Entering Link 1 = C:\G03W\l1.exe PID= 4876. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 30-Jan-2011 ****************************************** %chk=D:/3rdyearlab/tlbr3_opt.chk %mem=6MW %nproc=1 Will use up to 1 processors via shared memory. ------------------------------------- # opt b3lyp/lanl2dz geom=connectivity ------------------------------------- 1/14=-1,18=20,26=3,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=6,6=3,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99//99; 2/9=110/2; 3/5=6,6=3,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------ TlBr3 Optimisation ------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Tl Br 1 B1 Br 1 B2 2 A1 Br 1 B3 3 A2 2 D1 0 Variables: B1 2.65095 B2 2.65095 B3 2.65095 A1 120. A2 120. D1 180. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.651 estimate D2E/DX2 ! ! R2 R(1,3) 2.651 estimate D2E/DX2 ! ! R3 R(1,4) 2.651 estimate D2E/DX2 ! ! A1 A(2,1,3) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! A4 L(3,1,4,2,-2) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 0.000000 2.650953 3 35 0 2.295792 0.000000 -1.325476 4 35 0 -2.295792 0.000000 -1.325476 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Tl 0.000000 2 Br 2.650953 0.000000 3 Br 2.650952 4.591585 0.000000 4 Br 2.650952 4.591585 4.591584 0.000000 Stoichiometry Br3Tl Framework group C3H[O(Tl),SGH(Br3)] Deg. of freedom 1 Full point group C3H Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.650953 0.000000 3 35 0 2.295792 -1.325476 0.000000 4 35 0 -2.295792 -1.325476 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6074968 0.6074968 0.3037484 Standard basis: LANL2DZ (5D, 7F) There are 30 symmetry adapted basis functions of A' symmetry. There are 12 symmetry adapted basis functions of A" symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 42 basis functions, 66 primitive gaussians, 44 cartesian basis functions 17 alpha electrons 17 beta electrons nuclear repulsion energy 71.4372982469 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 3.00D+00 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=F MaxTD1= 6 Len= 172 LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 42 RedAO= T NBF= 30 12 NBsUse= 42 1.00D-06 NBFU= 30 12 Defaulting to unpruned grid for atomic number 81. Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 4.44D-02 ExpMax= 8.65D+00 ExpMxC= 8.65D+00 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 81. Initial guess orbital symmetries: Occupied (E') (E') (A') (E") (E") (E') (E') (A') (A') (E') (E') (A") (E') (E') (E") (E") (A') Virtual (A') (A") (E') (E') (E') (E') (A") (A') (E") (E") (E') (E') (A') (E') (E') (A') (A") (A') (E") (E") (E') (E') (A') (E') (E') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 2246799. Defaulting to unpruned grid for atomic number 81. SCF Done: E(RB+HF-LYP) = -91.2181285074 A.U. after 11 cycles Convg = 0.4885D-09 -V/T = 2.9656 S**2 = 0.0000 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A') (E") (E") (A') (E') (E') (A') (E') (E') (A") (E") (E") (E') (E') (A') Virtual (A') (A") (E') (E') (A") (E') (E') (E") (E") (E') (E') (A') (A') (E') (E') (A") (E") (E") (A') (E') (E') (A') (A') (E') (E') The electronic state is 1-A'. Alpha occ. eigenvalues -- -0.86511 -0.86511 -0.86089 -0.85379 -0.85379 Alpha occ. eigenvalues -- -0.76896 -0.75847 -0.75847 -0.46888 -0.35597 Alpha occ. eigenvalues -- -0.35597 -0.32778 -0.31487 -0.31487 -0.31482 Alpha occ. eigenvalues -- -0.31482 -0.31093 Alpha virt. eigenvalues -- -0.18786 -0.08859 -0.00119 -0.00119 0.13191 Alpha virt. eigenvalues -- 0.14340 0.14340 0.48263 0.48263 0.51710 Alpha virt. eigenvalues -- 0.51710 0.51920 0.53229 0.54091 0.54091 Alpha virt. eigenvalues -- 0.56384 1.27974 1.27974 1.28964 1.31982 Alpha virt. eigenvalues -- 1.31982 8.40911 17.75949 18.29790 18.29790 Condensed to atoms (all electrons): 1 2 3 4 1 Tl 11.521254 0.235053 0.235053 0.235053 2 Br 0.235053 7.038081 -0.007636 -0.007636 3 Br 0.235053 -0.007636 7.038081 -0.007636 4 Br 0.235053 -0.007636 -0.007636 7.038081 Mulliken atomic charges: 1 1 Tl 0.773586 2 Br -0.257862 3 Br -0.257862 4 Br -0.257862 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 Tl 0.773586 2 Br -0.257862 3 Br -0.257862 4 Br -0.257862 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 691.9197 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -77.7498 YY= -77.7498 ZZ= -66.3060 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -3.8146 YY= -3.8146 ZZ= 7.6292 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0005 YYY= -5.7925 ZZZ= 0.0000 XYY= -0.0005 XXY= 5.7925 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1097.0980 YYYY= -1097.0980 ZZZZ= -95.3066 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -365.6993 XXZZ= -202.1676 YYZZ= -202.1676 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.143729824688D+01 E-N=-3.440351826374D+02 KE= 4.640812425262D+01 Symmetry A' KE= 2.949016267231D+01 Symmetry A" KE= 1.691796158032D+01 6 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=F MaxTD1= 7 Len= 274 LDataN: DoStor=T MaxTD1= 7 Len= 274 Defaulting to unpruned grid for atomic number 81. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 81 0.000000000 0.000000000 0.000000000 2 35 -0.000034023 0.000000000 0.000001754 3 35 0.000018531 0.000000000 0.000028588 4 35 0.000015492 0.000000000 -0.000030342 ------------------------------------------------------------------- Cartesian Forces: Max 0.000034023 RMS 0.000017034 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000001754 RMS 0.000001148 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.11246 R2 0.00000 0.11246 R3 0.00000 0.00000 0.11246 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A4 A3 0.25000 A4 0.00000 0.25000 Eigenvalues --- 0.11246 0.11246 0.11246 0.25000 0.25000 Eigenvalues --- 0.250001000.00000 RFO step: Lambda= 0.00000000D+00. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00001021 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 5.00957 0.00000 0.00000 0.00002 0.00002 5.00959 R2 5.00957 0.00000 0.00000 0.00002 0.00002 5.00959 R3 5.00957 0.00000 0.00000 0.00002 0.00002 5.00959 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000002 0.000450 YES RMS Force 0.000001 0.000300 YES Maximum Displacement 0.000016 0.001800 YES RMS Displacement 0.000010 0.001200 YES Predicted change in Energy=-4.105096D-11 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.651 -DE/DX = 0.0 ! ! R2 R(1,3) 2.651 -DE/DX = 0.0 ! ! R3 R(1,4) 2.651 -DE/DX = 0.0 ! ! A1 A(2,1,3) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,4) 120.0 -DE/DX = 0.0 ! ! A3 A(3,1,4) 120.0 -DE/DX = 0.0 ! ! A4 L(3,1,4,2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 0.000000 2.650953 3 35 0 2.295792 0.000000 -1.325476 4 35 0 -2.295792 0.000000 -1.325476 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Tl 0.000000 2 Br 2.650953 0.000000 3 Br 2.650953 4.591585 0.000000 4 Br 2.650953 4.591585 4.591585 0.000000 Stoichiometry Br3Tl Framework group D3H[O(Tl),3C2(Br)] Deg. of freedom 1 Full point group D3H Omega: Change in point group or standard orientation. Old FWG=C03H [O(Tl1),SGH(Br3)] New FWG=D03H [O(Tl1),3C2(Br1)] Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.650953 0.000000 3 35 0 2.295792 -1.325476 0.000000 4 35 0 -2.295792 -1.325476 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6074968 0.6074968 0.3037484 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A1') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E") (E") (E') (E') (A2') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (E") (E") (E') (E') (A2') (A1') (E') (E') (A2") (E") (E") (A1') (E') (E') (A1') (A1') (E') (E') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -0.86511 -0.86511 -0.86089 -0.85379 -0.85379 Alpha occ. eigenvalues -- -0.76896 -0.75847 -0.75847 -0.46888 -0.35597 Alpha occ. eigenvalues -- -0.35597 -0.32778 -0.31487 -0.31487 -0.31482 Alpha occ. eigenvalues -- -0.31482 -0.31093 Alpha virt. eigenvalues -- -0.18786 -0.08859 -0.00119 -0.00119 0.13191 Alpha virt. eigenvalues -- 0.14340 0.14340 0.48263 0.48263 0.51710 Alpha virt. eigenvalues -- 0.51710 0.51920 0.53229 0.54091 0.54091 Alpha virt. eigenvalues -- 0.56384 1.27974 1.27974 1.28964 1.31982 Alpha virt. eigenvalues -- 1.31982 8.40911 17.75949 18.29790 18.29790 Condensed to atoms (all electrons): 1 2 3 4 1 Tl 11.521254 0.235053 0.235053 0.235053 2 Br 0.235053 7.038081 -0.007636 -0.007636 3 Br 0.235053 -0.007636 7.038081 -0.007636 4 Br 0.235053 -0.007636 -0.007636 7.038081 Mulliken atomic charges: 1 1 Tl 0.773586 2 Br -0.257862 3 Br -0.257862 4 Br -0.257862 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 Tl 0.773586 2 Br -0.257862 3 Br -0.257862 4 Br -0.257862 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 691.9197 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -77.7498 YY= -77.7498 ZZ= -66.3060 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -3.8146 YY= -3.8146 ZZ= 7.6292 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0005 YYY= -5.7925 ZZZ= 0.0000 XYY= -0.0005 XXY= 5.7925 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1097.0980 YYYY= -1097.0980 ZZZZ= -95.3066 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -365.6993 XXZZ= -202.1676 YYZZ= -202.1676 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.143729824688D+01 E-N=-3.440351826374D+02 KE= 4.640812425262D+01 Symmetry A' KE= 2.949016267231D+01 Symmetry A" KE= 1.691796158032D+01 Final structure in terms of initial Z-matrix: Tl Br,1,B1 Br,1,B2,2,A1 Br,1,B3,3,A2,2,D1,0 Variables: B1=2.65095281 B2=2.65095281 B3=2.65095281 A1=120. A2=120. D1=180. 1|1|UNPC-UNK|FOpt|RB3LYP|LANL2DZ|Br3Tl1|PCUSER|30-Jan-2011|0||# opt b3 lyp/lanl2dz geom=connectivity||TlBr3 Optimisation||0,1|Tl,0.,0.,0.0000 001889|Br,0.,0.,2.650953|Br,2.2957924786,0.,-1.3254762166|Br,-2.295792 4786,0.,-1.3254762166||Version=IA32W-G03RevE.01|State=1-A1'|HF=-91.218 1285|RMSD=4.885e-010|RMSF=1.703e-005|Thermal=0.|Dipole=0.,0.,0.|PG=D03 H [O(Tl1),3C2(Br1)]||@ WE SHOULD BE CAREFUL TO GET OUT OF AN EXPERIENCE ONLY THE WISDOM THAT IS IN IT -- AND STOP THERE; LEST WE BE LIKE THE CAT THAT SITS DOWN ON A HOT STOVE-LID. SHE WILL NEVER SIT DOWN ON A HOT STOVE LID AGAIN; BUT ALSO SHE WILL NEVER SIT DOWN ON A COLD ONE ANY MORE. -- MARK TWAIN Job cpu time: 0 days 0 hours 0 minutes 6.0 seconds. File lengths (MBytes): RWF= 12 Int= 0 D2E= 0 Chk= 8 Scr= 1 Normal termination of Gaussian 03 at Sun Jan 30 19:24:58 2011.