Entering Link 1 = C:\G03W\l1.exe PID= 956. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 24-Mar-2011 ****************************************** %chk=\\icfs16.cc.ic.ac.uk\bc608\Year 3 Labs\Computational Labs\Module 3\Exercise 1\Diels Alder\Transition State\DFT_TS_OPT_ethyleneandbutadiene.chk -------------------------------------------------------- # opt=(calcfc,ts) freq rb3lyp/6-31g(d) geom=connectivity -------------------------------------------------------- 1/5=1,10=4,14=-1,18=20,26=3,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4/7=1/1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,7=6/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,14=-1,18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99//99; 2/9=110/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4/5=5,7=1,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,14=-1,18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0.3836 1.41428 0.51223 H 0.27203 2.49819 0.37003 C -1.45613 0.69137 -0.25206 H -2.00091 1.24124 0.52981 H -1.30106 1.24136 -1.19155 C -1.45597 -0.69157 -0.25206 H -2.00062 -1.24158 0.52981 H -1.3008 -1.24152 -1.19156 C 0.38381 -1.41423 0.51222 H 0.27237 -2.49815 0.36998 C 1.25521 -0.69863 -0.28661 H 1.84324 -1.22255 -1.05718 C 1.25513 0.69882 -0.28659 H 1.84311 1.22283 -1.05712 H 0.08932 1.0474 1.50746 H 0.08948 -1.04748 1.50748 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0989 calculate D2E/DX2 analytically ! ! R2 R(1,3) 2.1193 calculate D2E/DX2 analytically ! ! R3 R(1,4) 2.3908 calculate D2E/DX2 analytically ! ! R4 R(1,5) 2.4023 calculate D2E/DX2 analytically ! ! R5 R(1,13) 1.3819 calculate D2E/DX2 analytically ! ! R6 R(1,15) 1.1008 calculate D2E/DX2 analytically ! ! R7 R(2,3) 2.5765 calculate D2E/DX2 analytically ! ! R8 R(3,4) 1.1002 calculate D2E/DX2 analytically ! ! R9 R(3,5) 1.0996 calculate D2E/DX2 analytically ! ! R10 R(3,6) 1.3829 calculate D2E/DX2 analytically ! ! R11 R(3,13) 2.7115 calculate D2E/DX2 analytically ! ! R12 R(3,15) 2.3688 calculate D2E/DX2 analytically ! ! R13 R(6,7) 1.1002 calculate D2E/DX2 analytically ! ! R14 R(6,8) 1.0996 calculate D2E/DX2 analytically ! ! R15 R(6,9) 2.1192 calculate D2E/DX2 analytically ! ! R16 R(6,10) 2.5764 calculate D2E/DX2 analytically ! ! R17 R(6,11) 2.7114 calculate D2E/DX2 analytically ! ! R18 R(6,16) 2.3688 calculate D2E/DX2 analytically ! ! R19 R(7,9) 2.3907 calculate D2E/DX2 analytically ! ! R20 R(8,9) 2.4022 calculate D2E/DX2 analytically ! ! R21 R(9,10) 1.0989 calculate D2E/DX2 analytically ! ! R22 R(9,11) 1.3819 calculate D2E/DX2 analytically ! ! R23 R(9,16) 1.1008 calculate D2E/DX2 analytically ! ! R24 R(11,12) 1.1018 calculate D2E/DX2 analytically ! ! R25 R(11,13) 1.3975 calculate D2E/DX2 analytically ! ! R26 R(13,14) 1.1018 calculate D2E/DX2 analytically ! ! A1 A(2,1,13) 119.995 calculate D2E/DX2 analytically ! ! A2 A(2,1,15) 114.7466 calculate D2E/DX2 analytically ! ! A3 A(13,1,15) 121.245 calculate D2E/DX2 analytically ! ! A4 A(4,3,5) 115.2788 calculate D2E/DX2 analytically ! ! A5 A(4,3,6) 119.9892 calculate D2E/DX2 analytically ! ! A6 A(5,3,6) 120.0093 calculate D2E/DX2 analytically ! ! A7 A(3,6,7) 119.9906 calculate D2E/DX2 analytically ! ! A8 A(3,6,8) 120.0088 calculate D2E/DX2 analytically ! ! A9 A(7,6,8) 115.2779 calculate D2E/DX2 analytically ! ! A10 A(10,9,11) 119.9948 calculate D2E/DX2 analytically ! ! A11 A(10,9,16) 114.7437 calculate D2E/DX2 analytically ! ! A12 A(11,9,16) 121.2488 calculate D2E/DX2 analytically ! ! A13 A(9,11,12) 119.6425 calculate D2E/DX2 analytically ! ! A14 A(9,11,13) 121.1847 calculate D2E/DX2 analytically ! ! A15 A(12,11,13) 118.3944 calculate D2E/DX2 analytically ! ! A16 A(1,13,11) 121.1845 calculate D2E/DX2 analytically ! ! A17 A(1,13,14) 119.6432 calculate D2E/DX2 analytically ! ! A18 A(11,13,14) 118.3939 calculate D2E/DX2 analytically ! ! D1 D(2,1,13,11) -169.087 calculate D2E/DX2 analytically ! ! D2 D(2,1,13,14) 0.6449 calculate D2E/DX2 analytically ! ! D3 D(15,1,13,11) 34.63 calculate D2E/DX2 analytically ! ! D4 D(15,1,13,14) -155.6381 calculate D2E/DX2 analytically ! ! D5 D(4,3,6,7) -0.0009 calculate D2E/DX2 analytically ! ! D6 D(4,3,6,8) 154.51 calculate D2E/DX2 analytically ! ! D7 D(5,3,6,7) -154.5121 calculate D2E/DX2 analytically ! ! D8 D(5,3,6,8) -0.0012 calculate D2E/DX2 analytically ! ! D9 D(10,9,11,12) -0.6464 calculate D2E/DX2 analytically ! ! D10 D(10,9,11,13) 169.0863 calculate D2E/DX2 analytically ! ! D11 D(16,9,11,12) 155.6381 calculate D2E/DX2 analytically ! ! D12 D(16,9,11,13) -34.6293 calculate D2E/DX2 analytically ! ! D13 D(9,11,13,1) -0.0026 calculate D2E/DX2 analytically ! ! D14 D(9,11,13,14) -169.8593 calculate D2E/DX2 analytically ! ! D15 D(12,11,13,1) 169.8547 calculate D2E/DX2 analytically ! ! D16 D(12,11,13,14) -0.002 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 70 maximum allowed number of steps= 100. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.383596 1.414278 0.512230 2 1 0 0.272029 2.498189 0.370035 3 6 0 -1.456127 0.691374 -0.252060 4 1 0 -2.000913 1.241241 0.529806 5 1 0 -1.301059 1.241356 -1.191554 6 6 0 -1.455974 -0.691570 -0.252056 7 1 0 -2.000619 -1.241576 0.529812 8 1 0 -1.300803 -1.241515 -1.191555 9 6 0 0.383808 -1.414232 0.512224 10 1 0 0.272370 -2.498150 0.369985 11 6 0 1.255213 -0.698633 -0.286611 12 1 0 1.843238 -1.222545 -1.057178 13 6 0 1.255125 0.698824 -0.286588 14 1 0 1.843113 1.222828 -1.057122 15 1 0 0.089319 1.047404 1.507455 16 1 0 0.089478 -1.047484 1.507480 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.098877 0.000000 3 C 2.119271 2.576452 0.000000 4 H 2.390844 2.602252 1.100209 0.000000 5 H 2.402257 2.548096 1.099625 1.858192 0.000000 6 C 2.898749 3.680701 1.382944 2.155000 2.154730 7 H 3.569083 4.379076 2.155016 2.482817 3.101199 8 H 3.576775 4.347155 2.154725 3.101180 2.482872 9 C 2.828510 3.916600 2.898805 3.569137 3.576840 10 H 3.916593 4.996340 3.680721 4.379088 4.347182 11 C 2.421209 3.408446 3.047077 3.877113 3.334217 12 H 3.398004 4.283631 3.898347 4.833866 3.996932 13 C 1.381864 2.152985 2.711482 3.400368 2.765390 14 H 2.151675 2.476212 3.437375 4.158751 3.147098 15 H 1.100759 1.852535 2.368766 2.315695 3.042272 16 H 2.671573 3.728124 2.916934 3.250207 3.802258 6 7 8 9 10 6 C 0.000000 7 H 1.100210 0.000000 8 H 1.099626 1.858184 0.000000 9 C 2.119236 2.390735 2.402209 0.000000 10 H 2.576401 2.602115 2.548021 1.098877 0.000000 11 C 2.711416 3.400261 2.765296 1.381871 2.152989 12 H 3.437289 4.158622 3.146968 2.151675 2.476204 13 C 3.047039 3.877052 3.334164 2.421219 3.408451 14 H 3.898336 4.833831 3.996907 3.398015 4.283637 15 H 2.916820 3.250086 3.802137 2.671490 3.728043 16 H 2.368768 2.315602 3.042256 1.100758 1.852506 11 12 13 14 15 11 C 0.000000 12 H 1.101831 0.000000 13 C 1.397456 2.152056 0.000000 14 H 2.152051 2.445373 1.101831 0.000000 15 H 2.761634 3.847888 2.167764 3.111852 0.000000 16 H 2.167809 3.111879 2.761703 3.847952 2.094888 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.383596 1.414278 0.512230 2 1 0 0.272029 2.498189 0.370035 3 6 0 -1.456127 0.691374 -0.252060 4 1 0 -2.000913 1.241241 0.529806 5 1 0 -1.301059 1.241356 -1.191554 6 6 0 -1.455974 -0.691570 -0.252056 7 1 0 -2.000619 -1.241576 0.529812 8 1 0 -1.300803 -1.241515 -1.191555 9 6 0 0.383808 -1.414232 0.512224 10 1 0 0.272370 -2.498150 0.369985 11 6 0 1.255213 -0.698633 -0.286611 12 1 0 1.843238 -1.222545 -1.057178 13 6 0 1.255125 0.698824 -0.286588 14 1 0 1.843113 1.222828 -1.057122 15 1 0 0.089319 1.047404 1.507455 16 1 0 0.089478 -1.047484 1.507480 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3765127 3.8581362 2.4540153 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 228.6220504796 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 402 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -234.541191529 A.U. after 13 cycles Convg = 0.8573D-08 -V/T = 2.0105 S**2 = 0.0000 Range of M.O.s used for correlation: 1 110 NBasis= 110 NAE= 23 NBE= 23 NFC= 0 NFV= 0 NROrb= 110 NOA= 23 NOB= 23 NVA= 87 NVB= 87 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 17 centers at a time, making 1 passes doing MaxLOS=2. FoFDir/FoFCou used for L=0 through L=2. DoAtom=TTTTTTTTTTTTTTTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Integrals replicated using symmetry in FoFDir. MinBra= 0 MaxBra= 2 Meth= 1. IRaf= 0 NMat= 51 IRICut= 51 DoRegI=T DoRafI=T ISym2E= 2 JSym2E=2. There are 51 degrees of freedom in the 1st order CPHF. 48 vectors were produced by pass 0. AX will form 48 AO Fock derivatives at one time. 48 vectors were produced by pass 1. 48 vectors were produced by pass 2. 48 vectors were produced by pass 3. 10 vectors were produced by pass 4. 3 vectors were produced by pass 5. Inv2: IOpt= 1 Iter= 1 AM= 2.68D-15 Conv= 1.00D-12. Inverted reduced A of dimension 205 with in-core refinement. Isotropic polarizability for W= 0.000000 68.13 Bohr**3. End of Minotr Frequency-dependent properties file 721 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -10.18910 -10.18908 -10.18317 -10.18257 -10.17142 Alpha occ. eigenvalues -- -10.17088 -0.80659 -0.73844 -0.71278 -0.61431 Alpha occ. eigenvalues -- -0.57357 -0.50904 -0.48554 -0.46151 -0.41832 Alpha occ. eigenvalues -- -0.40153 -0.39779 -0.36361 -0.35366 -0.33750 Alpha occ. eigenvalues -- -0.33229 -0.22539 -0.21155 Alpha virt. eigenvalues -- 0.00310 0.02650 0.08946 0.10638 0.13488 Alpha virt. eigenvalues -- 0.13643 0.14417 0.14924 0.17123 0.20232 Alpha virt. eigenvalues -- 0.20238 0.23631 0.24777 0.29437 0.32703 Alpha virt. eigenvalues -- 0.36785 0.42892 0.47526 0.50834 0.51990 Alpha virt. eigenvalues -- 0.56069 0.56469 0.58043 0.61249 0.63514 Alpha virt. eigenvalues -- 0.64128 0.65381 0.68949 0.69743 0.75287 Alpha virt. eigenvalues -- 0.76195 0.81580 0.84577 0.85529 0.85817 Alpha virt. eigenvalues -- 0.86436 0.87624 0.88833 0.92998 0.94784 Alpha virt. eigenvalues -- 0.95458 0.97816 1.02246 1.07182 1.10050 Alpha virt. eigenvalues -- 1.13934 1.18510 1.26405 1.27583 1.40324 Alpha virt. eigenvalues -- 1.46973 1.50324 1.56771 1.64384 1.64834 Alpha virt. eigenvalues -- 1.73135 1.78258 1.79333 1.93903 1.94394 Alpha virt. eigenvalues -- 1.96301 1.96762 2.01134 2.05141 2.06807 Alpha virt. eigenvalues -- 2.09554 2.14004 2.20943 2.21758 2.23271 Alpha virt. eigenvalues -- 2.27595 2.29257 2.44897 2.52525 2.58073 Alpha virt. eigenvalues -- 2.60871 2.61715 2.66856 2.70981 2.87611 Alpha virt. eigenvalues -- 3.05410 4.14005 4.23685 4.27677 4.30714 Alpha virt. eigenvalues -- 4.44650 4.54438 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.122623 0.361270 0.135077 -0.014077 -0.015468 -0.021041 2 H 0.361270 0.574325 -0.008552 0.000298 -0.001430 0.001571 3 C 0.135077 -0.008552 5.055280 0.373478 0.381352 0.538434 4 H -0.014077 0.000298 0.373478 0.574324 -0.038590 -0.037922 5 H -0.015468 -0.001430 0.381352 -0.038590 0.558378 -0.034280 6 C -0.021041 0.001571 0.538434 -0.037922 -0.034280 5.055286 7 H 0.001383 -0.000044 -0.037920 -0.008050 0.004507 0.373476 8 H 0.001285 -0.000047 -0.034281 0.004507 -0.008096 0.381353 9 C -0.035496 0.000518 -0.021041 0.001383 0.001285 0.135078 10 H 0.000518 -0.000009 0.001571 -0.000044 -0.000047 -0.008553 11 C -0.044845 0.005411 -0.033075 0.000970 0.000701 -0.027112 12 H 0.006700 -0.000154 0.000023 0.000009 -0.000015 0.001087 13 C 0.532702 -0.027431 -0.027108 0.000671 -0.004248 -0.033078 14 H -0.059942 -0.006839 0.001086 -0.000079 0.000783 0.000023 15 H 0.369185 -0.040176 -0.021432 -0.003816 0.001794 -0.008321 16 H 0.005828 -0.000094 -0.008319 0.000789 -0.000008 -0.021432 7 8 9 10 11 12 1 C 0.001383 0.001285 -0.035496 0.000518 -0.044845 0.006700 2 H -0.000044 -0.000047 0.000518 -0.000009 0.005411 -0.000154 3 C -0.037920 -0.034281 -0.021041 0.001571 -0.033075 0.000023 4 H -0.008050 0.004507 0.001383 -0.000044 0.000970 0.000009 5 H 0.004507 -0.008096 0.001285 -0.000047 0.000701 -0.000015 6 C 0.373476 0.381353 0.135078 -0.008553 -0.027112 0.001087 7 H 0.574328 -0.038591 -0.014082 0.000298 0.000671 -0.000079 8 H -0.038591 0.558383 -0.015472 -0.001430 -0.004250 0.000783 9 C -0.014082 -0.015472 5.122643 0.361268 0.532694 -0.059941 10 H 0.000298 -0.001430 0.361268 0.574329 -0.027429 -0.006839 11 C 0.000671 -0.004250 0.532694 -0.027429 4.797667 0.369462 12 H -0.000079 0.000783 -0.059941 -0.006839 0.369462 0.617866 13 C 0.000971 0.000701 -0.044846 0.005410 0.589164 -0.043502 14 H 0.000009 -0.000015 0.006700 -0.000154 -0.043503 -0.008153 15 H 0.000789 -0.000008 0.005831 -0.000094 -0.013278 -0.000027 16 H -0.003817 0.001794 0.369187 -0.040179 -0.028641 0.004944 13 14 15 16 1 C 0.532702 -0.059942 0.369185 0.005828 2 H -0.027431 -0.006839 -0.040176 -0.000094 3 C -0.027108 0.001086 -0.021432 -0.008319 4 H 0.000671 -0.000079 -0.003816 0.000789 5 H -0.004248 0.000783 0.001794 -0.000008 6 C -0.033078 0.000023 -0.008321 -0.021432 7 H 0.000971 0.000009 0.000789 -0.003817 8 H 0.000701 -0.000015 -0.000008 0.001794 9 C -0.044846 0.006700 0.005831 0.369187 10 H 0.005410 -0.000154 -0.000094 -0.040179 11 C 0.589164 -0.043503 -0.013278 -0.028641 12 H -0.043502 -0.008153 -0.000027 0.004944 13 C 4.797655 0.369462 -0.028643 -0.013275 14 H 0.369462 0.617871 0.004944 -0.000027 15 H -0.028643 0.004944 0.570076 0.007044 16 H -0.013275 -0.000027 0.007044 0.570070 Mulliken atomic charges: 1 1 C -0.345704 2 H 0.141383 3 C -0.294574 4 H 0.146150 5 H 0.153383 6 C -0.294569 7 H 0.146152 8 H 0.153382 9 C -0.345711 10 H 0.141384 11 C -0.074607 12 H 0.117836 13 C -0.074606 14 H 0.117833 15 H 0.156132 16 H 0.156137 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 C -0.048189 2 H 0.000000 3 C 0.004959 4 H 0.000000 5 H 0.000000 6 C 0.004964 7 H 0.000000 8 H 0.000000 9 C -0.048190 10 H 0.000000 11 C 0.043229 12 H 0.000000 13 C 0.043227 14 H 0.000000 15 H 0.000000 16 H 0.000000 Sum of Mulliken charges= 0.00000 APT atomic charges: 1 1 C 0.100211 2 H -0.005186 3 C -0.006789 4 H -0.000849 5 H -0.012124 6 C -0.006787 7 H -0.000848 8 H -0.012130 9 C 0.100200 10 H -0.005189 11 C -0.062910 12 H -0.000373 13 C -0.062924 14 H -0.000375 15 H -0.011966 16 H -0.011959 Sum of APT charges= 0.00000 APT Atomic charges with hydrogens summed into heavy atoms: 1 1 C 0.083059 2 H 0.000000 3 C -0.019763 4 H 0.000000 5 H 0.000000 6 C -0.019765 7 H 0.000000 8 H 0.000000 9 C 0.083051 10 H 0.000000 11 C -0.063283 12 H 0.000000 13 C -0.063299 14 H 0.000000 15 H 0.000000 16 H 0.000000 Sum of APT charges= 0.00000 Electronic spatial extent (au): = 581.8918 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.4787 Y= -0.0001 Z= 0.0507 Tot= 0.4814 Quadrupole moment (field-independent basis, Debye-Ang): XX= -41.1545 YY= -35.7503 ZZ= -36.9500 XY= -0.0004 XZ= -2.6901 YZ= -0.0003 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -3.2029 YY= 2.2013 ZZ= 1.0016 XY= -0.0004 XZ= -2.6901 YZ= -0.0003 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.8946 YYY= -0.0002 ZZZ= 0.4791 XYY= -1.1886 XXY= 0.0007 XXZ= -1.2464 XZZ= -0.9460 YZZ= -0.0004 YYZ= -1.5396 XYZ= 0.0002 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -383.5603 YYYY= -310.7151 ZZZZ= -106.8245 XXXY= -0.0025 XXXZ= -16.2792 YYYX= -0.0010 YYYZ= -0.0012 ZZZX= -3.0088 ZZZY= -0.0007 XXYY= -115.3706 XXZZ= -77.2155 YYZZ= -72.4066 XXYZ= -0.0006 YYXZ= -4.6877 ZZXY= -0.0003 N-N= 2.286220504796D+02 E-N=-9.993250503067D+02 KE= 2.321130520560D+02 Exact polarizability: 73.477 -0.001 79.399 -5.709 -0.001 51.524 Approx polarizability: 125.883 -0.002 132.875 -8.555 -0.001 76.633 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.026225956 0.006288037 0.005132787 2 1 0.004010210 -0.006739698 0.004187786 3 6 0.006628386 0.036557920 0.004365207 4 1 -0.001080155 -0.005206734 -0.009904542 5 1 -0.007762369 -0.005719544 0.007788320 6 6 0.006630034 -0.036564157 0.004360099 7 1 -0.001086115 0.005210002 -0.009906301 8 1 -0.007764195 0.005717995 0.007788776 9 6 -0.026224435 -0.006291566 0.005125785 10 1 0.004010543 0.006739318 0.004185777 11 6 0.024495209 0.010516957 -0.008689868 12 1 -0.006241201 0.003550676 0.004960824 13 6 0.024496997 -0.010515599 -0.008700044 14 1 -0.006242348 -0.003551316 0.004959396 15 1 0.006175543 0.004921496 -0.007826612 16 1 0.006179854 -0.004913786 -0.007827390 ------------------------------------------------------------------- Cartesian Forces: Max 0.036564157 RMS 0.012073457 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.023177687 RMS 0.006241211 Search for a saddle point. Step number 1 out of a maximum of 70 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swaping is turned off. Second derivative matrix not updated -- analytic derivatives used. Eigenvalues --- -0.03211 0.00296 0.01098 0.01797 0.01917 Eigenvalues --- 0.01929 0.02118 0.02131 0.02331 0.02383 Eigenvalues --- 0.02682 0.02698 0.02843 0.03192 0.03988 Eigenvalues --- 0.08829 0.10404 0.10597 0.10814 0.10879 Eigenvalues --- 0.11251 0.12679 0.13084 0.13438 0.14282 Eigenvalues --- 0.16122 0.17386 0.20560 0.31262 0.31636 Eigenvalues --- 0.32451 0.32518 0.32994 0.32995 0.33553 Eigenvalues --- 0.33775 0.34209 0.36197 0.37785 0.50177 Eigenvalues --- 0.51422 0.532281000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvectors required to have negative eigenvalues: R1 R2 R3 R4 R5 1 -0.01379 0.40370 0.09427 0.10564 -0.08927 R6 R7 R8 R9 R10 1 -0.01254 0.22367 -0.00725 -0.00914 -0.11306 R11 R12 R13 R14 R15 1 0.16661 0.11343 -0.00725 -0.00914 0.40371 R16 R17 R18 R19 R20 1 0.22368 0.16658 0.11347 0.09423 0.10564 R21 R22 R23 R24 R25 1 -0.01379 -0.08927 -0.01254 0.00081 0.07824 R26 A1 A2 A3 A4 1 0.00081 0.04359 0.01267 0.05041 0.00669 A5 A6 A7 A8 A9 1 0.05683 0.05216 0.05683 0.05216 0.00668 A10 A11 A12 A13 A14 1 0.04359 0.01266 0.05042 -0.00958 0.03651 A15 A16 A17 A18 D1 1 -0.02688 0.03651 -0.00958 -0.02688 0.09117 D2 D3 D4 D5 D6 1 0.08871 -0.21245 -0.21491 0.00000 0.29693 D7 D8 D9 D10 D11 1 -0.29692 0.00001 -0.08872 -0.09117 0.21492 D12 D13 D14 D15 D16 1 0.21247 -0.00001 0.00079 -0.00081 -0.00001 RFO step: Lambda0=8.584327140D-03 Lambda=-1.22141044D-02. Linear search not attempted -- option 19 set. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.464 Iteration 1 RMS(Cart)= 0.02538599 RMS(Int)= 0.00018321 Iteration 2 RMS(Cart)= 0.00018800 RMS(Int)= 0.00004854 Iteration 3 RMS(Cart)= 0.00000003 RMS(Int)= 0.00004854 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.07658 -0.00677 0.00000 -0.01082 -0.01086 2.06572 R2 4.00484 -0.00422 0.00000 0.09434 0.09420 4.09904 R3 4.51804 0.00088 0.00000 0.07026 0.07032 4.58836 R4 4.53961 0.00069 0.00000 0.06966 0.06972 4.60933 R5 2.61134 0.01334 0.00000 0.00202 0.00203 2.61338 R6 2.08013 -0.00989 0.00000 -0.01533 -0.01533 2.06480 R7 4.86879 -0.00140 0.00000 0.09352 0.09357 4.96236 R8 2.07909 -0.00951 0.00000 -0.01336 -0.01339 2.06571 R9 2.07799 -0.01094 0.00000 -0.01492 -0.01494 2.06305 R10 2.61339 0.02318 0.00000 0.00435 0.00435 2.61774 R11 5.12396 0.00615 0.00000 0.10861 0.10860 5.23256 R12 4.47632 -0.00108 0.00000 0.03061 0.03061 4.50693 R13 2.07910 -0.00952 0.00000 -0.01336 -0.01339 2.06571 R14 2.07799 -0.01094 0.00000 -0.01492 -0.01494 2.06305 R15 4.00478 -0.00422 0.00000 0.09433 0.09418 4.09896 R16 4.86869 -0.00141 0.00000 0.09351 0.09357 4.96226 R17 5.12383 0.00616 0.00000 0.10863 0.10862 5.23245 R18 4.47632 -0.00107 0.00000 0.03061 0.03061 4.50693 R19 4.51783 0.00089 0.00000 0.07029 0.07035 4.58818 R20 4.53952 0.00070 0.00000 0.06968 0.06974 4.60925 R21 2.07658 -0.00676 0.00000 -0.01082 -0.01085 2.06572 R22 2.61136 0.01334 0.00000 0.00202 0.00203 2.61339 R23 2.08013 -0.00989 0.00000 -0.01533 -0.01533 2.06480 R24 2.08216 -0.00849 0.00000 -0.01129 -0.01129 2.07087 R25 2.64081 -0.00714 0.00000 0.00476 0.00476 2.64557 R26 2.08216 -0.00849 0.00000 -0.01129 -0.01129 2.07087 A1 2.09431 -0.00072 0.00000 0.00208 0.00210 2.09641 A2 2.00271 -0.00051 0.00000 0.00080 0.00079 2.00350 A3 2.11613 -0.00203 0.00000 -0.00214 -0.00215 2.11398 A4 2.01199 -0.00088 0.00000 0.00021 0.00016 2.01216 A5 2.09421 -0.00174 0.00000 0.00268 0.00268 2.09688 A6 2.09456 -0.00128 0.00000 0.00246 0.00245 2.09701 A7 2.09423 -0.00174 0.00000 0.00267 0.00267 2.09690 A8 2.09455 -0.00128 0.00000 0.00246 0.00246 2.09701 A9 2.01198 -0.00088 0.00000 0.00022 0.00017 2.01215 A10 2.09430 -0.00072 0.00000 0.00207 0.00210 2.09640 A11 2.00266 -0.00050 0.00000 0.00082 0.00082 2.00347 A12 2.11619 -0.00204 0.00000 -0.00217 -0.00218 2.11401 A13 2.08816 -0.00172 0.00000 -0.00696 -0.00701 2.08114 A14 2.11507 0.00170 0.00000 0.00588 0.00578 2.12085 A15 2.06637 -0.00016 0.00000 -0.00244 -0.00251 2.06386 A16 2.11507 0.00170 0.00000 0.00588 0.00578 2.12085 A17 2.08817 -0.00172 0.00000 -0.00696 -0.00702 2.08115 A18 2.06636 -0.00016 0.00000 -0.00244 -0.00250 2.06386 D1 -2.95112 -0.00442 0.00000 -0.01237 -0.01234 -2.96346 D2 0.01126 -0.00564 0.00000 -0.03563 -0.03559 -0.02433 D3 0.60441 0.00490 0.00000 -0.01463 -0.01464 0.58977 D4 -2.71640 0.00368 0.00000 -0.03789 -0.03788 -2.75428 D5 -0.00002 0.00000 0.00000 0.00001 0.00001 0.00000 D6 2.69671 -0.01018 0.00000 0.01372 0.01382 2.71053 D7 -2.69675 0.01018 0.00000 -0.01370 -0.01381 -2.71055 D8 -0.00002 0.00000 0.00000 0.00001 0.00001 -0.00001 D9 -0.01128 0.00565 0.00000 0.03565 0.03560 0.02432 D10 2.95111 0.00443 0.00000 0.01238 0.01235 2.96346 D11 2.71640 -0.00368 0.00000 0.03789 0.03788 2.75428 D12 -0.60439 -0.00490 0.00000 0.01462 0.01463 -0.58977 D13 -0.00004 0.00000 0.00000 0.00002 0.00002 -0.00003 D14 -2.96460 0.00137 0.00000 0.02346 0.02350 -2.94110 D15 2.96452 -0.00136 0.00000 -0.02344 -0.02348 2.94105 D16 -0.00003 0.00000 0.00000 0.00001 0.00001 -0.00003 Item Value Threshold Converged? Maximum Force 0.023178 0.000450 NO RMS Force 0.006241 0.000300 NO Maximum Displacement 0.065715 0.001800 NO RMS Displacement 0.025394 0.001200 NO Predicted change in Energy=-1.370856D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.402107 1.422922 0.512373 2 1 0 0.304160 2.502968 0.375100 3 6 0 -1.489500 0.692516 -0.257947 4 1 0 -2.019116 1.241373 0.525113 5 1 0 -1.335826 1.240868 -1.189366 6 6 0 -1.489355 -0.692731 -0.257955 7 1 0 -2.018849 -1.241722 0.525095 8 1 0 -1.335577 -1.241035 -1.189386 9 6 0 0.402312 -1.422869 0.512362 10 1 0 0.304502 -2.502924 0.375054 11 6 0 1.279477 -0.699892 -0.275304 12 1 0 1.854919 -1.218549 -1.050397 13 6 0 1.279388 0.700084 -0.275286 14 1 0 1.854785 1.218830 -1.050352 15 1 0 0.089103 1.055395 1.492591 16 1 0 0.089265 -1.055444 1.492605 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093132 0.000000 3 C 2.169116 2.625967 0.000000 4 H 2.428054 2.647969 1.093124 0.000000 5 H 2.439154 2.594225 1.091717 1.845623 0.000000 6 C 2.940582 3.718864 1.385247 2.152812 2.151721 7 H 3.600210 4.409260 2.152821 2.483095 3.093404 8 H 3.607242 4.376518 2.151717 3.093393 2.481903 9 C 2.845790 3.929462 2.940609 3.600231 3.607283 10 H 3.929459 5.005892 3.718866 4.409249 4.376535 11 C 2.428281 3.410657 3.099409 3.910230 3.382583 12 H 3.395626 4.276281 3.932592 4.851968 4.030992 13 C 1.382940 2.150457 2.768953 3.437115 2.822646 14 H 2.143370 2.466853 3.476947 4.182070 3.193714 15 H 1.092646 1.841332 2.384964 2.327057 3.042649 16 H 2.683471 3.735946 2.934671 3.264457 3.807479 6 7 8 9 10 6 C 0.000000 7 H 1.093125 0.000000 8 H 1.091718 1.845617 0.000000 9 C 2.169077 2.427961 2.439112 0.000000 10 H 2.625914 2.647848 2.594166 1.093133 0.000000 11 C 2.768896 3.437030 2.822568 1.382944 2.150457 12 H 3.476869 4.181960 3.193602 2.143369 2.466845 13 C 3.099382 3.910189 3.382538 2.428287 3.410660 14 H 3.932586 4.851947 4.030965 3.395633 4.276284 15 H 2.934602 3.264392 3.807402 2.683420 3.735896 16 H 2.384965 2.326997 3.042646 1.092646 1.841316 11 12 13 14 15 11 C 0.000000 12 H 1.095859 0.000000 13 C 1.399975 2.147832 0.000000 14 H 2.147829 2.437378 1.095859 0.000000 15 H 2.761064 3.841317 2.160651 3.100146 0.000000 16 H 2.160677 3.100161 2.761106 3.841355 2.110839 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.405175 1.422901 0.507186 2 1 0 0.305943 2.502953 0.370880 3 6 0 -1.493985 0.692605 -0.244427 4 1 0 -2.015816 1.241498 0.543818 5 1 0 -1.349476 1.240944 -1.177320 6 6 0 -1.493923 -0.692641 -0.244429 7 1 0 -2.015697 -1.241596 0.543811 8 1 0 -1.349377 -1.240959 -1.177329 9 6 0 0.405209 -1.422889 0.507189 10 1 0 0.305984 -2.502939 0.370858 11 6 0 1.274602 -0.699968 -0.289099 12 1 0 1.842337 -1.218664 -1.069829 13 6 0 1.274597 0.700007 -0.289088 14 1 0 1.842350 1.218715 -1.069796 15 1 0 0.101837 1.055399 1.490447 16 1 0 0.101871 -1.055440 1.490470 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3588027 3.7321429 2.3911795 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 227.1990818203 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 402 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -234.542558563 A.U. after 13 cycles Convg = 0.2539D-08 -V/T = 2.0103 S**2 = 0.0000 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.016335398 0.002998352 0.001422015 2 1 0.002830148 -0.003397739 0.002829958 3 6 0.004954044 0.020781165 0.003210151 4 1 -0.001780040 -0.002957365 -0.005665149 5 1 -0.005180294 -0.003201131 0.003705667 6 6 0.004954354 -0.020784649 0.003207232 7 1 -0.001783953 0.002959146 -0.005666219 8 1 -0.005181345 0.003200154 0.003705881 9 6 -0.016334437 -0.003000565 0.001417720 10 1 0.002830378 0.003397675 0.002828949 11 6 0.015119861 0.006081270 -0.004250002 12 1 -0.003576644 0.001919606 0.002591705 13 6 0.015120585 -0.006080364 -0.004256205 14 1 -0.003577520 -0.001919884 0.002590871 15 1 0.003968956 0.002862232 -0.003835970 16 1 0.003971307 -0.002857903 -0.003836605 ------------------------------------------------------------------- Cartesian Forces: Max 0.020784649 RMS 0.007107970 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.013222495 RMS 0.003654631 Search for a saddle point. Step number 2 out of a maximum of 70 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swaping is turned off. Update second derivatives using D2CorX and points 1 2 Eigenvalues --- -0.03084 0.00296 0.01098 0.01797 0.01924 Eigenvalues --- 0.01929 0.02040 0.02131 0.02332 0.02383 Eigenvalues --- 0.02679 0.02698 0.02844 0.03192 0.03934 Eigenvalues --- 0.08829 0.10403 0.10597 0.10814 0.10878 Eigenvalues --- 0.11250 0.12679 0.13082 0.13436 0.14281 Eigenvalues --- 0.16121 0.17384 0.20559 0.31258 0.31629 Eigenvalues --- 0.32452 0.32516 0.32993 0.33030 0.33553 Eigenvalues --- 0.33776 0.34208 0.36188 0.37784 0.50175 Eigenvalues --- 0.51422 0.532241000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvectors required to have negative eigenvalues: R1 R2 R3 R4 R5 1 -0.01352 0.40250 0.09571 0.10691 -0.08850 R6 R7 R8 R9 R10 1 -0.01110 0.22456 -0.00663 -0.00835 -0.11198 R11 R12 R13 R14 R15 1 0.16933 0.11202 -0.00663 -0.00835 0.40252 R16 R17 R18 R19 R20 1 0.22457 0.16931 0.11204 0.09569 0.10691 R21 R22 R23 R24 R25 1 -0.01352 -0.08850 -0.01110 0.00136 0.07807 R26 A1 A2 A3 A4 1 0.00136 0.04389 0.01254 0.04980 0.00565 A5 A6 A7 A8 A9 1 0.05530 0.05092 0.05531 0.05092 0.00565 A10 A11 A12 A13 A14 1 0.04389 0.01253 0.04981 -0.00884 0.03623 A15 A16 A17 A18 D1 1 -0.02682 0.03622 -0.00884 -0.02682 0.09180 D2 D3 D4 D5 D6 1 0.09183 -0.21222 -0.21220 0.00000 0.29814 D7 D8 D9 D10 D11 1 -0.29813 0.00001 -0.09184 -0.09181 0.21221 D12 D13 D14 D15 D16 1 0.21224 -0.00002 -0.00196 0.00194 -0.00001 RFO step: Lambda0=4.201230950D-03 Lambda=-6.01115921D-03. Linear search not attempted -- option 19 set. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.572 Iteration 1 RMS(Cart)= 0.02628055 RMS(Int)= 0.00017061 Iteration 2 RMS(Cart)= 0.00018287 RMS(Int)= 0.00003226 Iteration 3 RMS(Cart)= 0.00000004 RMS(Int)= 0.00003226 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06572 -0.00362 0.00000 -0.00686 -0.00687 2.05885 R2 4.09904 -0.00305 0.00000 0.08763 0.08755 4.18659 R3 4.58836 0.00097 0.00000 0.07696 0.07701 4.66536 R4 4.60933 0.00080 0.00000 0.07509 0.07513 4.68446 R5 2.61338 0.00773 0.00000 -0.00002 0.00000 2.61337 R6 2.06480 -0.00523 0.00000 -0.00997 -0.00996 2.05484 R7 4.96236 -0.00058 0.00000 0.09906 0.09908 5.06144 R8 2.06571 -0.00512 0.00000 -0.00817 -0.00819 2.05752 R9 2.06305 -0.00586 0.00000 -0.00900 -0.00902 2.05403 R10 2.61774 0.01322 0.00000 0.00090 0.00090 2.61863 R11 5.23256 0.00402 0.00000 0.10506 0.10505 5.33761 R12 4.50693 -0.00076 0.00000 0.03232 0.03231 4.53924 R13 2.06571 -0.00512 0.00000 -0.00817 -0.00819 2.05752 R14 2.06305 -0.00587 0.00000 -0.00900 -0.00902 2.05403 R15 4.09896 -0.00305 0.00000 0.08763 0.08755 4.18651 R16 4.96226 -0.00059 0.00000 0.09907 0.09909 5.06134 R17 5.23245 0.00403 0.00000 0.10509 0.10507 5.33753 R18 4.50693 -0.00076 0.00000 0.03231 0.03230 4.53923 R19 4.58818 0.00098 0.00000 0.07700 0.07704 4.66523 R20 4.60925 0.00080 0.00000 0.07510 0.07514 4.68440 R21 2.06572 -0.00362 0.00000 -0.00686 -0.00687 2.05885 R22 2.61339 0.00772 0.00000 -0.00002 -0.00001 2.61338 R23 2.06480 -0.00523 0.00000 -0.00997 -0.00996 2.05484 R24 2.07087 -0.00462 0.00000 -0.00746 -0.00746 2.06342 R25 2.64557 -0.00414 0.00000 0.00604 0.00605 2.65162 R26 2.07087 -0.00462 0.00000 -0.00746 -0.00746 2.06342 A1 2.09641 -0.00055 0.00000 0.00051 0.00051 2.09692 A2 2.00350 -0.00032 0.00000 -0.00073 -0.00074 2.00276 A3 2.11398 -0.00138 0.00000 -0.00286 -0.00288 2.11110 A4 2.01216 -0.00045 0.00000 -0.00027 -0.00029 2.01187 A5 2.09688 -0.00117 0.00000 0.00062 0.00064 2.09752 A6 2.09701 -0.00088 0.00000 0.00076 0.00077 2.09779 A7 2.09690 -0.00117 0.00000 0.00061 0.00063 2.09753 A8 2.09701 -0.00088 0.00000 0.00076 0.00078 2.09778 A9 2.01215 -0.00045 0.00000 -0.00027 -0.00028 2.01187 A10 2.09640 -0.00055 0.00000 0.00051 0.00051 2.09691 A11 2.00347 -0.00032 0.00000 -0.00071 -0.00073 2.00275 A12 2.11401 -0.00138 0.00000 -0.00288 -0.00290 2.11111 A13 2.08114 -0.00096 0.00000 -0.00555 -0.00561 2.07553 A14 2.12085 0.00083 0.00000 0.00468 0.00460 2.12545 A15 2.06386 -0.00002 0.00000 -0.00279 -0.00286 2.06101 A16 2.12085 0.00083 0.00000 0.00468 0.00461 2.12545 A17 2.08115 -0.00095 0.00000 -0.00556 -0.00561 2.07554 A18 2.06386 -0.00002 0.00000 -0.00279 -0.00285 2.06101 D1 -2.96346 -0.00298 0.00000 -0.01816 -0.01814 -2.98161 D2 -0.02433 -0.00386 0.00000 -0.03969 -0.03967 -0.06400 D3 0.58977 0.00345 0.00000 -0.00928 -0.00928 0.58049 D4 -2.75428 0.00257 0.00000 -0.03082 -0.03080 -2.78508 D5 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 D6 2.71053 -0.00672 0.00000 0.00287 0.00294 2.71347 D7 -2.71055 0.00672 0.00000 -0.00286 -0.00293 -2.71348 D8 -0.00001 0.00000 0.00000 0.00001 0.00001 -0.00001 D9 0.02432 0.00386 0.00000 0.03970 0.03968 0.06400 D10 2.96346 0.00298 0.00000 0.01816 0.01815 2.98161 D11 2.75428 -0.00257 0.00000 0.03081 0.03080 2.78508 D12 -0.58977 -0.00346 0.00000 0.00927 0.00927 -0.58050 D13 -0.00003 0.00000 0.00000 0.00001 0.00001 -0.00002 D14 -2.94110 0.00098 0.00000 0.02166 0.02169 -2.91941 D15 2.94105 -0.00098 0.00000 -0.02164 -0.02166 2.91938 D16 -0.00003 0.00000 0.00000 0.00001 0.00001 -0.00002 Item Value Threshold Converged? Maximum Force 0.013222 0.000450 NO RMS Force 0.003655 0.000300 NO Maximum Displacement 0.071031 0.001800 NO RMS Displacement 0.026289 0.001200 NO Predicted change in Energy=-8.093885D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.419433 1.429944 0.510835 2 1 0 0.338993 2.508767 0.381699 3 6 0 -1.521276 0.692745 -0.262725 4 1 0 -2.042032 1.240026 0.521342 5 1 0 -1.373401 1.239431 -1.190473 6 6 0 -1.521141 -0.692977 -0.262740 7 1 0 -2.041791 -1.240382 0.521311 8 1 0 -1.373165 -1.239611 -1.190504 9 6 0 0.419633 -1.429887 0.510817 10 1 0 0.339340 -2.508718 0.381654 11 6 0 1.303343 -0.701491 -0.264439 12 1 0 1.869748 -1.215532 -1.043682 13 6 0 1.303251 0.701685 -0.264423 14 1 0 1.869602 1.215816 -1.043646 15 1 0 0.090548 1.061651 1.479637 16 1 0 0.090710 -1.061677 1.479638 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.089498 0.000000 3 C 2.215448 2.678399 0.000000 4 H 2.468804 2.701571 1.088790 0.000000 5 H 2.478911 2.648628 1.086946 1.837765 0.000000 6 C 2.978429 3.758532 1.385721 2.150026 2.148655 7 H 3.631581 4.443393 2.150029 2.480408 3.086491 8 H 3.637924 4.410629 2.148653 3.086487 2.479043 9 C 2.859831 3.941595 2.978433 3.631576 3.637942 10 H 3.941593 5.017484 3.758521 4.443369 4.410634 11 C 2.434206 3.413681 3.149979 3.946957 3.433609 12 H 3.393888 4.271454 3.968685 4.876585 4.070185 13 C 1.382938 2.147746 2.824542 3.478240 2.882916 14 H 2.136645 2.458881 3.518735 4.213153 3.246411 15 H 1.087375 1.833395 2.402061 2.344791 3.050286 16 H 2.693477 3.743686 2.951665 3.280969 3.816834 6 7 8 9 10 6 C 0.000000 7 H 1.088790 0.000000 8 H 1.086946 1.837762 0.000000 9 C 2.215408 2.468731 2.478876 0.000000 10 H 2.678348 2.701475 2.648582 1.089498 0.000000 11 C 2.824497 3.478179 2.882857 1.382941 2.147744 12 H 3.518673 4.213070 3.246325 2.136644 2.458873 13 C 3.149964 3.946937 3.433578 2.434209 3.413682 14 H 3.968683 4.876576 4.070164 3.393893 4.271455 15 H 2.951633 3.280948 3.816794 2.693450 3.743661 16 H 2.402059 2.344758 3.050287 1.087375 1.833388 11 12 13 14 15 11 C 0.000000 12 H 1.091913 0.000000 13 C 1.403175 2.145666 0.000000 14 H 2.145665 2.431347 1.091913 0.000000 15 H 2.760677 3.836437 2.154523 3.091239 0.000000 16 H 2.154534 3.091244 2.760698 3.836456 2.123329 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.424688 -1.429914 0.500960 2 1 0 -0.341999 -2.508743 0.373303 3 6 0 1.529884 -0.692879 -0.237036 4 1 0 2.036192 -1.240213 0.556401 5 1 0 1.398921 -1.239546 -1.167335 6 6 0 1.529871 0.692842 -0.237040 7 1 0 2.036170 1.240195 0.556390 8 1 0 1.398905 1.239497 -1.167345 9 6 0 -0.424636 1.429917 0.500966 10 1 0 -0.341904 2.508742 0.373301 11 6 0 -1.294110 0.701605 -0.290300 12 1 0 -1.846150 1.215702 -1.079748 13 6 0 -1.294142 -0.701571 -0.290296 14 1 0 -1.846219 -1.215645 -1.079733 15 1 0 -0.113511 -1.061658 1.475608 16 1 0 -0.113486 1.061670 1.475627 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3467022 3.6137189 2.3325476 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 225.8374489958 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 402 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -234.543373640 A.U. after 15 cycles Convg = 0.3433D-08 -V/T = 2.0102 S**2 = 0.0000 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.008217684 0.001108912 -0.000209233 2 1 0.001624730 -0.001271783 0.001587352 3 6 0.002887799 0.009689405 0.001886623 4 1 -0.001556808 -0.001352585 -0.002611520 5 1 -0.002878791 -0.001435527 0.001253978 6 6 0.002887609 -0.009691036 0.001885259 7 1 -0.001558987 0.001353347 -0.002612102 8 1 -0.002879439 0.001435073 0.001254063 9 6 -0.008216778 -0.001109979 -0.000211483 10 1 0.001624759 0.001271816 0.001587068 11 6 0.007654487 0.002949781 -0.001688775 12 1 -0.001551434 0.000817194 0.001079984 13 6 0.007654316 -0.002949223 -0.001691833 14 1 -0.001551971 -0.000817299 0.001079569 15 1 0.002038603 0.001344698 -0.001294318 16 1 0.002039589 -0.001342797 -0.001294632 ------------------------------------------------------------------- Cartesian Forces: Max 0.009691036 RMS 0.003454459 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.006288890 RMS 0.001782690 Search for a saddle point. Step number 3 out of a maximum of 70 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swaping is turned off. Update second derivatives using D2CorX and points 1 2 3 Eigenvalues --- -0.02869 0.00296 0.01098 0.01797 0.01872 Eigenvalues --- 0.01929 0.01949 0.02131 0.02334 0.02383 Eigenvalues --- 0.02674 0.02698 0.02845 0.03192 0.03857 Eigenvalues --- 0.08827 0.10400 0.10595 0.10813 0.10875 Eigenvalues --- 0.11247 0.12679 0.13076 0.13432 0.14279 Eigenvalues --- 0.16117 0.17379 0.20557 0.31247 0.31612 Eigenvalues --- 0.32451 0.32512 0.32992 0.33049 0.33551 Eigenvalues --- 0.33770 0.34207 0.36173 0.37783 0.50169 Eigenvalues --- 0.51420 0.532171000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvalues --- 1000.000001000.000001000.000001000.000001000.00000 Eigenvectors required to have negative eigenvalues: R1 R2 R3 R4 R5 1 -0.01349 0.40170 0.09564 0.10696 -0.08750 R6 R7 R8 R9 R10 1 -0.00973 0.22348 -0.00634 -0.00803 -0.11054 R11 R12 R13 R14 R15 1 0.17262 0.10919 -0.00634 -0.00803 0.40173 R16 R17 R18 R19 R20 1 0.22349 0.17260 0.10922 0.09562 0.10697 R21 R22 R23 R24 R25 1 -0.01349 -0.08750 -0.00973 0.00185 0.07764 R26 A1 A2 A3 A4 1 0.00185 0.04557 0.01339 0.05052 0.00585 A5 A6 A7 A8 A9 1 0.05492 0.05079 0.05493 0.05079 0.00585 A10 A11 A12 A13 A14 1 0.04558 0.01338 0.05053 -0.00775 0.03597 A15 A16 A17 A18 D1 1 -0.02665 0.03597 -0.00775 -0.02665 0.09353 D2 D3 D4 D5 D6 1 0.09813 -0.21242 -0.20782 -0.00001 0.29995 D7 D8 D9 D10 D11 1 -0.29995 0.00001 -0.09814 -0.09353 0.20783 D12 D13 D14 D15 D16 1 0.21244 -0.00002 -0.00683 0.00680 -0.00001 RFO step: Lambda0=1.406412787D-03 Lambda=-2.22091304D-03. Linear search not attempted -- option 19 set. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.833 Iteration 1 RMS(Cart)= 0.02810160 RMS(Int)= 0.00018335 Iteration 2 RMS(Cart)= 0.00018726 RMS(Int)= 0.00002834 Iteration 3 RMS(Cart)= 0.00000005 RMS(Int)= 0.00002833 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.05885 -0.00151 0.00000 -0.00356 -0.00356 2.05529 R2 4.18659 -0.00178 0.00000 0.08110 0.08109 4.26768 R3 4.66536 0.00076 0.00000 0.08377 0.08381 4.74918 R4 4.68446 0.00065 0.00000 0.08036 0.08040 4.76486 R5 2.61337 0.00376 0.00000 -0.00054 -0.00051 2.61286 R6 2.05484 -0.00205 0.00000 -0.00529 -0.00528 2.04956 R7 5.06144 -0.00010 0.00000 0.10287 0.10287 5.16431 R8 2.05752 -0.00215 0.00000 -0.00406 -0.00407 2.05344 R9 2.05403 -0.00247 0.00000 -0.00440 -0.00442 2.04961 R10 2.61863 0.00629 0.00000 -0.00037 -0.00037 2.61826 R11 5.33761 0.00224 0.00000 0.10260 0.10256 5.44017 R12 4.53924 -0.00045 0.00000 0.03279 0.03276 4.57200 R13 2.05752 -0.00215 0.00000 -0.00406 -0.00407 2.05344 R14 2.05403 -0.00248 0.00000 -0.00440 -0.00442 2.04961 R15 4.18651 -0.00178 0.00000 0.08113 0.08111 4.26762 R16 5.06134 -0.00010 0.00000 0.10289 0.10289 5.16424 R17 5.33753 0.00224 0.00000 0.10264 0.10260 5.44013 R18 4.53923 -0.00045 0.00000 0.03279 0.03276 4.57199 R19 4.66523 0.00077 0.00000 0.08384 0.08388 4.74910 R20 4.68440 0.00065 0.00000 0.08038 0.08042 4.76482 R21 2.05885 -0.00151 0.00000 -0.00356 -0.00356 2.05529 R22 2.61338 0.00376 0.00000 -0.00054 -0.00051 2.61286 R23 2.05484 -0.00205 0.00000 -0.00529 -0.00528 2.04956 R24 2.06342 -0.00196 0.00000 -0.00438 -0.00438 2.05903 R25 2.65162 -0.00197 0.00000 0.00623 0.00623 2.65785 R26 2.06342 -0.00196 0.00000 -0.00438 -0.00438 2.05903 A1 2.09692 -0.00033 0.00000 -0.00086 -0.00091 2.09601 A2 2.00276 -0.00021 0.00000 -0.00232 -0.00237 2.00039 A3 2.11110 -0.00076 0.00000 -0.00345 -0.00351 2.10759 A4 2.01187 -0.00018 0.00000 -0.00060 -0.00062 2.01125 A5 2.09752 -0.00067 0.00000 -0.00160 -0.00160 2.09592 A6 2.09779 -0.00050 0.00000 -0.00096 -0.00095 2.09684 A7 2.09753 -0.00067 0.00000 -0.00161 -0.00160 2.09592 A8 2.09778 -0.00050 0.00000 -0.00096 -0.00095 2.09683 A9 2.01187 -0.00018 0.00000 -0.00060 -0.00062 2.01125 A10 2.09691 -0.00033 0.00000 -0.00086 -0.00090 2.09601 A11 2.00275 -0.00021 0.00000 -0.00231 -0.00236 2.00038 A12 2.11111 -0.00077 0.00000 -0.00347 -0.00352 2.10759 A13 2.07553 -0.00040 0.00000 -0.00371 -0.00373 2.07180 A14 2.12545 0.00032 0.00000 0.00379 0.00375 2.12920 A15 2.06101 0.00000 0.00000 -0.00274 -0.00276 2.05825 A16 2.12545 0.00032 0.00000 0.00379 0.00375 2.12920 A17 2.07554 -0.00040 0.00000 -0.00371 -0.00373 2.07180 A18 2.06101 0.00000 0.00000 -0.00274 -0.00276 2.05825 D1 -2.98161 -0.00166 0.00000 -0.02316 -0.02315 -3.00476 D2 -0.06400 -0.00210 0.00000 -0.03741 -0.03740 -0.10140 D3 0.58049 0.00198 0.00000 -0.00430 -0.00428 0.57621 D4 -2.78508 0.00153 0.00000 -0.01855 -0.01853 -2.80362 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 2.71347 -0.00369 0.00000 -0.00861 -0.00854 2.70493 D7 -2.71348 0.00369 0.00000 0.00861 0.00854 -2.70493 D8 -0.00001 0.00000 0.00000 0.00000 0.00000 -0.00001 D9 0.06400 0.00211 0.00000 0.03741 0.03740 0.10141 D10 2.98161 0.00166 0.00000 0.02316 0.02315 3.00476 D11 2.78508 -0.00153 0.00000 0.01854 0.01853 2.80361 D12 -0.58050 -0.00198 0.00000 0.00429 0.00428 -0.57622 D13 -0.00002 0.00000 0.00000 0.00001 0.00001 -0.00001 D14 -2.91941 0.00049 0.00000 0.01428 0.01429 -2.90513 D15 2.91938 -0.00049 0.00000 -0.01425 -0.01427 2.90511 D16 -0.00002 0.00000 0.00000 0.00001 0.00001 -0.00001 Item Value Threshold Converged? Maximum Force 0.006289 0.000450 NO RMS Force 0.001783 0.000300 NO Maximum Displacement 0.079508 0.001800 NO RMS Displacement 0.028129 0.001200 NO Predicted change in Energy=-4.370208D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.435463 1.435848 0.506872 2 1 0 0.375832 2.515399 0.388909 3 6 0 -1.552160 0.692641 -0.265899 4 1 0 -2.069811 1.237344 0.519029 5 1 0 -1.415450 1.237257 -1.193840 6 6 0 -1.552040 -0.692885 -0.265913 7 1 0 -2.069600 -1.237694 0.519000 8 1 0 -1.415239 -1.237455 -1.193868 9 6 0 0.435667 -1.435792 0.506846 10 1 0 0.376190 -2.515349 0.388859 11 6 0 1.326714 -0.703137 -0.255404 12 1 0 1.891337 -1.213429 -1.035158 13 6 0 1.326616 0.703336 -0.255389 14 1 0 1.891173 1.213723 -1.035128 15 1 0 0.093469 1.066849 1.467700 16 1 0 0.093633 -1.066867 1.467688 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.087613 0.000000 3 C 2.258357 2.732833 0.000000 4 H 2.513155 2.762522 1.086634 0.000000 5 H 2.521455 2.710615 1.084607 1.833605 0.000000 6 C 3.013116 3.799812 1.385526 2.147092 2.145962 7 H 3.663784 4.481380 2.147092 2.475038 3.080116 8 H 3.669355 4.449386 2.145961 3.080115 2.474712 9 C 2.871640 3.953404 3.013108 3.663772 3.669354 10 H 3.953404 5.030748 3.799795 4.481358 4.449377 11 C 2.439396 3.417352 3.199410 3.987681 3.487873 12 H 3.393538 4.269530 4.010304 4.910446 4.118966 13 C 1.382668 2.145387 2.878815 3.524288 2.946979 14 H 2.132181 2.453263 3.566481 4.255039 3.310513 15 H 1.084578 1.828064 2.419399 2.368296 3.064257 16 H 2.702517 3.751804 2.968135 3.299974 3.830150 6 7 8 9 10 6 C 0.000000 7 H 1.086634 0.000000 8 H 1.084607 1.833604 0.000000 9 C 2.258329 2.513116 2.521433 0.000000 10 H 2.732796 2.762468 2.710582 1.087613 0.000000 11 C 2.878792 3.524259 2.946951 1.382669 2.145386 12 H 3.566448 4.254999 3.310470 2.132181 2.453261 13 C 3.199406 3.987675 3.487862 2.439397 3.417352 14 H 4.010306 4.910446 4.118960 3.393539 4.269530 15 H 2.968127 3.299972 3.830139 2.702509 3.751796 16 H 2.419395 2.368283 3.064258 1.084578 1.828062 11 12 13 14 15 11 C 0.000000 12 H 1.089593 0.000000 13 C 1.406473 2.144980 0.000000 14 H 2.144979 2.427151 1.089593 0.000000 15 H 2.760948 3.833575 2.149843 3.085038 0.000000 16 H 2.149845 3.085038 2.760952 3.833579 2.133716 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.441958 -1.435817 0.493509 2 1 0 -0.379538 -2.515372 0.377038 3 6 0 1.564177 -0.692788 -0.230031 4 1 0 2.062274 -1.237547 0.567410 5 1 0 1.450327 -1.237381 -1.161067 6 6 0 1.564186 0.692738 -0.230031 7 1 0 2.062295 1.237491 0.567406 8 1 0 1.450348 1.237331 -1.161069 9 6 0 -0.441893 1.435824 0.493514 10 1 0 -0.379426 2.515376 0.377041 11 6 0 -1.313952 0.703260 -0.290474 12 1 0 -1.859137 1.213613 -1.083902 13 6 0 -1.313985 -0.703213 -0.290474 14 1 0 -1.859201 -1.213539 -1.083898 15 1 0 -0.123714 -1.066859 1.462478 16 1 0 -0.123678 1.066857 1.462489 --------------------------------------------------------------------- Rotational constants (GHZ): 4.3390323 3.5010288 2.2766185 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 224.4960122199 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 1.00D-06 HarFok: IExCor= 402 AccDes= 1.00D-06 IRadAn= 1 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB+HF-LYP) = -234.543829652 A.U. after 13 cycles Convg = 0.1763D-08 -V/T = 2.0102 S**2 = 0.0000