Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 13768. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 09-May-2019 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\vc2217\Desktop\3RDYEARLAB\VC_PCH3_SYMOPT.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.81631 H 0. 1.02783 2.18905 H -0.89013 -0.51392 2.18905 H 0.89013 -0.51392 2.18905 C 0. -1.71243 -0.60544 H -0.89013 -2.23516 -0.24516 H 0. -1.72124 -1.69873 H 0.89013 -2.23516 -0.24516 C 1.48301 0.85621 -0.60544 H 1.49064 0.86062 -1.69873 H 1.49064 1.88846 -0.24516 H 2.38077 0.3467 -0.24516 C -1.48301 0.85621 -0.60544 H -1.49064 1.88846 -0.24516 H -1.49064 0.86062 -1.69873 H -2.38077 0.3467 -0.24516 P 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 estimate D2E/DX2 ! ! R2 R(1,3) 1.0933 estimate D2E/DX2 ! ! R3 R(1,4) 1.0933 estimate D2E/DX2 ! ! R4 R(1,17) 1.8163 estimate D2E/DX2 ! ! R5 R(5,6) 1.0933 estimate D2E/DX2 ! ! R6 R(5,7) 1.0933 estimate D2E/DX2 ! ! R7 R(5,8) 1.0933 estimate D2E/DX2 ! ! R8 R(5,17) 1.8163 estimate D2E/DX2 ! ! R9 R(9,10) 1.0933 estimate D2E/DX2 ! ! R10 R(9,11) 1.0933 estimate D2E/DX2 ! ! R11 R(9,12) 1.0933 estimate D2E/DX2 ! ! R12 R(9,17) 1.8163 estimate D2E/DX2 ! ! R13 R(13,14) 1.0933 estimate D2E/DX2 ! ! R14 R(13,15) 1.0933 estimate D2E/DX2 ! ! R15 R(13,16) 1.0933 estimate D2E/DX2 ! ! R16 R(13,17) 1.8163 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.0055 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.0055 estimate D2E/DX2 ! ! A3 A(2,1,17) 109.933 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.0055 estimate D2E/DX2 ! ! A5 A(3,1,17) 109.933 estimate D2E/DX2 ! ! A6 A(4,1,17) 109.933 estimate D2E/DX2 ! ! A7 A(6,5,7) 109.0055 estimate D2E/DX2 ! ! A8 A(6,5,8) 109.0055 estimate D2E/DX2 ! ! A9 A(6,5,17) 109.933 estimate D2E/DX2 ! ! A10 A(7,5,8) 109.0055 estimate D2E/DX2 ! ! A11 A(7,5,17) 109.933 estimate D2E/DX2 ! ! A12 A(8,5,17) 109.933 estimate D2E/DX2 ! ! A13 A(10,9,11) 109.0055 estimate D2E/DX2 ! ! A14 A(10,9,12) 109.0055 estimate D2E/DX2 ! ! A15 A(10,9,17) 109.933 estimate D2E/DX2 ! ! A16 A(11,9,12) 109.0055 estimate D2E/DX2 ! ! A17 A(11,9,17) 109.933 estimate D2E/DX2 ! ! A18 A(12,9,17) 109.933 estimate D2E/DX2 ! ! A19 A(14,13,15) 109.0055 estimate D2E/DX2 ! ! A20 A(14,13,16) 109.0055 estimate D2E/DX2 ! ! A21 A(14,13,17) 109.933 estimate D2E/DX2 ! ! A22 A(15,13,16) 109.0055 estimate D2E/DX2 ! ! A23 A(15,13,17) 109.933 estimate D2E/DX2 ! ! A24 A(16,13,17) 109.933 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 180.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 60.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) -60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) -60.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) 180.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) 60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) -60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 180.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) 180.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) -60.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) -60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) 60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 60.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 180.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 180.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 60.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) -60.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) 180.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) 60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) -60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 180.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) -60.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) 180.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) -60.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) 60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) -60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) 60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) -180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816306 2 1 0 0.000000 1.027835 2.189047 3 1 0 -0.890131 -0.513917 2.189047 4 1 0 0.890131 -0.513917 2.189047 5 6 0 0.000000 -1.712430 -0.605435 6 1 0 -0.890131 -2.235159 -0.245156 7 1 0 0.000000 -1.721241 -1.698734 8 1 0 0.890131 -2.235159 -0.245156 9 6 0 1.483008 0.856215 -0.605435 10 1 0 1.490639 0.860621 -1.698734 11 1 0 1.490639 1.888456 -0.245156 12 1 0 2.380770 0.346703 -0.245156 13 6 0 -1.483008 0.856215 -0.605435 14 1 0 -1.490639 1.888456 -0.245156 15 1 0 -1.490639 0.860621 -1.698734 16 1 0 -2.380770 0.346703 -0.245156 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093334 0.000000 3 H 1.093334 1.780262 0.000000 4 H 1.093334 1.780262 1.780262 0.000000 5 C 2.966016 3.913845 3.168264 3.168264 0.000000 6 H 3.168264 4.167110 2.981278 3.472369 1.093334 7 H 3.913845 4.761540 4.167110 4.167110 1.093334 8 H 3.168264 4.167110 3.472369 2.981278 1.093334 9 C 2.966016 3.168264 3.913845 3.168264 2.966016 10 H 3.913845 4.167110 4.761540 4.167110 3.168264 11 H 3.168264 2.981278 4.167110 3.472369 3.913845 12 H 3.168264 3.472369 4.167110 2.981278 3.168264 13 C 2.966016 3.168264 3.168264 3.913845 2.966016 14 H 3.168264 2.981278 3.472369 4.167110 3.913845 15 H 3.913845 4.167110 4.167110 4.761540 3.168264 16 H 3.168264 3.472369 2.981278 4.167110 3.168264 17 P 1.816306 2.418340 2.418340 2.418340 1.816306 6 7 8 9 10 6 H 0.000000 7 H 1.780262 0.000000 8 H 1.780262 1.780262 0.000000 9 C 3.913845 3.168264 3.168264 0.000000 10 H 4.167110 2.981278 3.472369 1.093334 0.000000 11 H 4.761540 4.167110 4.167110 1.093334 1.780262 12 H 4.167110 3.472369 2.981278 1.093334 1.780262 13 C 3.168264 3.168264 3.913845 2.966016 3.168264 14 H 4.167110 4.167110 4.761540 3.168264 3.472369 15 H 3.472369 2.981278 4.167110 3.168264 2.981278 16 H 2.981278 3.472369 4.167110 3.913845 4.167110 17 P 2.418340 2.418340 2.418340 1.816306 2.418340 11 12 13 14 15 11 H 0.000000 12 H 1.780262 0.000000 13 C 3.168264 3.913845 0.000000 14 H 2.981278 4.167110 1.093334 0.000000 15 H 3.472369 4.167110 1.093334 1.780262 0.000000 16 H 4.167110 4.761540 1.093334 1.780262 1.780262 17 P 2.418340 2.418340 1.816306 2.418340 2.418340 16 17 16 H 0.000000 17 P 2.418340 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048645 -1.048645 1.048645 2 1 0 1.683459 -1.683459 0.424623 3 1 0 1.683459 -0.424623 1.683459 4 1 0 0.424623 -1.683459 1.683459 5 6 0 -1.048645 1.048645 1.048645 6 1 0 -0.424623 1.683459 1.683459 7 1 0 -1.683459 1.683459 0.424623 8 1 0 -1.683459 0.424623 1.683459 9 6 0 -1.048645 -1.048645 -1.048645 10 1 0 -1.683459 -0.424623 -1.683459 11 1 0 -0.424623 -1.683459 -1.683459 12 1 0 -1.683459 -1.683459 -0.424623 13 6 0 1.048645 1.048645 -1.048645 14 1 0 1.683459 0.424623 -1.683459 15 1 0 0.424623 1.683459 -1.683459 16 1 0 1.683459 1.683459 -0.424623 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3091855 3.3091855 3.3091855 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6847643812 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030365 A.U. after 10 cycles NFock= 10 Conv=0.34D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34285 -10.37612 -10.37612 -10.37612 -10.37611 Alpha occ. eigenvalues -- -6.80827 -4.96981 -4.96981 -4.96981 -0.99277 Alpha occ. eigenvalues -- -0.89085 -0.89085 -0.89085 -0.73301 -0.63375 Alpha occ. eigenvalues -- -0.63375 -0.63375 -0.60225 -0.60225 -0.57874 Alpha occ. eigenvalues -- -0.57874 -0.57874 -0.53930 -0.53930 -0.53930 Alpha virt. eigenvalues -- -0.11004 -0.11004 -0.11004 -0.10154 -0.05093 Alpha virt. eigenvalues -- -0.04131 -0.04131 -0.03824 -0.03824 -0.03824 Alpha virt. eigenvalues -- 0.00638 0.00638 0.00638 0.02555 0.02555 Alpha virt. eigenvalues -- 0.02555 0.19721 0.19721 0.19721 0.24763 Alpha virt. eigenvalues -- 0.24763 0.29669 0.43580 0.43580 0.43580 Alpha virt. eigenvalues -- 0.46741 0.46741 0.46741 0.47407 0.56966 Alpha virt. eigenvalues -- 0.56966 0.57694 0.57694 0.57694 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.69734 0.69734 0.69734 Alpha virt. eigenvalues -- 0.71104 0.71625 0.71625 0.71625 0.74108 Alpha virt. eigenvalues -- 0.74108 0.81613 0.81613 0.81613 1.09569 Alpha virt. eigenvalues -- 1.09569 1.09569 1.22825 1.22825 1.22825 Alpha virt. eigenvalues -- 1.23840 1.30724 1.30724 1.50578 1.50578 Alpha virt. eigenvalues -- 1.50578 1.75113 1.85232 1.85232 1.85232 Alpha virt. eigenvalues -- 1.85330 1.87435 1.87435 1.88007 1.88007 Alpha virt. eigenvalues -- 1.88007 1.93269 1.93269 1.93269 1.96539 Alpha virt. eigenvalues -- 1.96539 1.96539 2.14675 2.14675 2.14675 Alpha virt. eigenvalues -- 2.19101 2.19101 2.19101 2.19400 2.19400 Alpha virt. eigenvalues -- 2.41972 2.47515 2.47515 2.47515 2.61127 Alpha virt. eigenvalues -- 2.61127 2.65358 2.65358 2.65358 2.67381 Alpha virt. eigenvalues -- 2.67381 2.67381 2.95816 3.00641 3.00641 Alpha virt. eigenvalues -- 3.00641 3.22453 3.22453 3.22453 3.24329 Alpha virt. eigenvalues -- 3.24329 3.25153 3.25153 3.25153 3.34972 Alpha virt. eigenvalues -- 4.26249 4.27343 4.27343 4.27343 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.135762 0.377503 0.377503 0.377503 -0.032275 -0.001796 2 H 0.377503 0.484059 -0.016361 -0.016361 0.001669 0.000006 3 H 0.377503 -0.016361 0.484059 -0.016361 -0.001796 0.000785 4 H 0.377503 -0.016361 -0.016361 0.484059 -0.001796 -0.000137 5 C -0.032275 0.001669 -0.001796 -0.001796 5.135762 0.377503 6 H -0.001796 0.000006 0.000785 -0.000137 0.377503 0.484059 7 H 0.001669 -0.000029 0.000006 0.000006 0.377503 -0.016361 8 H -0.001796 0.000006 -0.000137 0.000785 0.377503 -0.016361 9 C -0.032275 -0.001796 0.001669 -0.001796 -0.032275 0.001669 10 H 0.001669 0.000006 -0.000029 0.000006 -0.001796 0.000006 11 H -0.001796 0.000785 0.000006 -0.000137 0.001669 -0.000029 12 H -0.001796 -0.000137 0.000006 0.000785 -0.001796 0.000006 13 C -0.032275 -0.001796 -0.001796 0.001669 -0.032275 -0.001796 14 H -0.001796 0.000785 -0.000137 0.000006 0.001669 0.000006 15 H 0.001669 0.000006 0.000006 -0.000029 -0.001796 -0.000137 16 H -0.001796 -0.000137 0.000785 0.000006 -0.001796 0.000785 17 P 0.345312 -0.021431 -0.021431 -0.021431 0.345312 -0.021431 7 8 9 10 11 12 1 C 0.001669 -0.001796 -0.032275 0.001669 -0.001796 -0.001796 2 H -0.000029 0.000006 -0.001796 0.000006 0.000785 -0.000137 3 H 0.000006 -0.000137 0.001669 -0.000029 0.000006 0.000006 4 H 0.000006 0.000785 -0.001796 0.000006 -0.000137 0.000785 5 C 0.377503 0.377503 -0.032275 -0.001796 0.001669 -0.001796 6 H -0.016361 -0.016361 0.001669 0.000006 -0.000029 0.000006 7 H 0.484059 -0.016361 -0.001796 0.000785 0.000006 -0.000137 8 H -0.016361 0.484059 -0.001796 -0.000137 0.000006 0.000785 9 C -0.001796 -0.001796 5.135762 0.377503 0.377503 0.377503 10 H 0.000785 -0.000137 0.377503 0.484059 -0.016361 -0.016361 11 H 0.000006 0.000006 0.377503 -0.016361 0.484059 -0.016361 12 H -0.000137 0.000785 0.377503 -0.016361 -0.016361 0.484059 13 C -0.001796 0.001669 -0.032275 -0.001796 -0.001796 0.001669 14 H 0.000006 -0.000029 -0.001796 -0.000137 0.000785 0.000006 15 H 0.000785 0.000006 -0.001796 0.000785 -0.000137 0.000006 16 H -0.000137 0.000006 0.001669 0.000006 0.000006 -0.000029 17 P -0.021431 -0.021431 0.345312 -0.021431 -0.021431 -0.021431 13 14 15 16 17 1 C -0.032275 -0.001796 0.001669 -0.001796 0.345312 2 H -0.001796 0.000785 0.000006 -0.000137 -0.021431 3 H -0.001796 -0.000137 0.000006 0.000785 -0.021431 4 H 0.001669 0.000006 -0.000029 0.000006 -0.021431 5 C -0.032275 0.001669 -0.001796 -0.001796 0.345312 6 H -0.001796 0.000006 -0.000137 0.000785 -0.021431 7 H -0.001796 0.000006 0.000785 -0.000137 -0.021431 8 H 0.001669 -0.000029 0.000006 0.000006 -0.021431 9 C -0.032275 -0.001796 -0.001796 0.001669 0.345312 10 H -0.001796 -0.000137 0.000785 0.000006 -0.021431 11 H -0.001796 0.000785 -0.000137 0.000006 -0.021431 12 H 0.001669 0.000006 0.000006 -0.000029 -0.021431 13 C 5.135762 0.377503 0.377503 0.377503 0.345312 14 H 0.377503 0.484059 -0.016361 -0.016361 -0.021431 15 H 0.377503 -0.016361 0.484059 -0.016361 -0.021431 16 H 0.377503 -0.016361 -0.016361 0.484059 -0.021431 17 P 0.345312 -0.021431 -0.021431 -0.021431 13.150673 Mulliken charges: 1 1 C -0.510988 2 H 0.193225 3 H 0.193225 4 H 0.193225 5 C -0.510988 6 H 0.193225 7 H 0.193225 8 H 0.193225 9 C -0.510988 10 H 0.193225 11 H 0.193225 12 H 0.193225 13 C -0.510988 14 H 0.193225 15 H 0.193225 16 H 0.193225 17 P 0.725247 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068688 5 C 0.068688 9 C 0.068688 13 C 0.068688 17 P 0.725247 Electronic spatial extent (au): = 603.0896 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2634 YY= -31.2634 ZZ= -31.2634 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= -1.9864 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.8414 YYYY= -246.8414 ZZZZ= -246.8414 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.3915 XXZZ= -74.3915 YYZZ= -74.3915 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626847643812D+02 E-N=-1.693586338588D+03 KE= 4.978538355256D+02 Symmetry A KE= 2.853337309797D+02 Symmetry B1 KE= 7.084003484865D+01 Symmetry B2 KE= 7.084003484865D+01 Symmetry B3 KE= 7.084003484865D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 0.000063711 2 1 0.000000000 -0.000026885 -0.000014608 3 1 0.000023283 0.000013443 -0.000014608 4 1 -0.000023283 0.000013443 -0.000014608 5 6 0.000000000 -0.000060067 -0.000021237 6 1 0.000023283 0.000018253 -0.000007805 7 1 0.000000000 0.000004811 0.000030217 8 1 -0.000023283 0.000018253 -0.000007805 9 6 0.000052020 0.000030034 -0.000021237 10 1 -0.000004166 -0.000002405 0.000030217 11 1 -0.000004166 -0.000029291 -0.000007805 12 1 -0.000027449 0.000011037 -0.000007805 13 6 -0.000052020 0.000030034 -0.000021237 14 1 0.000004166 -0.000029291 -0.000007805 15 1 0.000004166 -0.000002405 0.000030217 16 1 0.000027449 0.000011037 -0.000007805 17 15 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000063711 RMS 0.000023209 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000030255 RMS 0.000012635 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00949 0.00949 0.00949 0.00949 0.05322 Eigenvalues --- 0.05322 0.05322 0.06102 0.06102 0.06102 Eigenvalues --- 0.06102 0.06102 0.06102 0.06102 0.06102 Eigenvalues --- 0.14692 0.14692 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24873 Eigenvalues --- 0.24873 0.24873 0.24873 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 RFO step: Lambda=-4.15462777D-08 EMin= 9.48551803D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00002973 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.07D-08 for atom 11. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R2 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R3 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R4 3.43232 0.00002 0.00000 0.00008 0.00008 3.43240 R5 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R6 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R7 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R8 3.43232 0.00002 0.00000 0.00008 0.00008 3.43240 R9 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R10 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R11 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R12 3.43232 0.00002 0.00000 0.00008 0.00008 3.43240 R13 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R14 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R15 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R16 3.43232 0.00002 0.00000 0.00008 0.00008 3.43240 A1 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A2 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A3 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A4 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A5 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A6 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A7 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A8 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A9 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A10 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A11 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A12 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A13 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A14 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A15 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A16 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A17 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A18 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A19 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A20 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A21 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A22 1.90251 0.00000 0.00000 0.00003 0.00003 1.90253 A23 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A24 1.91869 0.00000 0.00000 -0.00003 -0.00003 1.91866 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D8 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D26 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000030 0.000450 YES RMS Force 0.000013 0.000300 YES Maximum Displacement 0.000080 0.001800 YES RMS Displacement 0.000030 0.001200 YES Predicted change in Energy=-2.077314D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0933 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0933 -DE/DX = 0.0 ! ! R4 R(1,17) 1.8163 -DE/DX = 0.0 ! ! R5 R(5,6) 1.0933 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0933 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0933 -DE/DX = 0.0 ! ! R8 R(5,17) 1.8163 -DE/DX = 0.0 ! ! R9 R(9,10) 1.0933 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0933 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0933 -DE/DX = 0.0 ! ! R12 R(9,17) 1.8163 -DE/DX = 0.0 ! ! R13 R(13,14) 1.0933 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(13,17) 1.8163 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.0055 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.0055 -DE/DX = 0.0 ! ! A3 A(2,1,17) 109.933 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.0055 -DE/DX = 0.0 ! ! A5 A(3,1,17) 109.933 -DE/DX = 0.0 ! ! A6 A(4,1,17) 109.933 -DE/DX = 0.0 ! ! A7 A(6,5,7) 109.0055 -DE/DX = 0.0 ! ! A8 A(6,5,8) 109.0055 -DE/DX = 0.0 ! ! A9 A(6,5,17) 109.933 -DE/DX = 0.0 ! ! A10 A(7,5,8) 109.0055 -DE/DX = 0.0 ! ! A11 A(7,5,17) 109.933 -DE/DX = 0.0 ! ! A12 A(8,5,17) 109.933 -DE/DX = 0.0 ! ! A13 A(10,9,11) 109.0055 -DE/DX = 0.0 ! ! A14 A(10,9,12) 109.0055 -DE/DX = 0.0 ! ! A15 A(10,9,17) 109.933 -DE/DX = 0.0 ! ! A16 A(11,9,12) 109.0055 -DE/DX = 0.0 ! ! A17 A(11,9,17) 109.933 -DE/DX = 0.0 ! ! A18 A(12,9,17) 109.933 -DE/DX = 0.0 ! ! A19 A(14,13,15) 109.0055 -DE/DX = 0.0 ! ! A20 A(14,13,16) 109.0055 -DE/DX = 0.0 ! ! A21 A(14,13,17) 109.933 -DE/DX = 0.0 ! ! A22 A(15,13,16) 109.0055 -DE/DX = 0.0 ! ! A23 A(15,13,17) 109.933 -DE/DX = 0.0 ! ! A24 A(16,13,17) 109.933 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 180.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 60.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) -60.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) 180.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) 60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) -60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 180.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) 180.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) -60.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) -60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) 60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 60.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 180.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 180.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 60.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) -60.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) 180.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) 60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) -60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 180.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -60.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 180.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) -60.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) 60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) -60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) 60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816306 2 1 0 0.000000 1.027835 2.189047 3 1 0 -0.890131 -0.513917 2.189047 4 1 0 0.890131 -0.513917 2.189047 5 6 0 0.000000 -1.712430 -0.605435 6 1 0 -0.890131 -2.235159 -0.245156 7 1 0 0.000000 -1.721241 -1.698734 8 1 0 0.890131 -2.235159 -0.245156 9 6 0 1.483008 0.856215 -0.605435 10 1 0 1.490639 0.860621 -1.698734 11 1 0 1.490639 1.888456 -0.245156 12 1 0 2.380770 0.346703 -0.245156 13 6 0 -1.483008 0.856215 -0.605435 14 1 0 -1.490639 1.888456 -0.245156 15 1 0 -1.490639 0.860621 -1.698734 16 1 0 -2.380770 0.346703 -0.245156 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093334 0.000000 3 H 1.093334 1.780262 0.000000 4 H 1.093334 1.780262 1.780262 0.000000 5 C 2.966016 3.913845 3.168264 3.168264 0.000000 6 H 3.168264 4.167110 2.981278 3.472369 1.093334 7 H 3.913845 4.761540 4.167110 4.167110 1.093334 8 H 3.168264 4.167110 3.472369 2.981278 1.093334 9 C 2.966016 3.168264 3.913845 3.168264 2.966016 10 H 3.913845 4.167110 4.761540 4.167110 3.168264 11 H 3.168264 2.981278 4.167110 3.472369 3.913845 12 H 3.168264 3.472369 4.167110 2.981278 3.168264 13 C 2.966016 3.168264 3.168264 3.913845 2.966016 14 H 3.168264 2.981278 3.472369 4.167110 3.913845 15 H 3.913845 4.167110 4.167110 4.761540 3.168264 16 H 3.168264 3.472369 2.981278 4.167110 3.168264 17 P 1.816306 2.418340 2.418340 2.418340 1.816306 6 7 8 9 10 6 H 0.000000 7 H 1.780262 0.000000 8 H 1.780262 1.780262 0.000000 9 C 3.913845 3.168264 3.168264 0.000000 10 H 4.167110 2.981278 3.472369 1.093334 0.000000 11 H 4.761540 4.167110 4.167110 1.093334 1.780262 12 H 4.167110 3.472369 2.981278 1.093334 1.780262 13 C 3.168264 3.168264 3.913845 2.966016 3.168264 14 H 4.167110 4.167110 4.761540 3.168264 3.472369 15 H 3.472369 2.981278 4.167110 3.168264 2.981278 16 H 2.981278 3.472369 4.167110 3.913845 4.167110 17 P 2.418340 2.418340 2.418340 1.816306 2.418340 11 12 13 14 15 11 H 0.000000 12 H 1.780262 0.000000 13 C 3.168264 3.913845 0.000000 14 H 2.981278 4.167110 1.093334 0.000000 15 H 3.472369 4.167110 1.093334 1.780262 0.000000 16 H 4.167110 4.761540 1.093334 1.780262 1.780262 17 P 2.418340 2.418340 1.816306 2.418340 2.418340 16 17 16 H 0.000000 17 P 2.418340 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048645 1.048645 1.048645 2 1 0 1.683459 1.683459 0.424623 3 1 0 0.424623 1.683459 1.683459 4 1 0 1.683459 0.424623 1.683459 5 6 0 -1.048645 -1.048645 1.048645 6 1 0 -1.683459 -0.424623 1.683459 7 1 0 -1.683459 -1.683459 0.424623 8 1 0 -0.424623 -1.683459 1.683459 9 6 0 1.048645 -1.048645 -1.048645 10 1 0 0.424623 -1.683459 -1.683459 11 1 0 1.683459 -0.424623 -1.683459 12 1 0 1.683459 -1.683459 -0.424623 13 6 0 -1.048645 1.048645 -1.048645 14 1 0 -0.424623 1.683459 -1.683459 15 1 0 -1.683459 0.424623 -1.683459 16 1 0 -1.683459 1.683459 -0.424623 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3091855 3.3091855 3.3091855 1|1| IMPERIAL COLLEGE-SKCH-135-030|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)| VC2217|09-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integra l=grid=ultrafine||Title Card Required||1,1|C,0.0000000014,0.000000005, 1.81630625|H,0.0000000045,1.0278349,2.18904673|H,-0.8901311292,-0.5139 174391,2.1890467334|H,0.8901311296,-0.513917444,2.1890467321|C,-0.0000 000052,-1.7124299546,-0.6054354144|H,-0.8901311358,-2.2351588637,-0.24 51562243|H,-0.0000000061,-1.7212414215,-1.6987342733|H,0.890131123,-2. 2351588686,-0.2451562256|C,1.4830078454,0.8562149742,-0.6054354201|H,1 .4906387971,0.8606207048,-1.698734279|H,1.4906388011,1.8884556017,-0.2 451562334|H,2.3807699262,0.3467032577,-0.2451562313|C,-1.4830078416,0. 8562149825,-0.6054354179|H,-1.490638791,1.88845561,-0.2451562311|H,-1. 4906387949,0.8606207131,-1.6987342768|H,-2.3807699247,0.3467032709,-0. 2451562277|P,0.,0.0000000018,-0.0000000006||Version=EM64W-G09RevD.01|S tate=1-A1|HF=-500.8270304|RMSD=3.407e-009|RMSF=2.321e-005|Dipole=0.,0. ,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2)]||@ YOU CAN WIPE THE SLATE CLEAN, BUT YOU'LL STILL HAVE TO EAT A LITTLE CHALK DUST. Job cpu time: 0 days 0 hours 0 minutes 21.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 09 15:49:15 2019.