.67760 7.80900 23.94009 24.37018 Alpha virt. eigenvalues -- 24.43943 24.46132 24.46488 24.54916 24.69934 Alpha virt. eigenvalues -- 24.70999 25.06411 50.15407 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.763260 0.442258 -0.172809 0.484788 -0.395276 -0.087994 2 C 0.442258 5.667650 0.506323 -0.403238 -0.092952 0.029097 3 C -0.172809 0.506323 5.571492 0.198271 -0.420052 0.165153 4 C 0.484788 -0.403238 0.198271 9.001280 0.057353 -3.011425 5 C -0.395276 -0.092952 -0.420052 0.057353 8.315288 -0.304994 6 C -0.087994 0.029097 0.165153 -3.011425 -0.304994 9.281981 7 C 0.046699 -0.219743 0.095764 -0.026928 -1.705710 -0.391995 8 C -0.139255 0.013125 0.057617 -0.214346 0.329704 0.233947 9 O 0.011584 -0.010867 0.007547 0.096230 -0.030606 -0.196359 10 H 0.437446 -0.058655 0.005060 0.014622 0.003867 -0.087091 11 H -0.064528 0.447149 -0.071522 -0.006414 0.036980 -0.004456 12 H 0.006364 -0.059568 0.424283 -0.055453 -0.001333 -0.001561 13 H 0.025221 0.002092 -0.096955 0.392294 -0.012217 0.019105 14 H -0.093181 0.007290 0.020598 0.020111 -0.021131 0.389101 15 C 0.095712 -0.027711 0.035563 0.041419 -0.495030 -0.066426 16 H 0.004367 -0.001484 -0.005207 -0.012050 -0.005580 0.005349 17 H 0.001497 0.006717 0.001823 -0.005999 0.053582 0.039899 18 H -0.006040 0.001166 0.006561 -0.000348 -0.006847 0.002727 19 H -0.000160 -0.003818 -0.001680 -0.018128 -0.058271 -0.001767 20 H 0.004163 -0.001517 -0.000738 0.015585 0.043184 -0.009822 7 8 9 10 11 12 1 C 0.046699 -0.139255 0.011584 0.437446 -0.064528 0.006364 2 C -0.219743 0.013125 -0.010867 -0.058655 0.447149 -0.059568 3 C 0.095764 0.057617 0.007547 0.005060 -0.071522 0.424283 4 C -0.026928 -0.214346 0.096230 0.014622 -0.006414 -0.055453 5 C -1.705710 0.329704 -0.030606 0.003867 0.036980 -0.001333 6 C -0.391995 0.233947 -0.196359 -0.087091 -0.004456 -0.001561 7 C 8.017405 -0.521378 0.524793 0.015772 -0.005648 0.014820 8 C -0.521378 6.096605 -0.053373 -0.000641 -0.000021 -0.001133 9 O 0.524793 -0.053373 8.061358 0.000930 -0.000227 0.000242 10 H 0.015772 -0.000641 0.000930 0.499968 -0.010392 -0.001192 11 H -0.005648 -0.000021 -0.000227 -0.010392 0.501571 -0.009846 12 H 0.014820 -0.001133 0.000242 -0.001192 -0.009846 0.500061 13 H -0.010933 0.001455 0.001066 0.001496 -0.000908 -0.012763 14 H -0.017719 0.006103 -0.001026 -0.014122 -0.000697 0.001293 15 C 0.186226 -0.354537 -0.113340 0.000947 -0.000362 0.002621 16 H 0.026673 0.349451 -0.054686 0.000068 -0.000053 0.000158 17 H -0.104761 0.393464 -0.021180 -0.000121 0.000142 -0.000344 18 H -0.047733 0.014461 0.006195 -0.000045 0.000068 0.000063 19 H 0.026003 0.023198 -0.004505 0.000230 -0.000071 0.000011 20 H -0.049354 -0.024295 0.001423 0.000104 -0.000052 0.000112 13 14 15 16 17 18 1 C 0.025221 -0.093181 0.095712 0.004367 0.001497 -0.006040 2 C 0.002092 0.007290 -0.027711 -0.001484 0.006717 0.001166 3 C -0.096955 0.020598 0.035563 -0.005207 0.001823 0.006561 4 C 0.392294 0.020111 0.041419 -0.012050 -0.005999 -0.000348 5 C -0.012217 -0.021131 -0.495030 -0.005580 0.053582 -0.006847 6 C 0.019105 0.389101 -0.066426 0.005349 0.039899 0.002727 7 C -0.010933 -0.017719 0.186226 0.026673 -0.104761 -0.047733 8 C 0.001455 0.006103 -0.354537 0.349451 0.393464 0.014461 9 O 0.001066 -0.001026 -0.113340 -0.054686 -0.021180 0.006195 10 H 0.001496 -0.014122 0.000947 0.000068 -0.000121 -0.000045 11 H -0.000908 -0.000697 -0.000362 -0.000053 0.000142 0.000068 12 H -0.012763 0.001293 0.002621 0.000158 -0.000344 0.000063 13 H 0.504222 -0.001905 -0.007615 -0.000518 0.000986 -0.001237 14 H -0.001905 0.498240 -0.001359 -0.000385 -0.000063 -0.000476 15 C -0.007615 -0.001359 6.288188 0.027691 -0.011961 0.378830 16 H -0.000518 -0.000385 0.027691 0.536860 -0.036131 -0.000074 17 H 0.000986 -0.000063 -0.011961 -0.036131 0.517486 0.000415 18 H -0.001237 -0.000476 0.378830 -0.000074 0.000415 0.520353 19 H -0.000411 -0.000381 0.400124 -0.000514 -0.000021 -0.025765 20 H 0.000752 0.000098 0.380593 0.001087 -0.002241 -0.027259 19 20 1 C -0.000160 0.004163 2 C -0.003818 -0.001517 3 C -0.001680 -0.000738 4 C -0.018128 0.015585 5 C -0.058271 0.043184 6 C -0.001767 -0.009822 7 C 0.026003 -0.049354 8 C 0.023198 -0.024295 9 O -0.004505 0.001423 10 H 0.000230 0.000104 11 H -0.000071 -0.000052 12 H 0.000011 0.000112 13 H -0.000411 0.000752 14 H -0.000381 0.000098 15 C 0.400124 0.380593 16 H -0.000514 0.001087 17 H -0.000021 -0.002241 18 H -0.025765 -0.027259 19 H 0.511221 -0.024074 20 H -0.024074 0.526651 Mulliken charges: 1 1 C -0.364119 2 C -0.243314 3 C -0.327090 4 C -0.567621 5 C 0.710040 6 C -0.002467 7 C 0.147748 8 C -0.210149 9 O -0.225198 10 H 0.191751 11 H 0.189288 12 H 0.193165 13 H 0.196774 14 H 0.209610 15 C -0.759573 16 H 0.164977 17 H 0.166812 18 H 0.184987 19 H 0.178779 20 H 0.165601 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.172368 2 C -0.054026 3 C -0.133926 4 C -0.370847 5 C 0.710040 6 C 0.207142 7 C 0.147748 8 C 0.121640 9 O -0.225198 15 C -0.230206 Electronic spatial extent (au): = 1503.6949 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.6789 Y= -2.2988 Z= 0.4827 Tot= 2.4450 Quadrupole moment (field-independent basis, Debye-Ang): XX= -55.8672 YY= -57.3486 ZZ= -61.5064 XY= 5.8423 XZ= -1.2383 YZ= 2.8028 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.3735 YY= 0.8921 ZZ= -3.2656 XY= 5.8423 XZ= -1.2383 YZ= 2.8028 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 7.6666 YYY= -0.5837 ZZZ= -4.4486 XYY= 7.9482 XXY= -13.5317 XXZ= -0.7228 XZZ= -14.5959 YZZ= -1.2097 YYZ= 1.5440 XYZ= -3.0386 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1326.3125 YYYY= -348.4635 ZZZZ= -258.7127 XXXY= 33.5890 XXXZ= -0.9636 YYYX= 2.4737 YYYZ= 5.1596 ZZZX= 9.0738 ZZZY= 2.1483 XXYY= -292.9465 XXZZ= -293.5113 YYZZ= -112.2191 XXYZ= 13.1673 YYXZ= -2.3940 ZZXY= 2.1804 N-N= 4.942430501058D+02 E-N=-1.975360090613D+03 KE= 4.221893330075D+02 AllDun F.D. properties on file 20721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 0.599458D+01 -0.248207D+02 0.160148D+02 2 -0.536853D+01 0.309893D+02 -0.241964D+01 3 -0.268861D+02 0.299216D+02 -0.358067D+02 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 0.730981D+01 -0.286923D+02 0.194229D+02 2 -0.599503D+01 0.361217D+02 -0.568057D+01 3 -0.311893D+02 0.375451D+02 -0.416940D+02 1\1\GINC-CX1-15-34-2\SP\RCAM-B3LYP\6-311++G(2df,p)\C9H10O1\SCAN-USER-1 \26-Jan-2014\0\\# CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,so lvent=chloroform) CPHF=RdFreq\\Title line, ie Optical rotation for lit erature compound\\0,1\C,0,2.69744,-4.21705,-0.09763\C,0,2.44494,-5.425 32,0.54525\C,0,3.42917,-6.00311,1.34197\C,0,4.6656,-5.36975,1.49414\C, 0,4.94721,-4.14834,0.85744\C,0,3.93579,-3.58903,0.05808\C,0,6.28915,-3 .47271,1.01785\C,0,6.63821,-2.84182,2.35185\O,0,6.29731,-2.04542,1.213 \H,0,1.93279,-3.75952,-0.71974\H,0,1.48227,-5.9151,0.42587\H,0,3.23667 ,-6.94663,1.84578\H,0,5.42387,-5.8365,2.11927\H,0,4.11914,-2.64247,-0. 44755\C,0,7.39759,-3.9427,0.12198\H,0,7.67138,-2.83967,2.67511\H,0,5.9 1757,-2.88661,3.15932\H,0,7.63093,-4.99423,0.31911\H,0,7.11104,-3.8442 7,-0.93042\H,0,8.31521,-3.36347,0.27278\\Version=ES64L-G09RevD.01\Stat e=1-A\HF=-424.0695627\RMSD=9.514e-09\Dipole=0.1531162,-0.908317,0.2772 657\Quadrupole=3.786235,-4.5131585,0.7269235,-0.5811119,2.8241364,-1.6 886376\PG=C01 [X(C9H10O1)]\\@ CHINESE FORTUNE COOKIE OF JAN 1 1967 SAY.... ALL THINGS ARE DIFFICULT BEFORE THEY ARE EASY. WE LEARN SO LITTLE AND FORGET SO MUCH. YOU WILL OVERCOME OBSTACLES TO ACHIEVE SUCCESS. AH SO. Job cpu time: 0 days 5 hours 20 minutes 47.2 seconds. File lengths (MBytes): RWF= 300 Int= 0 D2E= 0 Chk= 9 Scr= 1 Normal termination of Gaussian 09 at Sun Jan 26 18:23:00 2014.