Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 8480. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 23-May-2019 ****************************************** %chk=\\icnas1.cc.ic.ac.uk\mm1517\2nd Year Comp Inorganic\[N(CH3)4]+\MM_OPT_sym_2 .chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------------------- [N(CH3)4]+ optimisation ----------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.50942 H -0.89325 -0.51572 1.86239 H 0.89325 -0.51572 1.86239 H 0. 1.03144 1.86239 C 0. -1.4231 -0.50314 H 0. -1.41207 -1.59325 H 0.89325 -1.92779 -0.13457 H -0.89325 -1.92779 -0.13457 C -1.23244 0.71155 -0.50314 H -1.22289 1.73747 -0.13457 H -1.22289 0.70603 -1.59325 H -2.11614 0.19032 -0.13457 C 1.23244 0.71155 -0.50314 H 1.22289 0.70603 -1.59325 H 1.22289 1.73747 -0.13457 H 2.11614 0.19032 -0.13457 N 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0902 estimate D2E/DX2 ! ! R2 R(1,3) 1.0902 estimate D2E/DX2 ! ! R3 R(1,4) 1.0902 estimate D2E/DX2 ! ! R4 R(1,17) 1.5094 estimate D2E/DX2 ! ! R5 R(5,6) 1.0902 estimate D2E/DX2 ! ! R6 R(5,7) 1.0902 estimate D2E/DX2 ! ! R7 R(5,8) 1.0902 estimate D2E/DX2 ! ! R8 R(5,17) 1.5094 estimate D2E/DX2 ! ! R9 R(9,10) 1.0902 estimate D2E/DX2 ! ! R10 R(9,11) 1.0902 estimate D2E/DX2 ! ! R11 R(9,12) 1.0902 estimate D2E/DX2 ! ! R12 R(9,17) 1.5094 estimate D2E/DX2 ! ! R13 R(13,14) 1.0902 estimate D2E/DX2 ! ! R14 R(13,15) 1.0902 estimate D2E/DX2 ! ! R15 R(13,16) 1.0902 estimate D2E/DX2 ! ! R16 R(13,17) 1.5094 estimate D2E/DX2 ! ! A1 A(2,1,3) 110.0446 estimate D2E/DX2 ! ! A2 A(2,1,4) 110.0446 estimate D2E/DX2 ! ! A3 A(2,1,17) 108.8916 estimate D2E/DX2 ! ! A4 A(3,1,4) 110.0446 estimate D2E/DX2 ! ! A5 A(3,1,17) 108.8916 estimate D2E/DX2 ! ! A6 A(4,1,17) 108.8916 estimate D2E/DX2 ! ! A7 A(6,5,7) 110.0446 estimate D2E/DX2 ! ! A8 A(6,5,8) 110.0446 estimate D2E/DX2 ! ! A9 A(6,5,17) 108.8916 estimate D2E/DX2 ! ! A10 A(7,5,8) 110.0446 estimate D2E/DX2 ! ! A11 A(7,5,17) 108.8916 estimate D2E/DX2 ! ! A12 A(8,5,17) 108.8916 estimate D2E/DX2 ! ! A13 A(10,9,11) 110.0446 estimate D2E/DX2 ! ! A14 A(10,9,12) 110.0446 estimate D2E/DX2 ! ! A15 A(10,9,17) 108.8916 estimate D2E/DX2 ! ! A16 A(11,9,12) 110.0446 estimate D2E/DX2 ! ! A17 A(11,9,17) 108.8916 estimate D2E/DX2 ! ! A18 A(12,9,17) 108.8916 estimate D2E/DX2 ! ! A19 A(14,13,15) 110.0446 estimate D2E/DX2 ! ! A20 A(14,13,16) 110.0446 estimate D2E/DX2 ! ! A21 A(14,13,17) 108.8916 estimate D2E/DX2 ! ! A22 A(15,13,16) 110.0446 estimate D2E/DX2 ! ! A23 A(15,13,17) 108.8916 estimate D2E/DX2 ! ! A24 A(16,13,17) 108.8916 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) -60.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 60.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) 180.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) 60.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) 180.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) -60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) 180.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) -60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 60.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 180.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) 60.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) -60.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) -60.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) 180.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) 60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) 60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) -60.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 180.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 60.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 180.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) 180.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) -60.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) -60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) 60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 180.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 60.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) -60.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) -60.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) 180.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) 60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) 60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) -60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.509422 2 1 0 -0.893250 -0.515718 1.862393 3 1 0 0.893250 -0.515718 1.862393 4 1 0 0.000000 1.031436 1.862393 5 6 0 0.000000 -1.423096 -0.503141 6 1 0 0.000000 -1.412068 -1.593245 7 1 0 0.893250 -1.927787 -0.134574 8 1 0 -0.893250 -1.927787 -0.134574 9 6 0 -1.232438 0.711548 -0.503141 10 1 0 -1.222887 1.737471 -0.134574 11 1 0 -1.222887 0.706034 -1.593245 12 1 0 -2.116137 0.190316 -0.134574 13 6 0 1.232438 0.711548 -0.503141 14 1 0 1.222887 0.706034 -1.593245 15 1 0 1.222887 1.737471 -0.134574 16 1 0 2.116137 0.190316 -0.134574 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090160 0.000000 3 H 1.090160 1.786500 0.000000 4 H 1.090160 1.786500 1.786500 0.000000 5 C 2.464875 2.686443 2.686443 3.408882 0.000000 6 H 3.408882 3.680050 3.680050 4.232274 1.090160 7 H 2.686443 3.028761 2.445774 3.680050 1.090160 8 H 2.686443 2.445774 3.028761 3.680050 1.090160 9 C 2.464875 2.686443 3.408882 2.686443 2.464875 10 H 2.686443 3.028761 3.680050 2.445774 3.408882 11 H 3.408882 3.680050 4.232274 3.680050 2.686443 12 H 2.686443 2.445774 3.680050 3.028761 2.686443 13 C 2.464875 3.408882 2.686443 2.686443 2.464875 14 H 3.408882 4.232274 3.680050 3.680050 2.686443 15 H 2.686443 3.680050 3.028761 2.445774 3.408882 16 H 2.686443 3.680050 2.445774 3.028761 2.686443 17 N 1.509422 2.128936 2.128936 2.128936 1.509422 6 7 8 9 10 6 H 0.000000 7 H 1.786500 0.000000 8 H 1.786500 1.786500 0.000000 9 C 2.686443 3.408882 2.686443 0.000000 10 H 3.680050 4.232274 3.680050 1.090160 0.000000 11 H 2.445774 3.680050 3.028761 1.090160 1.786500 12 H 3.028761 3.680050 2.445774 1.090160 1.786500 13 C 2.686443 2.686443 3.408882 2.464875 2.686443 14 H 2.445774 3.028761 3.680050 2.686443 3.028761 15 H 3.680050 3.680050 4.232274 2.686443 2.445774 16 H 3.028761 2.445774 3.680050 3.408882 3.680050 17 N 2.128936 2.128936 2.128936 1.509422 2.128936 11 12 13 14 15 11 H 0.000000 12 H 1.786500 0.000000 13 C 2.686443 3.408882 0.000000 14 H 2.445774 3.680050 1.090160 0.000000 15 H 3.028761 3.680050 1.090160 1.786500 0.000000 16 H 3.680050 4.232274 1.090160 1.786500 1.786500 17 N 2.128936 2.128936 1.509422 2.128936 2.128936 16 17 16 H 0.000000 17 N 2.128936 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.871465 0.871465 0.871465 2 1 0 0.233089 1.496335 1.496335 3 1 0 1.496335 0.233089 1.496335 4 1 0 1.496335 1.496335 0.233089 5 6 0 -0.871465 -0.871465 0.871465 6 1 0 -1.496335 -1.496335 0.233089 7 1 0 -0.233089 -1.496335 1.496335 8 1 0 -1.496335 -0.233089 1.496335 9 6 0 -0.871465 0.871465 -0.871465 10 1 0 -0.233089 1.496335 -1.496335 11 1 0 -1.496335 0.233089 -1.496335 12 1 0 -1.496335 1.496335 -0.233089 13 6 0 0.871465 -0.871465 -0.871465 14 1 0 0.233089 -1.496335 -1.496335 15 1 0 1.496335 -0.233089 -1.496335 16 1 0 1.496335 -1.496335 -0.233089 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6174427 4.6174427 4.6174427 Standard basis: 6-31G(d,p) (6D, 7F) There are 36 symmetry adapted cartesian basis functions of A symmetry. There are 33 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 33 symmetry adapted cartesian basis functions of B3 symmetry. There are 36 symmetry adapted basis functions of A symmetry. There are 33 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. There are 33 symmetry adapted basis functions of B3 symmetry. 135 basis functions, 224 primitive gaussians, 135 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 213.0903310383 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 135 RedAO= T EigKep= 5.45D-03 NBF= 36 33 33 33 NBsUse= 135 1.00D-06 EigRej= -1.00D+00 NBFU= 36 33 33 33 ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=52778759. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -214.181284194 A.U. after 12 cycles NFock= 12 Conv=0.78D-09 -V/T= 2.0102 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -14.64880 -10.41434 -10.41434 -10.41434 -10.41432 Alpha occ. eigenvalues -- -1.19646 -0.92556 -0.92556 -0.92556 -0.80746 Alpha occ. eigenvalues -- -0.69896 -0.69896 -0.69896 -0.62247 -0.62247 Alpha occ. eigenvalues -- -0.58034 -0.58034 -0.58034 -0.57934 -0.57934 Alpha occ. eigenvalues -- -0.57934 Alpha virt. eigenvalues -- -0.13301 -0.06863 -0.06662 -0.06662 -0.06662 Alpha virt. eigenvalues -- -0.02631 -0.02631 -0.02631 -0.01162 -0.01162 Alpha virt. eigenvalues -- -0.00425 -0.00425 -0.00425 0.03887 0.03887 Alpha virt. eigenvalues -- 0.03887 0.29164 0.29164 0.29164 0.29680 Alpha virt. eigenvalues -- 0.29680 0.37131 0.44845 0.44845 0.44845 Alpha virt. eigenvalues -- 0.54824 0.54824 0.54824 0.62481 0.62481 Alpha virt. eigenvalues -- 0.62481 0.67852 0.67852 0.67852 0.67968 Alpha virt. eigenvalues -- 0.73002 0.73119 0.73119 0.73119 0.73826 Alpha virt. eigenvalues -- 0.73826 0.77916 0.77916 0.77916 1.03590 Alpha virt. eigenvalues -- 1.03590 1.27495 1.27495 1.27495 1.30285 Alpha virt. eigenvalues -- 1.30285 1.30285 1.58817 1.61880 1.61880 Alpha virt. eigenvalues -- 1.61880 1.63901 1.63901 1.69274 1.69274 Alpha virt. eigenvalues -- 1.69274 1.82227 1.82227 1.82227 1.83661 Alpha virt. eigenvalues -- 1.86859 1.86859 1.86859 1.90597 1.91322 Alpha virt. eigenvalues -- 1.91322 1.91322 1.92366 1.92366 2.10498 Alpha virt. eigenvalues -- 2.10498 2.10498 2.21820 2.21820 2.21820 Alpha virt. eigenvalues -- 2.40720 2.40720 2.44142 2.44142 2.44142 Alpha virt. eigenvalues -- 2.47243 2.47845 2.47845 2.47845 2.66410 Alpha virt. eigenvalues -- 2.66410 2.66410 2.71267 2.71267 2.75278 Alpha virt. eigenvalues -- 2.75278 2.75278 2.95984 3.03761 3.03761 Alpha virt. eigenvalues -- 3.03761 3.20526 3.20526 3.20526 3.23327 Alpha virt. eigenvalues -- 3.23327 3.23327 3.32455 3.32455 3.96324 Alpha virt. eigenvalues -- 4.31130 4.33175 4.33175 4.33175 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.928677 0.390122 0.390122 0.390122 -0.045922 0.003862 2 H 0.390122 0.499895 -0.023037 -0.023037 -0.002990 0.000010 3 H 0.390122 -0.023037 0.499895 -0.023037 -0.002990 0.000010 4 H 0.390122 -0.023037 -0.023037 0.499895 0.003862 -0.000192 5 C -0.045922 -0.002990 -0.002990 0.003862 4.928677 0.390122 6 H 0.003862 0.000010 0.000010 -0.000192 0.390122 0.499895 7 H -0.002990 -0.000389 0.003155 0.000010 0.390122 -0.023037 8 H -0.002990 0.003155 -0.000389 0.000010 0.390122 -0.023037 9 C -0.045922 -0.002990 0.003862 -0.002990 -0.045922 -0.002990 10 H -0.002990 -0.000389 0.000010 0.003155 0.003862 0.000010 11 H 0.003862 0.000010 -0.000192 0.000010 -0.002990 0.003155 12 H -0.002990 0.003155 0.000010 -0.000389 -0.002990 -0.000389 13 C -0.045922 0.003862 -0.002990 -0.002990 -0.045922 -0.002990 14 H 0.003862 -0.000192 0.000010 0.000010 -0.002990 0.003155 15 H -0.002990 0.000010 -0.000389 0.003155 0.003862 0.000010 16 H -0.002990 0.000010 0.003155 -0.000389 -0.002990 -0.000389 17 N 0.240685 -0.028838 -0.028838 -0.028838 0.240685 -0.028838 7 8 9 10 11 12 1 C -0.002990 -0.002990 -0.045922 -0.002990 0.003862 -0.002990 2 H -0.000389 0.003155 -0.002990 -0.000389 0.000010 0.003155 3 H 0.003155 -0.000389 0.003862 0.000010 -0.000192 0.000010 4 H 0.000010 0.000010 -0.002990 0.003155 0.000010 -0.000389 5 C 0.390122 0.390122 -0.045922 0.003862 -0.002990 -0.002990 6 H -0.023037 -0.023037 -0.002990 0.000010 0.003155 -0.000389 7 H 0.499895 -0.023037 0.003862 -0.000192 0.000010 0.000010 8 H -0.023037 0.499895 -0.002990 0.000010 -0.000389 0.003155 9 C 0.003862 -0.002990 4.928677 0.390122 0.390122 0.390122 10 H -0.000192 0.000010 0.390122 0.499895 -0.023037 -0.023037 11 H 0.000010 -0.000389 0.390122 -0.023037 0.499895 -0.023037 12 H 0.000010 0.003155 0.390122 -0.023037 -0.023037 0.499895 13 C -0.002990 0.003862 -0.045922 -0.002990 -0.002990 0.003862 14 H -0.000389 0.000010 -0.002990 -0.000389 0.003155 0.000010 15 H 0.000010 -0.000192 -0.002990 0.003155 -0.000389 0.000010 16 H 0.003155 0.000010 0.003862 0.000010 0.000010 -0.000192 17 N -0.028838 -0.028838 0.240685 -0.028838 -0.028838 -0.028838 13 14 15 16 17 1 C -0.045922 0.003862 -0.002990 -0.002990 0.240685 2 H 0.003862 -0.000192 0.000010 0.000010 -0.028838 3 H -0.002990 0.000010 -0.000389 0.003155 -0.028838 4 H -0.002990 0.000010 0.003155 -0.000389 -0.028838 5 C -0.045922 -0.002990 0.003862 -0.002990 0.240685 6 H -0.002990 0.003155 0.000010 -0.000389 -0.028838 7 H -0.002990 -0.000389 0.000010 0.003155 -0.028838 8 H 0.003862 0.000010 -0.000192 0.000010 -0.028838 9 C -0.045922 -0.002990 -0.002990 0.003862 0.240685 10 H -0.002990 -0.000389 0.003155 0.000010 -0.028838 11 H -0.002990 0.003155 -0.000389 0.000010 -0.028838 12 H 0.003862 0.000010 0.000010 -0.000192 -0.028838 13 C 4.928677 0.390122 0.390122 0.390122 0.240685 14 H 0.390122 0.499895 -0.023037 -0.023037 -0.028838 15 H 0.390122 -0.023037 0.499895 -0.023037 -0.028838 16 H 0.390122 -0.023037 -0.023037 0.499895 -0.028838 17 N 0.240685 -0.028838 -0.028838 -0.028838 6.780432 Mulliken charges: 1 1 C -0.195611 2 H 0.181630 3 H 0.181630 4 H 0.181630 5 C -0.195611 6 H 0.181630 7 H 0.181630 8 H 0.181630 9 C -0.195611 10 H 0.181630 11 H 0.181630 12 H 0.181630 13 C -0.195611 14 H 0.181630 15 H 0.181630 16 H 0.181630 17 N -0.397117 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.349279 5 C 0.349279 9 C 0.349279 13 C 0.349279 17 N -0.397117 Electronic spatial extent (au): = 447.1207 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -25.8375 YY= -25.8375 ZZ= -25.8375 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.9864 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -181.0899 YYYY= -181.0899 ZZZZ= -181.0899 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -53.9822 XXZZ= -53.9822 YYZZ= -53.9822 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.130903310383D+02 E-N=-9.116412816658D+02 KE= 2.120120950279D+02 Symmetry A KE= 8.621764460028D+01 Symmetry B1 KE= 4.193148347587D+01 Symmetry B2 KE= 4.193148347587D+01 Symmetry B3 KE= 4.193148347587D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 0.000027181 2 1 -0.000007180 -0.000004145 -0.000011794 3 1 0.000007180 -0.000004145 -0.000011794 4 1 0.000000000 0.000008291 -0.000011794 5 6 0.000000000 -0.000025626 -0.000009060 6 1 0.000000000 0.000013883 -0.000003885 7 1 0.000007180 0.000009738 0.000007840 8 1 -0.000007180 0.000009738 0.000007840 9 6 -0.000022193 0.000012813 -0.000009060 10 1 0.000012023 0.000001349 0.000007840 11 1 0.000012023 -0.000006942 -0.000003885 12 1 0.000004843 -0.000011087 0.000007840 13 6 0.000022193 0.000012813 -0.000009060 14 1 -0.000012023 -0.000006942 -0.000003885 15 1 -0.000012023 0.000001349 0.000007840 16 1 -0.000004843 -0.000011087 0.000007840 17 7 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000027181 RMS 0.000010337 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000014572 RMS 0.000008153 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00244 0.00244 0.00244 0.00244 0.04745 Eigenvalues --- 0.04745 0.04745 0.05832 0.05832 0.05832 Eigenvalues --- 0.05832 0.05832 0.05832 0.05832 0.05832 Eigenvalues --- 0.14390 0.14390 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.31409 Eigenvalues --- 0.31409 0.31409 0.31409 0.34794 0.34794 Eigenvalues --- 0.34794 0.34794 0.34794 0.34794 0.34794 Eigenvalues --- 0.34794 0.34794 0.34794 0.34794 0.34794 RFO step: Lambda=-3.25832542D-08 EMin= 2.44342033D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00008144 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.12D-08 for atom 16. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R2 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R3 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R4 2.85239 -0.00001 0.00000 -0.00003 -0.00003 2.85237 R5 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R6 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R7 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R8 2.85239 -0.00001 0.00000 -0.00003 -0.00003 2.85237 R9 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R10 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R11 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R12 2.85239 -0.00001 0.00000 -0.00003 -0.00003 2.85237 R13 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R14 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R15 2.06010 0.00000 0.00000 0.00001 0.00001 2.06012 R16 2.85239 -0.00001 0.00000 -0.00003 -0.00003 2.85237 A1 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A2 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A3 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A4 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A5 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A6 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A7 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A8 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A9 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A10 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A11 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A12 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A13 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A14 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A15 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A16 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A17 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A18 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A19 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A20 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A21 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A22 1.92064 0.00001 0.00000 0.00009 0.00009 1.92073 A23 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A24 1.90052 -0.00001 0.00000 -0.00009 -0.00009 1.90043 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D2 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D3 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D4 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D9 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D14 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D17 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D29 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D32 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D35 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000015 0.000450 YES RMS Force 0.000008 0.000300 YES Maximum Displacement 0.000212 0.001800 YES RMS Displacement 0.000081 0.001200 YES Predicted change in Energy=-1.629163D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0902 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0902 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0902 -DE/DX = 0.0 ! ! R4 R(1,17) 1.5094 -DE/DX = 0.0 ! ! R5 R(5,6) 1.0902 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0902 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0902 -DE/DX = 0.0 ! ! R8 R(5,17) 1.5094 -DE/DX = 0.0 ! ! R9 R(9,10) 1.0902 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0902 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0902 -DE/DX = 0.0 ! ! R12 R(9,17) 1.5094 -DE/DX = 0.0 ! ! R13 R(13,14) 1.0902 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0902 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0902 -DE/DX = 0.0 ! ! R16 R(13,17) 1.5094 -DE/DX = 0.0 ! ! A1 A(2,1,3) 110.0446 -DE/DX = 0.0 ! ! A2 A(2,1,4) 110.0446 -DE/DX = 0.0 ! ! A3 A(2,1,17) 108.8916 -DE/DX = 0.0 ! ! A4 A(3,1,4) 110.0446 -DE/DX = 0.0 ! ! A5 A(3,1,17) 108.8916 -DE/DX = 0.0 ! ! A6 A(4,1,17) 108.8916 -DE/DX = 0.0 ! ! A7 A(6,5,7) 110.0446 -DE/DX = 0.0 ! ! A8 A(6,5,8) 110.0446 -DE/DX = 0.0 ! ! A9 A(6,5,17) 108.8916 -DE/DX = 0.0 ! ! A10 A(7,5,8) 110.0446 -DE/DX = 0.0 ! ! A11 A(7,5,17) 108.8916 -DE/DX = 0.0 ! ! A12 A(8,5,17) 108.8916 -DE/DX = 0.0 ! ! A13 A(10,9,11) 110.0446 -DE/DX = 0.0 ! ! A14 A(10,9,12) 110.0446 -DE/DX = 0.0 ! ! A15 A(10,9,17) 108.8916 -DE/DX = 0.0 ! ! A16 A(11,9,12) 110.0446 -DE/DX = 0.0 ! ! A17 A(11,9,17) 108.8916 -DE/DX = 0.0 ! ! A18 A(12,9,17) 108.8916 -DE/DX = 0.0 ! ! A19 A(14,13,15) 110.0446 -DE/DX = 0.0 ! ! A20 A(14,13,16) 110.0446 -DE/DX = 0.0 ! ! A21 A(14,13,17) 108.8916 -DE/DX = 0.0 ! ! A22 A(15,13,16) 110.0446 -DE/DX = 0.0 ! ! A23 A(15,13,17) 108.8916 -DE/DX = 0.0 ! ! A24 A(16,13,17) 108.8916 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) -60.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 60.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -180.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) 60.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) 180.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) -60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) 180.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) -60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 60.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 180.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) 60.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) -60.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) -60.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) -180.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) 60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) 60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) -60.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 180.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 60.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) -180.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) 180.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) -60.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) -60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) 60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) -180.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 60.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -60.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) -60.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) 180.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) 60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) 60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) -60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.509422 2 1 0 -0.893250 -0.515718 1.862393 3 1 0 0.893250 -0.515718 1.862393 4 1 0 0.000000 1.031436 1.862393 5 6 0 0.000000 -1.423096 -0.503141 6 1 0 0.000000 -1.412068 -1.593245 7 1 0 0.893250 -1.927787 -0.134574 8 1 0 -0.893250 -1.927787 -0.134574 9 6 0 -1.232438 0.711548 -0.503141 10 1 0 -1.222887 1.737471 -0.134574 11 1 0 -1.222887 0.706034 -1.593245 12 1 0 -2.116137 0.190316 -0.134574 13 6 0 1.232438 0.711548 -0.503141 14 1 0 1.222887 0.706034 -1.593245 15 1 0 1.222887 1.737471 -0.134574 16 1 0 2.116137 0.190316 -0.134574 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090160 0.000000 3 H 1.090160 1.786500 0.000000 4 H 1.090160 1.786500 1.786500 0.000000 5 C 2.464875 2.686443 2.686443 3.408882 0.000000 6 H 3.408882 3.680050 3.680050 4.232274 1.090160 7 H 2.686443 3.028761 2.445774 3.680050 1.090160 8 H 2.686443 2.445774 3.028761 3.680050 1.090160 9 C 2.464875 2.686443 3.408882 2.686443 2.464875 10 H 2.686443 3.028761 3.680050 2.445774 3.408882 11 H 3.408882 3.680050 4.232274 3.680050 2.686443 12 H 2.686443 2.445774 3.680050 3.028761 2.686443 13 C 2.464875 3.408882 2.686443 2.686443 2.464875 14 H 3.408882 4.232274 3.680050 3.680050 2.686443 15 H 2.686443 3.680050 3.028761 2.445774 3.408882 16 H 2.686443 3.680050 2.445774 3.028761 2.686443 17 N 1.509422 2.128936 2.128936 2.128936 1.509422 6 7 8 9 10 6 H 0.000000 7 H 1.786500 0.000000 8 H 1.786500 1.786500 0.000000 9 C 2.686443 3.408882 2.686443 0.000000 10 H 3.680050 4.232274 3.680050 1.090160 0.000000 11 H 2.445774 3.680050 3.028761 1.090160 1.786500 12 H 3.028761 3.680050 2.445774 1.090160 1.786500 13 C 2.686443 2.686443 3.408882 2.464875 2.686443 14 H 2.445774 3.028761 3.680050 2.686443 3.028761 15 H 3.680050 3.680050 4.232274 2.686443 2.445774 16 H 3.028761 2.445774 3.680050 3.408882 3.680050 17 N 2.128936 2.128936 2.128936 1.509422 2.128936 11 12 13 14 15 11 H 0.000000 12 H 1.786500 0.000000 13 C 2.686443 3.408882 0.000000 14 H 2.445774 3.680050 1.090160 0.000000 15 H 3.028761 3.680050 1.090160 1.786500 0.000000 16 H 3.680050 4.232274 1.090160 1.786500 1.786500 17 N 2.128936 2.128936 1.509422 2.128936 2.128936 16 17 16 H 0.000000 17 N 2.128936 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.871465 0.871465 0.871465 2 1 0 0.233089 1.496335 1.496335 3 1 0 1.496335 0.233089 1.496335 4 1 0 1.496335 1.496335 0.233089 5 6 0 -0.871465 -0.871465 0.871465 6 1 0 -1.496335 -1.496335 0.233089 7 1 0 -0.233089 -1.496335 1.496335 8 1 0 -1.496335 -0.233089 1.496335 9 6 0 -0.871465 0.871465 -0.871465 10 1 0 -0.233089 1.496335 -1.496335 11 1 0 -1.496335 0.233089 -1.496335 12 1 0 -1.496335 1.496335 -0.233089 13 6 0 0.871465 -0.871465 -0.871465 14 1 0 0.233089 -1.496335 -1.496335 15 1 0 1.496335 -0.233089 -1.496335 16 1 0 1.496335 -1.496335 -0.233089 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6174427 4.6174427 4.6174427 1|1| IMPERIAL COLLEGE-SKCH-135-037|FOpt|RB3LYP|6-31G(d,p)|C4H12N1(1+)| MM1517|23-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integra l=grid=ultrafine||[N(CH3)4]+ optimisation||1,1|C,-0.0000000018,-0.0000 000039,1.50942162|H,-0.8932500701,-0.5157181698,1.86239255|H,0.8932500 643,-0.5157181722,1.8623925521|H,-0.0000000008,1.0314363292,1.86239255 29|C,-0.0000000013,-1.4230963531,-0.5031405426|H,0.,-1.4120684264,-1.5 932450209|H,0.8932500648,-1.9277865961,-0.1345737688|H,-0.8932500696,- 1.9277865937,-0.134573771|C,-1.2324375909,0.7115481759,-0.5031405416|H ,-1.2228871265,1.7374705463,-0.134573767|H,-1.2228871261,0.7060342145, -1.5932450198|H,-2.1161371957,0.1903160472,-0.1345737699|C,1.232437594 ,0.7115481726,-0.5031405386|H,1.2228871318,0.7060342112,-1.5932450169| H,1.2228871314,1.737470543,-0.1345737641|H,2.1161371966,0.1903160416,- 0.1345737649|N,0.,-0.0000000021,-0.0000000007||Version=EM64W-G09RevD.0 1|State=1-A1|HF=-214.1812842|RMSD=7.774e-010|RMSF=1.034e-005|Dipole=0. ,0.,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG=TD [O(N1),4C3(C1),6SGD(H2)]||@ ONLY A FOOL KNOWS EVERYTHING. -- THE CHEMIST ANALYST, SEPTEMBER 1946 Job cpu time: 0 days 0 hours 0 minutes 20.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 23 14:50:38 2019.