Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 6328. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 03-May-2018 ****************************************** %chk=H:\Chemistry\Second Year 2017-18\2nd Year Chemistry Laboratories\Inorganic Computational Lab\Project\CH2ClCH2Cl Anti\wl4015_c2h4cl2_opt.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -------------------- C2H4Cl2 optimisation -------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -0.56015 0.49924 0. C 0.56015 -0.49924 0. H -1.20282 0.37243 -0.90497 H -1.20282 0.37243 0.90497 H 1.20282 -0.37243 -0.90497 H 1.20282 -0.37243 0.90497 Cl 0.07067 2.1423 0. Cl -0.07067 -2.1423 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5007 estimate D2E/DX2 ! ! R2 R(1,3) 1.1172 estimate D2E/DX2 ! ! R3 R(1,4) 1.1172 estimate D2E/DX2 ! ! R4 R(1,7) 1.76 estimate D2E/DX2 ! ! R5 R(2,5) 1.1172 estimate D2E/DX2 ! ! R6 R(2,6) 1.1172 estimate D2E/DX2 ! ! R7 R(2,8) 1.76 estimate D2E/DX2 ! ! A1 A(2,1,3) 110.728 estimate D2E/DX2 ! ! A2 A(2,1,4) 110.728 estimate D2E/DX2 ! ! A3 A(2,1,7) 110.7056 estimate D2E/DX2 ! ! A4 A(3,1,4) 108.202 estimate D2E/DX2 ! ! A5 A(3,1,7) 108.1892 estimate D2E/DX2 ! ! A6 A(4,1,7) 108.1892 estimate D2E/DX2 ! ! A7 A(1,2,5) 110.728 estimate D2E/DX2 ! ! A8 A(1,2,6) 110.728 estimate D2E/DX2 ! ! A9 A(1,2,8) 110.7056 estimate D2E/DX2 ! ! A10 A(5,2,6) 108.202 estimate D2E/DX2 ! ! A11 A(5,2,8) 108.1892 estimate D2E/DX2 ! ! A12 A(6,2,8) 108.1892 estimate D2E/DX2 ! ! D1 D(3,1,2,5) 59.9796 estimate D2E/DX2 ! ! D2 D(3,1,2,6) 180.0 estimate D2E/DX2 ! ! D3 D(3,1,2,8) -60.0102 estimate D2E/DX2 ! ! D4 D(4,1,2,5) 180.0 estimate D2E/DX2 ! ! D5 D(4,1,2,6) -59.9796 estimate D2E/DX2 ! ! D6 D(4,1,2,8) 60.0102 estimate D2E/DX2 ! ! D7 D(7,1,2,5) -60.0102 estimate D2E/DX2 ! ! D8 D(7,1,2,6) 60.0102 estimate D2E/DX2 ! ! D9 D(7,1,2,8) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 38 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.560152 0.499235 0.000000 2 6 0 0.560152 -0.499235 0.000000 3 1 0 -1.202822 0.372425 -0.904965 4 1 0 -1.202822 0.372425 0.904965 5 1 0 1.202822 -0.372425 -0.904965 6 1 0 1.202822 -0.372425 0.904965 7 17 0 0.070672 2.142300 0.000000 8 17 0 -0.070672 -2.142300 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.500674 0.000000 3 H 1.117170 2.164909 0.000000 4 H 1.117170 2.164909 1.809931 0.000000 5 H 2.164909 1.117170 2.518318 3.101254 0.000000 6 H 2.164909 1.117170 3.101254 2.518318 1.809931 7 Cl 1.760000 2.686503 2.360764 2.360764 2.902511 8 Cl 2.686503 1.760000 2.902511 2.902511 2.360764 6 7 8 6 H 0.000000 7 Cl 2.902511 0.000000 8 Cl 2.360764 4.286930 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.459815 0.592938 0.000000 2 6 0 -0.459815 -0.592938 0.000000 3 1 0 1.114833 0.585345 0.904965 4 1 0 1.114833 0.585345 -0.904965 5 1 0 -1.114833 -0.585345 0.904965 6 1 0 -1.114833 -0.585345 -0.904965 7 17 0 -0.459815 2.093565 0.000000 8 17 0 0.459815 -2.093565 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 29.7281553 1.5276028 1.4810576 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of AG symmetry. There are 14 symmetry adapted cartesian basis functions of BG symmetry. There are 14 symmetry adapted cartesian basis functions of AU symmetry. There are 30 symmetry adapted cartesian basis functions of BU symmetry. There are 30 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of BG symmetry. There are 14 symmetry adapted basis functions of AU symmetry. There are 30 symmetry adapted basis functions of BU symmetry. 88 basis functions, 188 primitive gaussians, 88 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 196.1092476015 Hartrees. NAtoms= 8 NActive= 8 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 88 RedAO= T EigKep= 6.80D-03 NBF= 30 14 14 30 NBsUse= 88 1.00D-06 EigRej= -1.00D+00 NBFU= 30 14 14 30 ExpMin= 1.43D-01 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (AG) (BU) (BG) (AG) (BU) (BG) (AG) (AU) Virtual (BU) (AG) (AU) (AG) (BU) (BG) (BU) (BU) (AG) (BU) (AG) (AG) (BG) (AU) (BU) (AG) (AU) (BU) (AG) (BG) (BU) (BG) (AU) (AG) (BU) (AU) (AG) (BG) (BU) (AU) (BU) (AG) (AG) (BU) (BG) (AG) (BU) (AU) (BU) (BG) (AG) (AG) (AU) (BG) (BU) (AG) (AU) (BG) (BU) (AU) (AG) (BU) (BG) (BU) (AG) (AG) (BU) (BG) (AU) (AG) (BU) (AG) (BU) The electronic state of the initial guess is 1-AG. Keep R1 ints in memory in symmetry-blocked form, NReq=9680398. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -999.020364051 A.U. after 11 cycles NFock= 11 Conv=0.71D-08 -V/T= 2.0036 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (BU) (AG) (AU) (AG) (BU) (BG) (BU) (BU) (AG) (BU) (AG) (BG) (AU) (AG) (BU) (AG) (AU) (AG) (BG) (BU) (BU) (BG) (AU) (AG) (BU) (AU) (AG) (BG) (AU) (BU) (BU) (AG) (AG) (BU) (BG) (AG) (BU) (AU) (BU) (BG) (AG) (AG) (AU) (BG) (BU) (AG) (AU) (BG) (BU) (AU) (AG) (BU) (BG) (BU) (AG) (AG) (BU) (BG) (AU) (AG) (BU) (AG) (BU) The electronic state is 1-AG. Alpha occ. eigenvalues -- -101.54905-101.54905 -10.26564 -10.26538 -9.46638 Alpha occ. eigenvalues -- -9.46637 -7.23034 -7.23034 -7.22046 -7.22046 Alpha occ. eigenvalues -- -7.22021 -7.22021 -0.89910 -0.85821 -0.72569 Alpha occ. eigenvalues -- -0.62567 -0.50585 -0.46802 -0.45156 -0.41257 Alpha occ. eigenvalues -- -0.40224 -0.32211 -0.30873 -0.30641 -0.30566 Alpha virt. eigenvalues -- 0.01501 0.03884 0.10508 0.11197 0.11609 Alpha virt. eigenvalues -- 0.15179 0.18106 0.37073 0.37988 0.40289 Alpha virt. eigenvalues -- 0.42996 0.44044 0.45923 0.46561 0.47595 Alpha virt. eigenvalues -- 0.49605 0.53656 0.57525 0.59099 0.61151 Alpha virt. eigenvalues -- 0.70422 0.80006 0.80241 0.82917 0.85022 Alpha virt. eigenvalues -- 0.85422 0.87572 0.88226 0.89278 0.89447 Alpha virt. eigenvalues -- 0.93668 0.98026 1.01832 1.07712 1.15447 Alpha virt. eigenvalues -- 1.22205 1.41191 1.43917 1.48438 1.65167 Alpha virt. eigenvalues -- 1.82179 1.88399 1.99693 2.02836 2.08789 Alpha virt. eigenvalues -- 2.15166 2.17678 2.22012 2.36361 2.39268 Alpha virt. eigenvalues -- 2.53200 2.57941 2.67646 2.71773 2.76639 Alpha virt. eigenvalues -- 3.11730 3.22432 3.29973 3.43804 4.14691 Alpha virt. eigenvalues -- 4.24283 4.34331 4.50833 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.125690 0.316628 0.383616 0.383616 -0.040581 -0.040581 2 C 0.316628 5.125690 -0.040581 -0.040581 0.383616 0.383616 3 H 0.383616 -0.040581 0.567930 -0.032568 -0.006035 0.005157 4 H 0.383616 -0.040581 -0.032568 0.567930 0.005157 -0.006035 5 H -0.040581 0.383616 -0.006035 0.005157 0.567930 -0.032568 6 H -0.040581 0.383616 0.005157 -0.006035 -0.032568 0.567930 7 Cl 0.210835 -0.055645 -0.048106 -0.048106 0.002188 0.002188 8 Cl -0.055645 0.210835 0.002188 0.002188 -0.048106 -0.048106 7 8 1 C 0.210835 -0.055645 2 C -0.055645 0.210835 3 H -0.048106 0.002188 4 H -0.048106 0.002188 5 H 0.002188 -0.048106 6 H 0.002188 -0.048106 7 Cl 16.983761 0.006103 8 Cl 0.006103 16.983761 Mulliken charges: 1 1 C -0.283577 2 C -0.283577 3 H 0.168398 4 H 0.168398 5 H 0.168398 6 H 0.168398 7 Cl -0.053218 8 Cl -0.053218 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.053218 2 C 0.053218 7 Cl -0.053218 8 Cl -0.053218 Electronic spatial extent (au): = 705.0219 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.2219 YY= -44.6413 ZZ= -37.4548 XY= 1.9465 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.5507 YY= -4.8686 ZZ= 2.3179 XY= 1.9465 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -106.8503 YYYY= -734.0715 ZZZZ= -53.5314 XXXY= 59.5836 XXXZ= 0.0000 YYYX= 45.4474 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -135.4476 XXZZ= -24.7294 YYZZ= -135.1459 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 22.3061 N-N= 1.961092476015D+02 E-N=-2.761225185441D+03 KE= 9.954609417558D+02 Symmetry AG KE= 4.516261436798D+02 Symmetry BG KE= 4.782523218813D+01 Symmetry AU KE= 4.774378754424D+01 Symmetry BU KE= 4.482657783436D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.034255700 -0.014258266 0.000000000 2 6 0.034255700 0.014258266 0.000000000 3 1 0.008481057 0.001828607 0.012740914 4 1 0.008481057 0.001828607 -0.012740914 5 1 -0.008481057 -0.001828607 0.012740914 6 1 -0.008481057 -0.001828607 -0.012740914 7 17 0.007318275 0.018453199 0.000000000 8 17 -0.007318275 -0.018453199 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.034255700 RMS 0.013680993 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.019850070 RMS 0.008238999 Search for a local minimum. Step number 1 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00757 0.05837 0.05837 0.06098 0.06098 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.22311 Eigenvalues --- 0.22311 0.29539 0.29539 0.31853 0.31853 Eigenvalues --- 0.31853 0.31853 0.32307 RFO step: Lambda=-6.04136687D-03 EMin= 7.57026863D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.02562239 RMS(Int)= 0.00006509 Iteration 2 RMS(Cart)= 0.00004291 RMS(Int)= 0.00000137 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000137 ClnCor: largest displacement from symmetrization is 1.25D-08 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.83586 0.01267 0.00000 0.03850 0.03850 2.87437 R2 2.11114 -0.01541 0.00000 -0.04747 -0.04747 2.06367 R3 2.11114 -0.01541 0.00000 -0.04747 -0.04747 2.06367 R4 3.32592 0.01985 0.00000 0.06585 0.06585 3.39177 R5 2.11114 -0.01541 0.00000 -0.04747 -0.04747 2.06367 R6 2.11114 -0.01541 0.00000 -0.04747 -0.04747 2.06367 R7 3.32592 0.01985 0.00000 0.06585 0.06585 3.39177 A1 1.93257 0.00051 0.00000 0.00277 0.00277 1.93534 A2 1.93257 0.00051 0.00000 0.00277 0.00277 1.93534 A3 1.93218 -0.00064 0.00000 -0.00257 -0.00256 1.92961 A4 1.88848 -0.00057 0.00000 -0.00388 -0.00388 1.88460 A5 1.88826 0.00008 0.00000 0.00039 0.00039 1.88865 A6 1.88826 0.00008 0.00000 0.00039 0.00039 1.88865 A7 1.93257 0.00051 0.00000 0.00277 0.00277 1.93534 A8 1.93257 0.00051 0.00000 0.00277 0.00277 1.93534 A9 1.93218 -0.00064 0.00000 -0.00257 -0.00256 1.92961 A10 1.88848 -0.00057 0.00000 -0.00388 -0.00388 1.88460 A11 1.88826 0.00008 0.00000 0.00039 0.00039 1.88865 A12 1.88826 0.00008 0.00000 0.00039 0.00039 1.88865 D1 1.04684 0.00005 0.00000 0.00124 0.00123 1.04807 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04738 0.00002 0.00000 0.00062 0.00062 -1.04676 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04684 -0.00005 0.00000 -0.00124 -0.00123 -1.04807 D6 1.04738 -0.00002 0.00000 -0.00062 -0.00062 1.04676 D7 -1.04738 0.00002 0.00000 0.00062 0.00062 -1.04676 D8 1.04738 -0.00002 0.00000 -0.00062 -0.00062 1.04676 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.019850 0.000450 NO RMS Force 0.008239 0.000300 NO Maximum Displacement 0.071956 0.001800 NO RMS Displacement 0.025613 0.001200 NO Predicted change in Energy=-3.078826D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.570646 0.502753 0.000000 2 6 0 0.570646 -0.502753 0.000000 3 1 0 -1.200272 0.377062 -0.883371 4 1 0 -1.200272 0.377062 0.883371 5 1 0 1.200272 -0.377062 -0.883371 6 1 0 1.200272 -0.377062 0.883371 7 17 0 0.067362 2.180377 0.000000 8 17 0 -0.067362 -2.180377 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.521049 0.000000 3 H 1.092050 2.165773 0.000000 4 H 1.092050 2.165773 1.766743 0.000000 5 H 2.165773 1.092050 2.516211 3.074524 0.000000 6 H 2.165773 1.092050 3.074524 2.516211 1.766743 7 Cl 1.794848 2.729923 2.374698 2.374698 2.933313 8 Cl 2.729923 1.794848 2.933313 2.933313 2.374698 6 7 8 6 H 0.000000 7 Cl 2.933313 0.000000 8 Cl 2.374698 4.362835 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.468178 0.599339 0.000000 2 6 0 -0.468178 -0.599339 0.000000 3 1 0 1.110184 0.591879 0.883371 4 1 0 1.110184 0.591879 -0.883371 5 1 0 -1.110184 -0.591879 0.883371 6 1 0 -1.110184 -0.591879 -0.883371 7 17 0 -0.468178 2.130585 0.000000 8 17 0 0.468178 -2.130585 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 29.5912697 1.4765092 1.4313982 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of AG symmetry. There are 14 symmetry adapted cartesian basis functions of BG symmetry. There are 14 symmetry adapted cartesian basis functions of AU symmetry. There are 30 symmetry adapted cartesian basis functions of BU symmetry. There are 30 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of BG symmetry. There are 14 symmetry adapted basis functions of AU symmetry. There are 30 symmetry adapted basis functions of BU symmetry. 88 basis functions, 188 primitive gaussians, 88 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 193.5457056222 Hartrees. NAtoms= 8 NActive= 8 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 88 RedAO= T EigKep= 7.13D-03 NBF= 30 14 14 30 NBsUse= 88 1.00D-06 EigRej= -1.00D+00 NBFU= 30 14 14 30 Initial guess from the checkpoint file: "H:\Chemistry\Second Year 2017-18\2nd Year Chemistry Laboratories\Inorganic Computational Lab\Project\CH2ClCH2Cl Anti\wl4015_c2h4cl2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000094 Ang= -0.01 deg. Initial guess orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) ExpMin= 1.43D-01 ExpMax= 2.52D+04 ExpMxC= 3.78D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=9680398. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -999.023742393 A.U. after 9 cycles NFock= 9 Conv=0.91D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.007480088 -0.009863770 0.000000000 2 6 0.007480088 0.009863770 0.000000000 3 1 0.001406340 0.001526819 -0.000381018 4 1 0.001406340 0.001526819 0.000381018 5 1 -0.001406340 -0.001526819 -0.000381018 6 1 -0.001406340 -0.001526819 0.000381018 7 17 0.002256226 0.003782913 0.000000000 8 17 -0.002256226 -0.003782913 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.009863770 RMS 0.003889676 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.004337777 RMS 0.001589395 Search for a local minimum. Step number 2 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.38D-03 DEPred=-3.08D-03 R= 1.10D+00 TightC=F SS= 1.41D+00 RLast= 1.39D-01 DXNew= 5.0454D-01 4.1621D-01 Trust test= 1.10D+00 RLast= 1.39D-01 DXMaxT set to 4.16D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00757 0.05837 0.05837 0.06015 0.06079 Eigenvalues --- 0.15966 0.16000 0.16000 0.16000 0.21272 Eigenvalues --- 0.22296 0.26408 0.29539 0.31853 0.31853 Eigenvalues --- 0.31853 0.32141 0.34263 RFO step: Lambda=-5.11549716D-04 EMin= 7.57026863D-03 Quartic linear search produced a step of 0.13018. Iteration 1 RMS(Cart)= 0.00669880 RMS(Int)= 0.00016082 Iteration 2 RMS(Cart)= 0.00013752 RMS(Int)= 0.00010489 Iteration 3 RMS(Cart)= 0.00000002 RMS(Int)= 0.00010489 ClnCor: largest displacement from symmetrization is 2.84D-09 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.87437 -0.00019 0.00501 -0.00255 0.00247 2.87683 R2 2.06367 -0.00068 -0.00618 -0.00009 -0.00627 2.05741 R3 2.06367 -0.00068 -0.00618 -0.00009 -0.00627 2.05741 R4 3.39177 0.00434 0.00857 0.01334 0.02191 3.41368 R5 2.06367 -0.00068 -0.00618 -0.00009 -0.00627 2.05741 R6 2.06367 -0.00068 -0.00618 -0.00009 -0.00627 2.05741 R7 3.39177 0.00434 0.00857 0.01334 0.02191 3.41368 A1 1.93534 0.00087 0.00036 0.00856 0.00877 1.94410 A2 1.93534 0.00087 0.00036 0.00856 0.00877 1.94410 A3 1.92961 -0.00256 -0.00033 -0.01816 -0.01851 1.91111 A4 1.88460 0.00080 -0.00051 0.02074 0.01996 1.90456 A5 1.88865 0.00003 0.00005 -0.00985 -0.00981 1.87884 A6 1.88865 0.00003 0.00005 -0.00985 -0.00981 1.87884 A7 1.93534 0.00087 0.00036 0.00856 0.00877 1.94410 A8 1.93534 0.00087 0.00036 0.00856 0.00877 1.94410 A9 1.92961 -0.00256 -0.00033 -0.01816 -0.01851 1.91111 A10 1.88460 0.00080 -0.00051 0.02074 0.01996 1.90456 A11 1.88865 0.00003 0.00005 -0.00985 -0.00981 1.87884 A12 1.88865 0.00003 0.00005 -0.00985 -0.00981 1.87884 D1 1.04807 -0.00215 0.00016 -0.03739 -0.03737 1.01070 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04676 -0.00107 0.00008 -0.01870 -0.01868 -1.06544 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04807 0.00215 -0.00016 0.03739 0.03737 -1.01070 D6 1.04676 0.00107 -0.00008 0.01870 0.01868 1.06544 D7 -1.04676 -0.00107 0.00008 -0.01870 -0.01868 -1.06544 D8 1.04676 0.00107 -0.00008 0.01870 0.01868 1.06544 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.004338 0.000450 NO RMS Force 0.001589 0.000300 NO Maximum Displacement 0.015778 0.001800 NO RMS Displacement 0.006677 0.001200 NO Predicted change in Energy=-3.063937D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.578754 0.494403 0.000000 2 6 0 0.578754 -0.494403 0.000000 3 1 0 -1.199422 0.379150 -0.887033 4 1 0 -1.199422 0.379150 0.887033 5 1 0 1.199422 -0.379150 -0.887033 6 1 0 1.199422 -0.379150 0.887033 7 17 0 0.068836 2.180778 0.000000 8 17 0 -0.068836 -2.180778 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.522354 0.000000 3 H 1.088733 2.170675 0.000000 4 H 1.088733 2.170675 1.774065 0.000000 5 H 2.170675 1.088733 2.515843 3.078437 0.000000 6 H 2.170675 1.088733 3.078437 2.515843 1.774065 7 Cl 1.806442 2.723346 2.375115 2.375115 2.935691 8 Cl 2.723346 1.806442 2.935691 2.935691 2.375115 6 7 8 6 H 0.000000 7 Cl 2.935691 0.000000 8 Cl 2.375115 4.363729 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.475947 0.594025 0.000000 2 6 0 -0.475947 -0.594025 0.000000 3 1 0 1.107217 0.597023 0.887033 4 1 0 1.107217 0.597023 -0.887033 5 1 0 -1.107217 -0.597023 0.887033 6 1 0 -1.107217 -0.597023 -0.887033 7 17 0 -0.475947 2.129321 0.000000 8 17 0 0.475947 -2.129321 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 29.1590550 1.4766923 1.4307561 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of AG symmetry. There are 14 symmetry adapted cartesian basis functions of BG symmetry. There are 14 symmetry adapted cartesian basis functions of AU symmetry. There are 30 symmetry adapted cartesian basis functions of BU symmetry. There are 30 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of BG symmetry. There are 14 symmetry adapted basis functions of AU symmetry. There are 30 symmetry adapted basis functions of BU symmetry. 88 basis functions, 188 primitive gaussians, 88 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 193.2439710735 Hartrees. NAtoms= 8 NActive= 8 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 88 RedAO= T EigKep= 7.21D-03 NBF= 30 14 14 30 NBsUse= 88 1.00D-06 EigRej= -1.00D+00 NBFU= 30 14 14 30 Initial guess from the checkpoint file: "H:\Chemistry\Second Year 2017-18\2nd Year Chemistry Laboratories\Inorganic Computational Lab\Project\CH2ClCH2Cl Anti\wl4015_c2h4cl2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 0.000000 0.000000 -0.001505 Ang= -0.17 deg. Initial guess orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) Keep R1 ints in memory in symmetry-blocked form, NReq=9680398. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -999.024121481 A.U. after 8 cycles NFock= 8 Conv=0.36D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000438591 -0.004106840 0.000000000 2 6 -0.000438591 0.004106840 0.000000000 3 1 -0.000091993 0.000299820 -0.001126183 4 1 -0.000091993 0.000299820 0.001126183 5 1 0.000091993 -0.000299820 -0.001126183 6 1 0.000091993 -0.000299820 0.001126183 7 17 0.000755711 0.001977519 0.000000000 8 17 -0.000755711 -0.001977519 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.004106840 RMS 0.001422248 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002116880 RMS 0.000781449 Search for a local minimum. Step number 3 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 DE= -3.79D-04 DEPred=-3.06D-04 R= 1.24D+00 TightC=F SS= 1.41D+00 RLast= 8.65D-02 DXNew= 6.9999D-01 2.5958D-01 Trust test= 1.24D+00 RLast= 8.65D-02 DXMaxT set to 4.16D-01 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00757 0.04644 0.05954 0.05967 0.05967 Eigenvalues --- 0.16000 0.16000 0.16000 0.16091 0.19970 Eigenvalues --- 0.22308 0.24877 0.29539 0.31853 0.31853 Eigenvalues --- 0.31853 0.32138 0.38963 RFO step: Lambda=-6.22353854D-05 EMin= 7.57026863D-03 Quartic linear search produced a step of 0.36494. Iteration 1 RMS(Cart)= 0.00426498 RMS(Int)= 0.00005597 Iteration 2 RMS(Cart)= 0.00001824 RMS(Int)= 0.00005296 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00005296 ClnCor: largest displacement from symmetrization is 5.90D-09 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.87683 -0.00176 0.00090 -0.00633 -0.00543 2.87141 R2 2.05741 0.00094 -0.00229 0.00358 0.00129 2.05870 R3 2.05741 0.00094 -0.00229 0.00358 0.00129 2.05870 R4 3.41368 0.00212 0.00800 0.00669 0.01468 3.42836 R5 2.05741 0.00094 -0.00229 0.00358 0.00129 2.05870 R6 2.05741 0.00094 -0.00229 0.00358 0.00129 2.05870 R7 3.41368 0.00212 0.00800 0.00669 0.01468 3.42836 A1 1.94410 0.00000 0.00320 -0.00102 0.00210 1.94620 A2 1.94410 0.00000 0.00320 -0.00102 0.00210 1.94620 A3 1.91111 -0.00015 -0.00675 0.00186 -0.00491 1.90620 A4 1.90456 0.00045 0.00728 0.00353 0.01068 1.91524 A5 1.87884 -0.00015 -0.00358 -0.00170 -0.00529 1.87355 A6 1.87884 -0.00015 -0.00358 -0.00170 -0.00529 1.87355 A7 1.94410 0.00000 0.00320 -0.00102 0.00210 1.94620 A8 1.94410 0.00000 0.00320 -0.00102 0.00210 1.94620 A9 1.91111 -0.00015 -0.00675 0.00186 -0.00491 1.90620 A10 1.90456 0.00045 0.00728 0.00353 0.01068 1.91524 A11 1.87884 -0.00015 -0.00358 -0.00170 -0.00529 1.87355 A12 1.87884 -0.00015 -0.00358 -0.00170 -0.00529 1.87355 D1 1.01070 -0.00057 -0.01364 -0.00310 -0.01680 0.99390 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.06544 -0.00029 -0.00682 -0.00155 -0.00840 -1.07385 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.01070 0.00057 0.01364 0.00310 0.01680 -0.99390 D6 1.06544 0.00029 0.00682 0.00155 0.00840 1.07385 D7 -1.06544 -0.00029 -0.00682 -0.00155 -0.00840 -1.07385 D8 1.06544 0.00029 0.00682 0.00155 0.00840 1.07385 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.002117 0.000450 NO RMS Force 0.000781 0.000300 NO Maximum Displacement 0.007524 0.001800 NO RMS Displacement 0.004258 0.001200 NO Predicted change in Energy=-5.877130D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.580253 0.490422 0.000000 2 6 0 0.580253 -0.490422 0.000000 3 1 0 -1.197237 0.379212 -0.890950 4 1 0 -1.197237 0.379212 0.890950 5 1 0 1.197237 -0.379212 -0.890950 6 1 0 1.197237 -0.379212 0.890950 7 17 0 0.069515 2.184283 0.000000 8 17 0 -0.069515 -2.184283 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.519483 0.000000 3 H 1.089417 2.170144 0.000000 4 H 1.089417 2.170144 1.781900 0.000000 5 H 2.170144 1.089417 2.511715 3.079591 0.000000 6 H 2.170144 1.089417 3.079591 2.511715 1.781900 7 Cl 1.814212 2.723031 2.378389 2.378389 2.938887 8 Cl 2.723031 1.814212 2.938887 2.938887 2.378389 6 7 8 6 H 0.000000 7 Cl 2.938887 0.000000 8 Cl 2.378389 4.370777 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.477971 0.590552 0.000000 2 6 0 -0.477971 -0.590552 0.000000 3 1 0 1.104864 0.597038 0.890950 4 1 0 1.104864 0.597038 -0.890950 5 1 0 -1.104864 -0.597038 0.890950 6 1 0 -1.104864 -0.597038 -0.890950 7 17 0 -0.477971 2.132479 0.000000 8 17 0 0.477971 -2.132479 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 29.0694689 1.4723650 1.4267046 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of AG symmetry. There are 14 symmetry adapted cartesian basis functions of BG symmetry. There are 14 symmetry adapted cartesian basis functions of AU symmetry. There are 30 symmetry adapted cartesian basis functions of BU symmetry. There are 30 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of BG symmetry. There are 14 symmetry adapted basis functions of AU symmetry. There are 30 symmetry adapted basis functions of BU symmetry. 88 basis functions, 188 primitive gaussians, 88 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 192.9176305283 Hartrees. NAtoms= 8 NActive= 8 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 88 RedAO= T EigKep= 7.21D-03 NBF= 30 14 14 30 NBsUse= 88 1.00D-06 EigRej= -1.00D+00 NBFU= 30 14 14 30 Initial guess from the checkpoint file: "H:\Chemistry\Second Year 2017-18\2nd Year Chemistry Laboratories\Inorganic Computational Lab\Project\CH2ClCH2Cl Anti\wl4015_c2h4cl2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 -0.000191 Ang= -0.02 deg. Initial guess orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) Keep R1 ints in memory in symmetry-blocked form, NReq=9680398. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -999.024186043 A.U. after 8 cycles NFock= 8 Conv=0.28D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000926429 -0.000882076 0.000000000 2 6 -0.000926429 0.000882076 0.000000000 3 1 -0.000219096 0.000121040 -0.000149320 4 1 -0.000219096 0.000121040 0.000149320 5 1 0.000219096 -0.000121040 -0.000149320 6 1 0.000219096 -0.000121040 0.000149320 7 17 -0.000026397 0.000106802 0.000000000 8 17 0.000026397 -0.000106802 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000926429 RMS 0.000389266 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000696818 RMS 0.000190547 Search for a local minimum. Step number 4 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 DE= -6.46D-05 DEPred=-5.88D-05 R= 1.10D+00 TightC=F SS= 1.41D+00 RLast= 4.15D-02 DXNew= 6.9999D-01 1.2442D-01 Trust test= 1.10D+00 RLast= 4.15D-02 DXMaxT set to 4.16D-01 ITU= 1 1 1 0 Eigenvalues --- 0.00757 0.04373 0.05909 0.06013 0.06013 Eigenvalues --- 0.16000 0.16000 0.16000 0.16054 0.20269 Eigenvalues --- 0.22320 0.25535 0.29539 0.31853 0.31853 Eigenvalues --- 0.31853 0.32240 0.33685 En-DIIS/RFO-DIIS IScMMF= 0 using points: 4 3 RFO step: Lambda=-2.08634114D-06. DidBck=F Rises=F RFO-DIIS coefs: 1.09376 -0.09376 Iteration 1 RMS(Cart)= 0.00070151 RMS(Int)= 0.00000237 Iteration 2 RMS(Cart)= 0.00000087 RMS(Int)= 0.00000226 ClnCor: largest displacement from symmetrization is 4.16D-11 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.87141 -0.00070 -0.00051 -0.00184 -0.00234 2.86906 R2 2.05870 0.00023 0.00012 0.00050 0.00062 2.05932 R3 2.05870 0.00023 0.00012 0.00050 0.00062 2.05932 R4 3.42836 0.00009 0.00138 -0.00019 0.00119 3.42955 R5 2.05870 0.00023 0.00012 0.00050 0.00062 2.05932 R6 2.05870 0.00023 0.00012 0.00050 0.00062 2.05932 R7 3.42836 0.00009 0.00138 -0.00019 0.00119 3.42955 A1 1.94620 0.00019 0.00020 0.00128 0.00147 1.94767 A2 1.94620 0.00019 0.00020 0.00128 0.00147 1.94767 A3 1.90620 0.00007 -0.00046 0.00037 -0.00009 1.90611 A4 1.91524 -0.00017 0.00100 -0.00135 -0.00036 1.91488 A5 1.87355 -0.00014 -0.00050 -0.00086 -0.00136 1.87219 A6 1.87355 -0.00014 -0.00050 -0.00086 -0.00136 1.87219 A7 1.94620 0.00019 0.00020 0.00128 0.00147 1.94767 A8 1.94620 0.00019 0.00020 0.00128 0.00147 1.94767 A9 1.90620 0.00007 -0.00046 0.00037 -0.00009 1.90611 A10 1.91524 -0.00017 0.00100 -0.00135 -0.00036 1.91488 A11 1.87355 -0.00014 -0.00050 -0.00086 -0.00136 1.87219 A12 1.87355 -0.00014 -0.00050 -0.00086 -0.00136 1.87219 D1 0.99390 -0.00005 -0.00158 -0.00010 -0.00168 0.99222 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.07385 -0.00002 -0.00079 -0.00005 -0.00084 -1.07469 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -0.99390 0.00005 0.00158 0.00010 0.00168 -0.99222 D6 1.07385 0.00002 0.00079 0.00005 0.00084 1.07469 D7 -1.07385 -0.00002 -0.00079 -0.00005 -0.00084 -1.07469 D8 1.07385 0.00002 0.00079 0.00005 0.00084 1.07469 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000697 0.000450 NO RMS Force 0.000191 0.000300 YES Maximum Displacement 0.001384 0.001800 YES RMS Displacement 0.000701 0.001200 YES Predicted change in Energy=-2.325476D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.580060 0.489690 0.000000 2 6 0 0.580060 -0.489690 0.000000 3 1 0 -1.197643 0.379842 -0.891106 4 1 0 -1.197643 0.379842 0.891106 5 1 0 1.197643 -0.379842 -0.891106 6 1 0 1.197643 -0.379842 0.891106 7 17 0 0.069122 2.184450 0.000000 8 17 0 -0.069122 -2.184450 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.518243 0.000000 3 H 1.089745 2.170342 0.000000 4 H 1.089745 2.170342 1.782212 0.000000 5 H 2.170342 1.089745 2.512870 3.080713 0.000000 6 H 2.170342 1.089745 3.080713 2.512870 1.782212 7 Cl 1.814841 2.722513 2.378102 2.378102 2.939936 8 Cl 2.722513 1.814841 2.939936 2.939936 2.378102 6 7 8 6 H 0.000000 7 Cl 2.939936 0.000000 8 Cl 2.378102 4.371086 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.477853 0.589849 0.000000 2 6 0 -0.477853 -0.589849 0.000000 3 1 0 1.105077 0.597857 0.891106 4 1 0 1.105077 0.597857 -0.891106 5 1 0 -1.105077 -0.597857 0.891106 6 1 0 -1.105077 -0.597857 -0.891106 7 17 0 -0.477853 2.132664 0.000000 8 17 0 0.477853 -2.132664 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 29.0754195 1.4722096 1.4265820 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of AG symmetry. There are 14 symmetry adapted cartesian basis functions of BG symmetry. There are 14 symmetry adapted cartesian basis functions of AU symmetry. There are 30 symmetry adapted cartesian basis functions of BU symmetry. There are 30 symmetry adapted basis functions of AG symmetry. There are 14 symmetry adapted basis functions of BG symmetry. There are 14 symmetry adapted basis functions of AU symmetry. There are 30 symmetry adapted basis functions of BU symmetry. 88 basis functions, 188 primitive gaussians, 88 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 192.9052767637 Hartrees. NAtoms= 8 NActive= 8 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 88 RedAO= T EigKep= 7.20D-03 NBF= 30 14 14 30 NBsUse= 88 1.00D-06 EigRej= -1.00D+00 NBFU= 30 14 14 30 Initial guess from the checkpoint file: "H:\Chemistry\Second Year 2017-18\2nd Year Chemistry Laboratories\Inorganic Computational Lab\Project\CH2ClCH2Cl Anti\wl4015_c2h4cl2_opt.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000033 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (AG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (BG) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (AU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) (BU) Keep R1 ints in memory in symmetry-blocked form, NReq=9680398. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -999.024188819 A.U. after 7 cycles NFock= 7 Conv=0.34D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000305392 -0.000189250 0.000000000 2 6 -0.000305392 0.000189250 0.000000000 3 1 -0.000045282 0.000002721 0.000022190 4 1 -0.000045282 0.000002721 -0.000022190 5 1 0.000045282 -0.000002721 0.000022190 6 1 0.000045282 -0.000002721 -0.000022190 7 17 -0.000003906 0.000033158 0.000000000 8 17 0.000003906 -0.000033158 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000305392 RMS 0.000106182 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000258255 RMS 0.000055152 Search for a local minimum. Step number 5 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 5 DE= -2.78D-06 DEPred=-2.33D-06 R= 1.19D+00 TightC=F SS= 1.41D+00 RLast= 5.89D-03 DXNew= 6.9999D-01 1.7663D-02 Trust test= 1.19D+00 RLast= 5.89D-03 DXMaxT set to 4.16D-01 ITU= 1 1 1 1 0 Eigenvalues --- 0.00757 0.04765 0.05893 0.06010 0.06010 Eigenvalues --- 0.13728 0.16000 0.16000 0.16000 0.20038 Eigenvalues --- 0.22314 0.25222 0.28935 0.29539 0.31853 Eigenvalues --- 0.31853 0.31853 0.34705 En-DIIS/RFO-DIIS IScMMF= 0 using points: 5 4 3 RFO step: Lambda=-1.91508701D-07. DidBck=F Rises=F RFO-DIIS coefs: 1.29708 -0.31811 0.02103 Iteration 1 RMS(Cart)= 0.00019707 RMS(Int)= 0.00000020 Iteration 2 RMS(Cart)= 0.00000006 RMS(Int)= 0.00000019 ClnCor: largest displacement from symmetrization is 7.58D-09 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.86906 -0.00026 -0.00058 -0.00055 -0.00113 2.86793 R2 2.05932 0.00001 0.00016 -0.00010 0.00006 2.05938 R3 2.05932 0.00001 0.00016 -0.00010 0.00006 2.05938 R4 3.42955 0.00003 0.00004 0.00018 0.00022 3.42977 R5 2.05932 0.00001 0.00016 -0.00010 0.00006 2.05938 R6 2.05932 0.00001 0.00016 -0.00010 0.00006 2.05938 R7 3.42955 0.00003 0.00004 0.00018 0.00022 3.42977 A1 1.94767 0.00003 0.00039 -0.00009 0.00031 1.94798 A2 1.94767 0.00003 0.00039 -0.00009 0.00031 1.94798 A3 1.90611 0.00003 0.00008 0.00010 0.00018 1.90628 A4 1.91488 -0.00006 -0.00033 -0.00025 -0.00059 1.91429 A5 1.87219 -0.00002 -0.00029 0.00017 -0.00012 1.87207 A6 1.87219 -0.00002 -0.00029 0.00017 -0.00012 1.87207 A7 1.94767 0.00003 0.00039 -0.00009 0.00031 1.94798 A8 1.94767 0.00003 0.00039 -0.00009 0.00031 1.94798 A9 1.90611 0.00003 0.00008 0.00010 0.00018 1.90628 A10 1.91488 -0.00006 -0.00033 -0.00025 -0.00059 1.91429 A11 1.87219 -0.00002 -0.00029 0.00017 -0.00012 1.87207 A12 1.87219 -0.00002 -0.00029 0.00017 -0.00012 1.87207 D1 0.99222 0.00003 -0.00015 0.00046 0.00031 0.99254 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.07469 0.00001 -0.00007 0.00023 0.00016 -1.07453 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -0.99222 -0.00003 0.00015 -0.00046 -0.00031 -0.99254 D6 1.07469 -0.00001 0.00007 -0.00023 -0.00016 1.07453 D7 -1.07469 0.00001 -0.00007 0.00023 0.00016 -1.07453 D8 1.07469 -0.00001 0.00007 -0.00023 -0.00016 1.07453 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000258 0.000450 YES RMS Force 0.000055 0.000300 YES Maximum Displacement 0.000462 0.001800 YES RMS Displacement 0.000197 0.001200 YES Predicted change in Energy=-2.223108D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5182 -DE/DX = -0.0003 ! ! R2 R(1,3) 1.0897 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0897 -DE/DX = 0.0 ! ! R4 R(1,7) 1.8148 -DE/DX = 0.0 ! ! R5 R(2,5) 1.0897 -DE/DX = 0.0 ! ! R6 R(2,6) 1.0897 -DE/DX = 0.0 ! ! R7 R(2,8) 1.8148 -DE/DX = 0.0 ! ! A1 A(2,1,3) 111.5935 -DE/DX = 0.0 ! ! A2 A(2,1,4) 111.5935 -DE/DX = 0.0 ! ! A3 A(2,1,7) 109.2118 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.7143 -DE/DX = -0.0001 ! ! A5 A(3,1,7) 107.2686 -DE/DX = 0.0 ! ! A6 A(4,1,7) 107.2686 -DE/DX = 0.0 ! ! A7 A(1,2,5) 111.5935 -DE/DX = 0.0 ! ! A8 A(1,2,6) 111.5935 -DE/DX = 0.0 ! ! A9 A(1,2,8) 109.2118 -DE/DX = 0.0 ! ! A10 A(5,2,6) 109.7143 -DE/DX = -0.0001 ! ! A11 A(5,2,8) 107.2686 -DE/DX = 0.0 ! ! A12 A(6,2,8) 107.2686 -DE/DX = 0.0 ! ! D1 D(3,1,2,5) 56.8501 -DE/DX = 0.0 ! ! D2 D(3,1,2,6) 180.0 -DE/DX = 0.0 ! ! D3 D(3,1,2,8) -61.5749 -DE/DX = 0.0 ! ! D4 D(4,1,2,5) 180.0 -DE/DX = 0.0 ! ! D5 D(4,1,2,6) -56.8501 -DE/DX = 0.0 ! ! D6 D(4,1,2,8) 61.5749 -DE/DX = 0.0 ! ! D7 D(7,1,2,5) -61.5749 -DE/DX = 0.0 ! ! D8 D(7,1,2,6) 61.5749 -DE/DX = 0.0 ! ! D9 D(7,1,2,8) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.580060 0.489690 0.000000 2 6 0 0.580060 -0.489690 0.000000 3 1 0 -1.197643 0.379842 -0.891106 4 1 0 -1.197643 0.379842 0.891106 5 1 0 1.197643 -0.379842 -0.891106 6 1 0 1.197643 -0.379842 0.891106 7 17 0 0.069122 2.184450 0.000000 8 17 0 -0.069122 -2.184450 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.518243 0.000000 3 H 1.089745 2.170342 0.000000 4 H 1.089745 2.170342 1.782212 0.000000 5 H 2.170342 1.089745 2.512870 3.080713 0.000000 6 H 2.170342 1.089745 3.080713 2.512870 1.782212 7 Cl 1.814841 2.722513 2.378102 2.378102 2.939936 8 Cl 2.722513 1.814841 2.939936 2.939936 2.378102 6 7 8 6 H 0.000000 7 Cl 2.939936 0.000000 8 Cl 2.378102 4.371086 0.000000 Stoichiometry C2H4Cl2 Framework group C2H[SGH(C2Cl2),X(H4)] Deg. of freedom 6 Full point group C2H NOp 4 Largest Abelian subgroup C2H NOp 4 Largest concise Abelian subgroup C2H NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.477853 0.589849 0.000000 2 6 0 -0.477853 -0.589849 0.000000 3 1 0 1.105077 0.597857 0.891106 4 1 0 1.105077 0.597857 -0.891106 5 1 0 -1.105077 -0.597857 0.891106 6 1 0 -1.105077 -0.597857 -0.891106 7 17 0 -0.477853 2.132664 0.000000 8 17 0 0.477853 -2.132664 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 29.0754195 1.4722096 1.4265820 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (AG) (BU) (AG) (BU) (AG) (BU) (AG) (BU) (BU) (AG) (AU) (BG) (AG) (BU) (AG) (BU) (AU) (BU) (AG) (BG) (AG) (BU) (BG) (AU) (AG) Virtual (BU) (AG) (AG) (AU) (BU) (BG) (BU) (BU) (AG) (BU) (AG) (BG) (AU) (AG) (BU) (AG) (AU) (BG) (BU) (AG) (BU) (BG) (AU) (AG) (AU) (BU) (AG) (BG) (BU) (AU) (BU) (AG) (AG) (BU) (BG) (AG) (BU) (AU) (BU) (BG) (AG) (AG) (AU) (BG) (BU) (AG) (AU) (BG) (BU) (AU) (AG) (BU) (BG) (BU) (AG) (AG) (BU) (BG) (AU) (AG) (BU) (AG) (BU) The electronic state is 1-AG. Alpha occ. eigenvalues -- -101.54845-101.54845 -10.26788 -10.26765 -9.46497 Alpha occ. eigenvalues -- -9.46497 -7.22900 -7.22900 -7.21914 -7.21913 Alpha occ. eigenvalues -- -7.21887 -7.21886 -0.88814 -0.84701 -0.73040 Alpha occ. eigenvalues -- -0.63622 -0.51046 -0.46017 -0.45035 -0.41947 Alpha occ. eigenvalues -- -0.39646 -0.32105 -0.31163 -0.30810 -0.30684 Alpha virt. eigenvalues -- -0.00637 0.02889 0.10658 0.11459 0.12122 Alpha virt. eigenvalues -- 0.15904 0.17657 0.37803 0.37843 0.40287 Alpha virt. eigenvalues -- 0.43398 0.44208 0.45521 0.46032 0.47562 Alpha virt. eigenvalues -- 0.48833 0.52756 0.58835 0.59240 0.59254 Alpha virt. eigenvalues -- 0.70234 0.81547 0.81622 0.83197 0.85920 Alpha virt. eigenvalues -- 0.85936 0.87739 0.88611 0.89492 0.89606 Alpha virt. eigenvalues -- 0.93275 0.97458 0.99746 1.05906 1.13996 Alpha virt. eigenvalues -- 1.21859 1.38943 1.42635 1.48643 1.62810 Alpha virt. eigenvalues -- 1.80799 1.85931 2.01822 2.06789 2.07062 Alpha virt. eigenvalues -- 2.12679 2.18095 2.23563 2.34621 2.42845 Alpha virt. eigenvalues -- 2.52727 2.59149 2.70190 2.76267 2.80350 Alpha virt. eigenvalues -- 3.17494 3.28131 3.35252 3.46927 4.14685 Alpha virt. eigenvalues -- 4.24215 4.32590 4.49801 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.100832 0.316836 0.385917 0.385917 -0.037751 -0.037751 2 C 0.316836 5.100832 -0.037751 -0.037751 0.385917 0.385917 3 H 0.385917 -0.037751 0.550613 -0.032286 -0.005602 0.004891 4 H 0.385917 -0.037751 -0.032286 0.550613 0.004891 -0.005602 5 H -0.037751 0.385917 -0.005602 0.004891 0.550613 -0.032286 6 H -0.037751 0.385917 0.004891 -0.005602 -0.032286 0.550613 7 Cl 0.213925 -0.051505 -0.044465 -0.044465 0.001677 0.001677 8 Cl -0.051505 0.213925 0.001677 0.001677 -0.044465 -0.044465 7 8 1 C 0.213925 -0.051505 2 C -0.051505 0.213925 3 H -0.044465 0.001677 4 H -0.044465 0.001677 5 H 0.001677 -0.044465 6 H 0.001677 -0.044465 7 Cl 16.995407 0.005346 8 Cl 0.005346 16.995407 Mulliken charges: 1 1 C -0.276418 2 C -0.276418 3 H 0.177007 4 H 0.177007 5 H 0.177007 6 H 0.177007 7 Cl -0.077596 8 Cl -0.077596 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.077596 2 C 0.077596 7 Cl -0.077596 8 Cl -0.077596 Electronic spatial extent (au): = 727.6874 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -37.0995 YY= -45.3629 ZZ= -37.4395 XY= 2.2060 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.8678 YY= -5.3956 ZZ= 2.5278 XY= 2.2060 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -109.1476 YYYY= -764.9437 ZZZZ= -52.6890 XXXY= 64.0527 XXXZ= 0.0000 YYYX= 49.8174 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -140.2884 XXZZ= -24.9911 YYZZ= -139.8250 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 23.8687 N-N= 1.929052767637D+02 E-N=-2.754818362184D+03 KE= 9.954257304185D+02 Symmetry AG KE= 4.515783710145D+02 Symmetry BG KE= 4.787155998109D+01 Symmetry AU KE= 4.775251292722D+01 Symmetry BU KE= 4.482232864957D+02 1|1| IMPERIAL COLLEGE-CHWS-127|FOpt|RB3LYP|6-31G(d,p)|C2H4Cl2|WL4015|0 3-May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=u ltrafine||C2H4Cl2 optimisation||0,1|C,-0.5800599387,0.4896896491,0.|C, 0.5800599387,-0.4896896491,0.|H,-1.1976427889,0.3798422253,-0.89110601 01|H,-1.1976427889,0.3798422253,0.8911060101|H,1.1976427889,-0.3798422 253,-0.8911060101|H,1.1976427889,-0.3798422253,0.8911060101|Cl,0.06912 17956,2.1844497627,0.|Cl,-0.0691217956,-2.1844497627,0.||Version=EM64W -G09RevD.01|State=1-AG|HF=-999.0241888|RMSD=3.424e-009|RMSF=1.062e-004 |Dipole=0.,0.,0.|Quadrupole=2.5204003,-4.3997437,1.8793434,-0.3920835, 0.,0.|PG=C02H [SGH(C2Cl2),X(H4)]||@ IF IT HAPPENS, IT MUST BE POSSIBLE. -- THE UNNAMED LAW FROM PAUL DICKSON'S "THE OFFICIAL RULES" Job cpu time: 0 days 0 hours 3 minutes 18.0 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu May 03 17:28:49 2018.