Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 13436. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 16-May-2019 ****************************************** %chk=\\icnas3.cc.ic.ac.uk\zz1617\Desktop\3rd year lab\TEST2.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.81669 H 0.89014 -0.51392 2.1894 H 0. 1.02785 2.1894 H -0.89014 -0.51392 2.1894 C 0. -1.71279 -0.60556 H -0.89014 -2.2355 -0.24527 H 0. -1.72157 -1.69887 H 0.89014 -2.2355 -0.24527 C -1.48332 0.8564 -0.60556 H -1.49093 1.88864 -0.24527 H -1.49093 0.86079 -1.69887 H -2.38107 0.34686 -0.24527 C 1.48332 0.8564 -0.60556 H 2.38107 0.34686 -0.24527 H 1.49093 0.86079 -1.69887 H 1.49093 1.88864 -0.24527 P 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 estimate D2E/DX2 ! ! R2 R(1,3) 1.0933 estimate D2E/DX2 ! ! R3 R(1,4) 1.0933 estimate D2E/DX2 ! ! R4 R(1,17) 1.8167 estimate D2E/DX2 ! ! R5 R(5,6) 1.0933 estimate D2E/DX2 ! ! R6 R(5,7) 1.0933 estimate D2E/DX2 ! ! R7 R(5,8) 1.0933 estimate D2E/DX2 ! ! R8 R(5,17) 1.8167 estimate D2E/DX2 ! ! R9 R(9,10) 1.0933 estimate D2E/DX2 ! ! R10 R(9,11) 1.0933 estimate D2E/DX2 ! ! R11 R(9,12) 1.0933 estimate D2E/DX2 ! ! R12 R(9,17) 1.8167 estimate D2E/DX2 ! ! R13 R(13,14) 1.0933 estimate D2E/DX2 ! ! R14 R(13,15) 1.0933 estimate D2E/DX2 ! ! R15 R(13,16) 1.0933 estimate D2E/DX2 ! ! R16 R(13,17) 1.8167 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.0071 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.0071 estimate D2E/DX2 ! ! A3 A(2,1,17) 109.9314 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.0071 estimate D2E/DX2 ! ! A5 A(3,1,17) 109.9314 estimate D2E/DX2 ! ! A6 A(4,1,17) 109.9314 estimate D2E/DX2 ! ! A7 A(6,5,7) 109.0071 estimate D2E/DX2 ! ! A8 A(6,5,8) 109.0071 estimate D2E/DX2 ! ! A9 A(6,5,17) 109.9314 estimate D2E/DX2 ! ! A10 A(7,5,8) 109.0071 estimate D2E/DX2 ! ! A11 A(7,5,17) 109.9314 estimate D2E/DX2 ! ! A12 A(8,5,17) 109.9314 estimate D2E/DX2 ! ! A13 A(10,9,11) 109.0071 estimate D2E/DX2 ! ! A14 A(10,9,12) 109.0071 estimate D2E/DX2 ! ! A15 A(10,9,17) 109.9314 estimate D2E/DX2 ! ! A16 A(11,9,12) 109.0071 estimate D2E/DX2 ! ! A17 A(11,9,17) 109.9314 estimate D2E/DX2 ! ! A18 A(12,9,17) 109.9314 estimate D2E/DX2 ! ! A19 A(14,13,15) 109.0071 estimate D2E/DX2 ! ! A20 A(14,13,16) 109.0071 estimate D2E/DX2 ! ! A21 A(14,13,17) 109.9314 estimate D2E/DX2 ! ! A22 A(15,13,16) 109.0071 estimate D2E/DX2 ! ! A23 A(15,13,17) 109.9314 estimate D2E/DX2 ! ! A24 A(16,13,17) 109.9314 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 60.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 180.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) -60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) 180.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) -60.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) -60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) 60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 180.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) -60.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) 180.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) 60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) -60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 180.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 60.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 60.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 180.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) -180.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) -60.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) -60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) 60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) -60.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) 180.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) 180.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) 60.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) -60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) -60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) 180.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816689 2 1 0 0.890144 -0.513925 2.189403 3 1 0 0.000000 1.027850 2.189403 4 1 0 -0.890144 -0.513925 2.189403 5 6 0 0.000000 -1.712791 -0.605563 6 1 0 -0.890144 -2.235497 -0.245268 7 1 0 0.000000 -1.721572 -1.698867 8 1 0 0.890144 -2.235497 -0.245268 9 6 0 -1.483320 0.856395 -0.605563 10 1 0 -1.490925 1.888636 -0.245268 11 1 0 -1.490925 0.860786 -1.698867 12 1 0 -2.381069 0.346861 -0.245268 13 6 0 1.483320 0.856395 -0.605563 14 1 0 2.381069 0.346861 -0.245268 15 1 0 1.490925 0.860786 -1.698867 16 1 0 1.490925 1.888636 -0.245268 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093339 0.000000 3 H 1.093339 1.780288 0.000000 4 H 1.093339 1.780288 1.780288 0.000000 5 C 2.966641 3.168828 3.914453 3.168828 0.000000 6 H 3.168828 3.472875 4.167663 2.981851 1.093339 7 H 3.914453 4.167663 4.762139 4.167663 1.093339 8 H 3.168828 2.981851 4.167663 3.472875 1.093339 9 C 2.966641 3.914453 3.168828 3.168828 2.966641 10 H 3.168828 4.167663 2.981851 3.472875 3.914453 11 H 3.914453 4.762139 4.167663 4.167663 3.168828 12 H 3.168828 4.167663 3.472875 2.981851 3.168828 13 C 2.966641 3.168828 3.168828 3.914453 2.966641 14 H 3.168828 2.981851 3.472875 4.167663 3.168828 15 H 3.914453 4.167663 4.167663 4.762139 3.168828 16 H 3.168828 3.472875 2.981851 4.167663 3.914453 17 P 1.816689 2.418669 2.418669 2.418669 1.816689 6 7 8 9 10 6 H 0.000000 7 H 1.780288 0.000000 8 H 1.780288 1.780288 0.000000 9 C 3.168828 3.168828 3.914453 0.000000 10 H 4.167663 4.167663 4.762139 1.093339 0.000000 11 H 3.472875 2.981851 4.167663 1.093339 1.780288 12 H 2.981851 3.472875 4.167663 1.093339 1.780288 13 C 3.914453 3.168828 3.168828 2.966641 3.168828 14 H 4.167663 3.472875 2.981851 3.914453 4.167663 15 H 4.167663 2.981851 3.472875 3.168828 3.472875 16 H 4.762139 4.167663 4.167663 3.168828 2.981851 17 P 2.418669 2.418669 2.418669 1.816689 2.418669 11 12 13 14 15 11 H 0.000000 12 H 1.780288 0.000000 13 C 3.168828 3.914453 0.000000 14 H 4.167663 4.762139 1.093339 0.000000 15 H 2.981851 4.167663 1.093339 1.780288 0.000000 16 H 3.472875 4.167663 1.093339 1.780288 1.780288 17 P 2.418669 2.418669 1.816689 2.418669 2.418669 16 17 16 H 0.000000 17 P 2.418669 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.048866 1.048866 1.048866 2 1 0 -0.424817 1.683670 1.683670 3 1 0 -1.683670 1.683670 0.424817 4 1 0 -1.683670 0.424817 1.683670 5 6 0 1.048866 -1.048866 1.048866 6 1 0 0.424817 -1.683670 1.683670 7 1 0 1.683670 -1.683670 0.424817 8 1 0 1.683670 -0.424817 1.683670 9 6 0 -1.048866 -1.048866 -1.048866 10 1 0 -1.683670 -0.424817 -1.683670 11 1 0 -0.424817 -1.683670 -1.683670 12 1 0 -1.683670 -1.683670 -0.424817 13 6 0 1.048866 1.048866 -1.048866 14 1 0 1.683670 1.683670 -0.424817 15 1 0 1.683670 0.424817 -1.683670 16 1 0 0.424817 1.683670 -1.683670 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3079440 3.3079440 3.3079440 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6420302209 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030203 A.U. after 10 cycles NFock= 10 Conv=0.33D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34290 -10.37615 -10.37615 -10.37615 -10.37614 Alpha occ. eigenvalues -- -6.80829 -4.96984 -4.96984 -4.96984 -0.99265 Alpha occ. eigenvalues -- -0.89081 -0.89081 -0.89081 -0.73301 -0.63369 Alpha occ. eigenvalues -- -0.63369 -0.63369 -0.60222 -0.60222 -0.57874 Alpha occ. eigenvalues -- -0.57874 -0.57874 -0.53926 -0.53926 -0.53926 Alpha virt. eigenvalues -- -0.11011 -0.11011 -0.11011 -0.10152 -0.05119 Alpha virt. eigenvalues -- -0.04128 -0.04128 -0.03822 -0.03822 -0.03822 Alpha virt. eigenvalues -- 0.00635 0.00635 0.00635 0.02555 0.02555 Alpha virt. eigenvalues -- 0.02555 0.19718 0.19718 0.19718 0.24758 Alpha virt. eigenvalues -- 0.24758 0.29671 0.43579 0.43579 0.43579 Alpha virt. eigenvalues -- 0.46743 0.46743 0.46743 0.47398 0.56972 Alpha virt. eigenvalues -- 0.56972 0.57682 0.57682 0.57682 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.69738 0.69738 0.69738 Alpha virt. eigenvalues -- 0.71106 0.71604 0.71604 0.71604 0.74103 Alpha virt. eigenvalues -- 0.74103 0.81600 0.81600 0.81600 1.09558 Alpha virt. eigenvalues -- 1.09558 1.09558 1.22824 1.22824 1.22824 Alpha virt. eigenvalues -- 1.23848 1.30714 1.30714 1.50565 1.50565 Alpha virt. eigenvalues -- 1.50565 1.75088 1.85234 1.85234 1.85234 Alpha virt. eigenvalues -- 1.85331 1.87429 1.87429 1.88007 1.88007 Alpha virt. eigenvalues -- 1.88007 1.93269 1.93269 1.93269 1.96513 Alpha virt. eigenvalues -- 1.96513 1.96513 2.14673 2.14673 2.14673 Alpha virt. eigenvalues -- 2.19087 2.19087 2.19087 2.19389 2.19389 Alpha virt. eigenvalues -- 2.41965 2.47510 2.47510 2.47510 2.61127 Alpha virt. eigenvalues -- 2.61127 2.65357 2.65357 2.65357 2.67376 Alpha virt. eigenvalues -- 2.67376 2.67376 2.95808 3.00638 3.00638 Alpha virt. eigenvalues -- 3.00638 3.22453 3.22453 3.22453 3.24323 Alpha virt. eigenvalues -- 3.24323 3.25155 3.25155 3.25155 3.34963 Alpha virt. eigenvalues -- 4.26246 4.27334 4.27334 4.27334 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.135737 0.377503 0.377503 0.377503 -0.032234 -0.001792 2 H 0.377503 0.484072 -0.016368 -0.016368 -0.001792 -0.000137 3 H 0.377503 -0.016368 0.484072 -0.016368 0.001666 0.000006 4 H 0.377503 -0.016368 -0.016368 0.484072 -0.001792 0.000784 5 C -0.032234 -0.001792 0.001666 -0.001792 5.135737 0.377503 6 H -0.001792 -0.000137 0.000006 0.000784 0.377503 0.484072 7 H 0.001666 0.000006 -0.000029 0.000006 0.377503 -0.016368 8 H -0.001792 0.000784 0.000006 -0.000137 0.377503 -0.016368 9 C -0.032234 0.001666 -0.001792 -0.001792 -0.032234 -0.001792 10 H -0.001792 0.000006 0.000784 -0.000137 0.001666 0.000006 11 H 0.001666 -0.000029 0.000006 0.000006 -0.001792 -0.000137 12 H -0.001792 0.000006 -0.000137 0.000784 -0.001792 0.000784 13 C -0.032234 -0.001792 -0.001792 0.001666 -0.032234 0.001666 14 H -0.001792 0.000784 -0.000137 0.000006 -0.001792 0.000006 15 H 0.001666 0.000006 0.000006 -0.000029 -0.001792 0.000006 16 H -0.001792 -0.000137 0.000784 0.000006 0.001666 -0.000029 17 P 0.345220 -0.021430 -0.021430 -0.021430 0.345220 -0.021430 7 8 9 10 11 12 1 C 0.001666 -0.001792 -0.032234 -0.001792 0.001666 -0.001792 2 H 0.000006 0.000784 0.001666 0.000006 -0.000029 0.000006 3 H -0.000029 0.000006 -0.001792 0.000784 0.000006 -0.000137 4 H 0.000006 -0.000137 -0.001792 -0.000137 0.000006 0.000784 5 C 0.377503 0.377503 -0.032234 0.001666 -0.001792 -0.001792 6 H -0.016368 -0.016368 -0.001792 0.000006 -0.000137 0.000784 7 H 0.484072 -0.016368 -0.001792 0.000006 0.000784 -0.000137 8 H -0.016368 0.484072 0.001666 -0.000029 0.000006 0.000006 9 C -0.001792 0.001666 5.135737 0.377503 0.377503 0.377503 10 H 0.000006 -0.000029 0.377503 0.484072 -0.016368 -0.016368 11 H 0.000784 0.000006 0.377503 -0.016368 0.484072 -0.016368 12 H -0.000137 0.000006 0.377503 -0.016368 -0.016368 0.484072 13 C -0.001792 -0.001792 -0.032234 -0.001792 -0.001792 0.001666 14 H -0.000137 0.000784 0.001666 0.000006 0.000006 -0.000029 15 H 0.000784 -0.000137 -0.001792 -0.000137 0.000784 0.000006 16 H 0.000006 0.000006 -0.001792 0.000784 -0.000137 0.000006 17 P -0.021430 -0.021430 0.345220 -0.021430 -0.021430 -0.021430 13 14 15 16 17 1 C -0.032234 -0.001792 0.001666 -0.001792 0.345220 2 H -0.001792 0.000784 0.000006 -0.000137 -0.021430 3 H -0.001792 -0.000137 0.000006 0.000784 -0.021430 4 H 0.001666 0.000006 -0.000029 0.000006 -0.021430 5 C -0.032234 -0.001792 -0.001792 0.001666 0.345220 6 H 0.001666 0.000006 0.000006 -0.000029 -0.021430 7 H -0.001792 -0.000137 0.000784 0.000006 -0.021430 8 H -0.001792 0.000784 -0.000137 0.000006 -0.021430 9 C -0.032234 0.001666 -0.001792 -0.001792 0.345220 10 H -0.001792 0.000006 -0.000137 0.000784 -0.021430 11 H -0.001792 0.000006 0.000784 -0.000137 -0.021430 12 H 0.001666 -0.000029 0.000006 0.000006 -0.021430 13 C 5.135737 0.377503 0.377503 0.377503 0.345220 14 H 0.377503 0.484072 -0.016368 -0.016368 -0.021430 15 H 0.377503 -0.016368 0.484072 -0.016368 -0.021430 16 H 0.377503 -0.016368 -0.016368 0.484072 -0.021430 17 P 0.345220 -0.021430 -0.021430 -0.021430 13.150903 Mulliken charges: 1 1 C -0.511011 2 H 0.193222 3 H 0.193222 4 H 0.193222 5 C -0.511011 6 H 0.193222 7 H 0.193222 8 H 0.193222 9 C -0.511011 10 H 0.193222 11 H 0.193222 12 H 0.193222 13 C -0.511011 14 H 0.193222 15 H 0.193222 16 H 0.193222 17 P 0.725379 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068655 5 C 0.068655 9 C 0.068655 13 C 0.068655 17 P 0.725379 Electronic spatial extent (au): = 603.2741 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2621 YY= -31.2621 ZZ= -31.2621 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= -1.9907 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.9160 YYYY= -246.9160 ZZZZ= -246.9160 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.4116 XXZZ= -74.4116 YYZZ= -74.4116 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626420302209D+02 E-N=-1.693499688303D+03 KE= 4.978516987299D+02 Symmetry A KE= 2.853337287859D+02 Symmetry B1 KE= 7.083932331466D+01 Symmetry B2 KE= 7.083932331466D+01 Symmetry B3 KE= 7.083932331466D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.000061807 2 1 -0.000025799 0.000014895 -0.000023710 3 1 0.000000000 -0.000029790 -0.000023710 4 1 0.000025799 0.000014895 -0.000023710 5 6 0.000000000 0.000058272 0.000020602 6 1 0.000025799 0.000027319 -0.000006140 7 1 0.000000000 0.000012424 0.000035990 8 1 -0.000025799 0.000027319 -0.000006140 9 6 0.000050465 -0.000029136 0.000020602 10 1 0.000010759 -0.000036002 -0.000006140 11 1 0.000010759 -0.000006212 0.000035990 12 1 0.000036559 0.000008683 -0.000006140 13 6 -0.000050465 -0.000029136 0.000020602 14 1 -0.000036559 0.000008683 -0.000006140 15 1 -0.000010759 -0.000006212 0.000035990 16 1 -0.000010759 -0.000036002 -0.000006140 17 15 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000061807 RMS 0.000025312 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000132937 RMS 0.000033134 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00943 0.00943 0.00943 0.00943 0.05317 Eigenvalues --- 0.05317 0.05317 0.06099 0.06099 0.06099 Eigenvalues --- 0.06099 0.06099 0.06099 0.06099 0.06099 Eigenvalues --- 0.14690 0.14690 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24845 Eigenvalues --- 0.24845 0.24845 0.24845 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 RFO step: Lambda=-3.53091650D-07 EMin= 9.43489159D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00030035 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.78D-09 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R2 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R3 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R4 3.43304 -0.00013 0.00000 -0.00054 -0.00054 3.43251 R5 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R6 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R7 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R8 3.43304 -0.00013 0.00000 -0.00054 -0.00054 3.43251 R9 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R10 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R11 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R12 3.43304 -0.00013 0.00000 -0.00054 -0.00054 3.43251 R13 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R14 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R15 2.06611 -0.00004 0.00000 -0.00010 -0.00010 2.06601 R16 3.43304 -0.00013 0.00000 -0.00054 -0.00054 3.43251 A1 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A2 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A3 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A4 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A5 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A6 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A7 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A8 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A9 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A10 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A11 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A12 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A13 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A14 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A15 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A16 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A17 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A18 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A19 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A20 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A21 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A22 1.90253 0.00001 0.00000 0.00008 0.00008 1.90261 A23 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A24 1.91867 -0.00001 0.00000 -0.00008 -0.00008 1.91859 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D12 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D15 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D18 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D30 -3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D33 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D36 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 Item Value Threshold Converged? Maximum Force 0.000133 0.000450 YES RMS Force 0.000033 0.000300 YES Maximum Displacement 0.000720 0.001800 YES RMS Displacement 0.000300 0.001200 YES Predicted change in Energy=-1.765458D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0933 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0933 -DE/DX = 0.0 ! ! R4 R(1,17) 1.8167 -DE/DX = -0.0001 ! ! R5 R(5,6) 1.0933 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0933 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0933 -DE/DX = 0.0 ! ! R8 R(5,17) 1.8167 -DE/DX = -0.0001 ! ! R9 R(9,10) 1.0933 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0933 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0933 -DE/DX = 0.0 ! ! R12 R(9,17) 1.8167 -DE/DX = -0.0001 ! ! R13 R(13,14) 1.0933 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(13,17) 1.8167 -DE/DX = -0.0001 ! ! A1 A(2,1,3) 109.0071 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.0071 -DE/DX = 0.0 ! ! A3 A(2,1,17) 109.9314 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.0071 -DE/DX = 0.0 ! ! A5 A(3,1,17) 109.9314 -DE/DX = 0.0 ! ! A6 A(4,1,17) 109.9314 -DE/DX = 0.0 ! ! A7 A(6,5,7) 109.0071 -DE/DX = 0.0 ! ! A8 A(6,5,8) 109.0071 -DE/DX = 0.0 ! ! A9 A(6,5,17) 109.9314 -DE/DX = 0.0 ! ! A10 A(7,5,8) 109.0071 -DE/DX = 0.0 ! ! A11 A(7,5,17) 109.9314 -DE/DX = 0.0 ! ! A12 A(8,5,17) 109.9314 -DE/DX = 0.0 ! ! A13 A(10,9,11) 109.0071 -DE/DX = 0.0 ! ! A14 A(10,9,12) 109.0071 -DE/DX = 0.0 ! ! A15 A(10,9,17) 109.9314 -DE/DX = 0.0 ! ! A16 A(11,9,12) 109.0071 -DE/DX = 0.0 ! ! A17 A(11,9,17) 109.9314 -DE/DX = 0.0 ! ! A18 A(12,9,17) 109.9314 -DE/DX = 0.0 ! ! A19 A(14,13,15) 109.0071 -DE/DX = 0.0 ! ! A20 A(14,13,16) 109.0071 -DE/DX = 0.0 ! ! A21 A(14,13,17) 109.9314 -DE/DX = 0.0 ! ! A22 A(15,13,16) 109.0071 -DE/DX = 0.0 ! ! A23 A(15,13,17) 109.9314 -DE/DX = 0.0 ! ! A24 A(16,13,17) 109.9314 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 60.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 180.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) 180.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) -60.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) -60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) 60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) -180.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) -60.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) 180.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) 60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) -60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 180.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 60.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 60.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) -180.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) -180.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) -60.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) -60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) 60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) -60.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -180.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 180.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) 60.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) -60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) -60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) 180.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816689 2 1 0 0.890144 -0.513925 2.189403 3 1 0 0.000000 1.027850 2.189403 4 1 0 -0.890144 -0.513925 2.189403 5 6 0 0.000000 -1.712791 -0.605563 6 1 0 -0.890144 -2.235497 -0.245268 7 1 0 0.000000 -1.721572 -1.698867 8 1 0 0.890144 -2.235497 -0.245268 9 6 0 -1.483320 0.856395 -0.605563 10 1 0 -1.490925 1.888636 -0.245268 11 1 0 -1.490925 0.860786 -1.698867 12 1 0 -2.381069 0.346861 -0.245268 13 6 0 1.483320 0.856395 -0.605563 14 1 0 2.381069 0.346861 -0.245268 15 1 0 1.490925 0.860786 -1.698867 16 1 0 1.490925 1.888636 -0.245268 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093339 0.000000 3 H 1.093339 1.780288 0.000000 4 H 1.093339 1.780288 1.780288 0.000000 5 C 2.966641 3.168828 3.914453 3.168828 0.000000 6 H 3.168828 3.472875 4.167663 2.981851 1.093339 7 H 3.914453 4.167663 4.762139 4.167663 1.093339 8 H 3.168828 2.981851 4.167663 3.472875 1.093339 9 C 2.966641 3.914453 3.168828 3.168828 2.966641 10 H 3.168828 4.167663 2.981851 3.472875 3.914453 11 H 3.914453 4.762139 4.167663 4.167663 3.168828 12 H 3.168828 4.167663 3.472875 2.981851 3.168828 13 C 2.966641 3.168828 3.168828 3.914453 2.966641 14 H 3.168828 2.981851 3.472875 4.167663 3.168828 15 H 3.914453 4.167663 4.167663 4.762139 3.168828 16 H 3.168828 3.472875 2.981851 4.167663 3.914453 17 P 1.816689 2.418669 2.418669 2.418669 1.816689 6 7 8 9 10 6 H 0.000000 7 H 1.780288 0.000000 8 H 1.780288 1.780288 0.000000 9 C 3.168828 3.168828 3.914453 0.000000 10 H 4.167663 4.167663 4.762139 1.093339 0.000000 11 H 3.472875 2.981851 4.167663 1.093339 1.780288 12 H 2.981851 3.472875 4.167663 1.093339 1.780288 13 C 3.914453 3.168828 3.168828 2.966641 3.168828 14 H 4.167663 3.472875 2.981851 3.914453 4.167663 15 H 4.167663 2.981851 3.472875 3.168828 3.472875 16 H 4.762139 4.167663 4.167663 3.168828 2.981851 17 P 2.418669 2.418669 2.418669 1.816689 2.418669 11 12 13 14 15 11 H 0.000000 12 H 1.780288 0.000000 13 C 3.168828 3.914453 0.000000 14 H 4.167663 4.762139 1.093339 0.000000 15 H 2.981851 4.167663 1.093339 1.780288 0.000000 16 H 3.472875 4.167663 1.093339 1.780288 1.780288 17 P 2.418669 2.418669 1.816689 2.418669 2.418669 16 17 16 H 0.000000 17 P 2.418669 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048866 1.048866 1.048866 2 1 0 1.683670 0.424817 1.683670 3 1 0 1.683670 1.683670 0.424817 4 1 0 0.424817 1.683670 1.683670 5 6 0 -1.048866 -1.048866 1.048866 6 1 0 -1.683670 -0.424817 1.683670 7 1 0 -1.683670 -1.683670 0.424817 8 1 0 -0.424817 -1.683670 1.683670 9 6 0 -1.048866 1.048866 -1.048866 10 1 0 -0.424817 1.683670 -1.683670 11 1 0 -1.683670 0.424817 -1.683670 12 1 0 -1.683670 1.683670 -0.424817 13 6 0 1.048866 -1.048866 -1.048866 14 1 0 1.683670 -1.683670 -0.424817 15 1 0 0.424817 -1.683670 -1.683670 16 1 0 1.683670 -0.424817 -1.683670 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3079440 3.3079440 3.3079440 1|1| IMPERIAL COLLEGE-SKCH-135-013|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)| ZZ1617|16-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integra l=grid=ultrafine||Title Card Required||1,1|C,0.0000000016,0.0000000071 ,1.81668897|H,0.8901439861,-0.5139248594,2.18940295|H,0.000000001,1.02 78497457,2.1894029454|H,-0.8901439813,-0.513924861,2.1894029516|C,0.00 0000001,-1.712790788,-0.605562984|H,-0.890143982,-2.2354971864,-0.2452 679616|H,0.,-1.721572322,-1.6988670026|H,0.8901439855,-2.2354971848,-0 .2452679631|C,-1.4833203339,0.8563953907,-0.6055629917|H,-1.4909253628 ,1.8886358943,-0.2452679754|H,-1.4909253631,0.860786152,-1.6988670103| H,-2.3810693451,0.3468612877,-0.2452679693|C,1.4833203313,0.8563953933 ,-0.6055629943|H,2.3810693441,0.3468612918,-0.2452679735|H,1.490925358 6,0.8607861546,-1.698867013|H,1.490925359,1.8886358969,-0.2452679781|P ,0.,0.0000000008,0.||Version=EM64W-G09RevD.01|State=1-A1|HF=-500.82703 02|RMSD=3.325e-009|RMSF=2.531e-005|Dipole=0.,0.,0.|Quadrupole=0.,0.,0. ,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2)]||@ I take a simple view of life: keep your eyes open and get on with it. -- Laurence Olivier Job cpu time: 0 days 0 hours 0 minutes 20.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 16 19:10:14 2019.