Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 2012. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 09-Feb-2015 ****************************************** %chk=\\icnas3.cc.ic.ac.uk\yz13712\Desktop\3rdyearlab\ionic liquid part 1\N(CH3)4 +_OPT.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.5094 H 0.89326 -0.51572 1.86241 H 0. 1.03144 1.86241 H -0.89326 -0.51572 1.86241 C 0. -1.42308 -0.50313 H -0.89326 -1.9278 -0.13457 H 0. -1.41208 -1.59326 H 0.89326 -1.9278 -0.13457 C -1.23242 0.71154 -0.50313 H -1.2229 1.73748 -0.13457 H -1.2229 0.70604 -1.59326 H -2.11615 0.19032 -0.13457 C 1.23242 0.71154 -0.50313 H 1.2229 0.70604 -1.59326 H 1.2229 1.73748 -0.13457 H 2.11615 0.19032 -0.13457 N 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0902 estimate D2E/DX2 ! ! R2 R(1,3) 1.0902 estimate D2E/DX2 ! ! R3 R(1,4) 1.0902 estimate D2E/DX2 ! ! R4 R(1,17) 1.5094 estimate D2E/DX2 ! ! R5 R(5,6) 1.0902 estimate D2E/DX2 ! ! R6 R(5,7) 1.0902 estimate D2E/DX2 ! ! R7 R(5,8) 1.0902 estimate D2E/DX2 ! ! R8 R(5,17) 1.5094 estimate D2E/DX2 ! ! R9 R(9,10) 1.0902 estimate D2E/DX2 ! ! R10 R(9,11) 1.0902 estimate D2E/DX2 ! ! R11 R(9,12) 1.0902 estimate D2E/DX2 ! ! R12 R(9,17) 1.5094 estimate D2E/DX2 ! ! R13 R(13,14) 1.0902 estimate D2E/DX2 ! ! R14 R(13,15) 1.0902 estimate D2E/DX2 ! ! R15 R(13,16) 1.0902 estimate D2E/DX2 ! ! R16 R(13,17) 1.5094 estimate D2E/DX2 ! ! A1 A(2,1,3) 110.0432 estimate D2E/DX2 ! ! A2 A(2,1,4) 110.0432 estimate D2E/DX2 ! ! A3 A(2,1,17) 108.893 estimate D2E/DX2 ! ! A4 A(3,1,4) 110.0432 estimate D2E/DX2 ! ! A5 A(3,1,17) 108.893 estimate D2E/DX2 ! ! A6 A(4,1,17) 108.893 estimate D2E/DX2 ! ! A7 A(6,5,7) 110.0432 estimate D2E/DX2 ! ! A8 A(6,5,8) 110.0432 estimate D2E/DX2 ! ! A9 A(6,5,17) 108.893 estimate D2E/DX2 ! ! A10 A(7,5,8) 110.0432 estimate D2E/DX2 ! ! A11 A(7,5,17) 108.893 estimate D2E/DX2 ! ! A12 A(8,5,17) 108.893 estimate D2E/DX2 ! ! A13 A(10,9,11) 110.0432 estimate D2E/DX2 ! ! A14 A(10,9,12) 110.0432 estimate D2E/DX2 ! ! A15 A(10,9,17) 108.893 estimate D2E/DX2 ! ! A16 A(11,9,12) 110.0432 estimate D2E/DX2 ! ! A17 A(11,9,17) 108.893 estimate D2E/DX2 ! ! A18 A(12,9,17) 108.893 estimate D2E/DX2 ! ! A19 A(14,13,15) 110.0432 estimate D2E/DX2 ! ! A20 A(14,13,16) 110.0432 estimate D2E/DX2 ! ! A21 A(14,13,17) 108.893 estimate D2E/DX2 ! ! A22 A(15,13,16) 110.0432 estimate D2E/DX2 ! ! A23 A(15,13,17) 108.893 estimate D2E/DX2 ! ! A24 A(16,13,17) 108.893 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 60.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) -180.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) -60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) 180.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) -60.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) -60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) 60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 180.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) -60.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) 180.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) 60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) -60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 180.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 60.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 60.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 180.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) 180.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) -60.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) -60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) 60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 180.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 60.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) -60.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) -60.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) 180.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) 60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) 60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) -60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.509404 2 1 0 0.893256 -0.515722 1.862405 3 1 0 0.000000 1.031444 1.862405 4 1 0 -0.893256 -0.515722 1.862405 5 6 0 0.000000 -1.423080 -0.503135 6 1 0 -0.893256 -1.927800 -0.134575 7 1 0 0.000000 -1.412078 -1.593256 8 1 0 0.893256 -1.927800 -0.134575 9 6 0 -1.232423 0.711540 -0.503135 10 1 0 -1.222896 1.737483 -0.134575 11 1 0 -1.222896 0.706039 -1.593256 12 1 0 -2.116152 0.190317 -0.134575 13 6 0 1.232423 0.711540 -0.503135 14 1 0 1.222896 0.706039 -1.593256 15 1 0 1.222896 1.737483 -0.134575 16 1 0 2.116152 0.190317 -0.134575 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090177 0.000000 3 H 1.090177 1.786513 0.000000 4 H 1.090177 1.786513 1.786513 0.000000 5 C 2.464847 2.686445 3.408880 2.686445 0.000000 6 H 2.686445 3.028782 3.680076 2.445791 1.090177 7 H 3.408880 3.680076 4.232304 3.680076 1.090177 8 H 2.686445 2.445791 3.680076 3.028782 1.090177 9 C 2.464847 3.408880 2.686445 2.686445 2.464847 10 H 2.686445 3.680076 2.445791 3.028782 3.408880 11 H 3.408880 4.232304 3.680076 3.680076 2.686445 12 H 2.686445 3.680076 3.028782 2.445791 2.686445 13 C 2.464847 2.686445 2.686445 3.408880 2.464847 14 H 3.408880 3.680076 3.680076 4.232304 2.686445 15 H 2.686445 3.028782 2.445791 3.680076 3.408880 16 H 2.686445 2.445791 3.028782 3.680076 2.686445 17 N 1.509404 2.128950 2.128950 2.128950 1.509404 6 7 8 9 10 6 H 0.000000 7 H 1.786513 0.000000 8 H 1.786513 1.786513 0.000000 9 C 2.686445 2.686445 3.408880 0.000000 10 H 3.680076 3.680076 4.232304 1.090177 0.000000 11 H 3.028782 2.445791 3.680076 1.090177 1.786513 12 H 2.445791 3.028782 3.680076 1.090177 1.786513 13 C 3.408880 2.686445 2.686445 2.464847 2.686445 14 H 3.680076 2.445791 3.028782 2.686445 3.028782 15 H 4.232304 3.680076 3.680076 2.686445 2.445791 16 H 3.680076 3.028782 2.445791 3.408880 3.680076 17 N 2.128950 2.128950 2.128950 1.509404 2.128950 11 12 13 14 15 11 H 0.000000 12 H 1.786513 0.000000 13 C 2.686445 3.408880 0.000000 14 H 2.445791 3.680076 1.090177 0.000000 15 H 3.028782 3.680076 1.090177 1.786513 0.000000 16 H 3.680076 4.232304 1.090177 1.786513 1.786513 17 N 2.128950 2.128950 1.509404 2.128950 2.128950 16 17 16 H 0.000000 17 N 2.128950 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.871455 0.871455 0.871455 2 1 0 1.496345 0.233090 1.496345 3 1 0 1.496345 1.496345 0.233090 4 1 0 0.233090 1.496345 1.496345 5 6 0 -0.871455 -0.871455 0.871455 6 1 0 -1.496345 -0.233090 1.496345 7 1 0 -1.496345 -1.496345 0.233090 8 1 0 -0.233090 -1.496345 1.496345 9 6 0 -0.871455 0.871455 -0.871455 10 1 0 -0.233090 1.496345 -1.496345 11 1 0 -1.496345 0.233090 -1.496345 12 1 0 -1.496345 1.496345 -0.233090 13 6 0 0.871455 -0.871455 -0.871455 14 1 0 0.233090 -1.496345 -1.496345 15 1 0 1.496345 -0.233090 -1.496345 16 1 0 1.496345 -1.496345 -0.233090 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6174920 4.6174920 4.6174920 Standard basis: 6-31G(d,p) (6D, 7F) There are 36 symmetry adapted cartesian basis functions of A symmetry. There are 33 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 33 symmetry adapted cartesian basis functions of B3 symmetry. There are 36 symmetry adapted basis functions of A symmetry. There are 33 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. There are 33 symmetry adapted basis functions of B3 symmetry. 135 basis functions, 224 primitive gaussians, 135 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 213.0907675599 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 135 RedAO= T EigKep= 5.45D-03 NBF= 36 33 33 33 NBsUse= 135 1.00D-06 EigRej= -1.00D+00 NBFU= 36 33 33 33 ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=52778489. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -214.181284185 A.U. after 12 cycles NFock= 12 Conv=0.78D-09 -V/T= 2.0102 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (A1) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -14.64881 -10.41435 -10.41435 -10.41435 -10.41433 Alpha occ. eigenvalues -- -1.19647 -0.92556 -0.92556 -0.92556 -0.80746 Alpha occ. eigenvalues -- -0.69897 -0.69897 -0.69897 -0.62246 -0.62246 Alpha occ. eigenvalues -- -0.58034 -0.58034 -0.58034 -0.57934 -0.57934 Alpha occ. eigenvalues -- -0.57934 Alpha virt. eigenvalues -- -0.13301 -0.06862 -0.06663 -0.06663 -0.06663 Alpha virt. eigenvalues -- -0.02631 -0.02631 -0.02631 -0.01163 -0.01163 Alpha virt. eigenvalues -- -0.00425 -0.00425 -0.00425 0.03887 0.03887 Alpha virt. eigenvalues -- 0.03887 0.29164 0.29164 0.29164 0.29681 Alpha virt. eigenvalues -- 0.29681 0.37132 0.44845 0.44845 0.44845 Alpha virt. eigenvalues -- 0.54823 0.54823 0.54823 0.62481 0.62481 Alpha virt. eigenvalues -- 0.62481 0.67852 0.67852 0.67852 0.67967 Alpha virt. eigenvalues -- 0.73002 0.73118 0.73118 0.73118 0.73825 Alpha virt. eigenvalues -- 0.73825 0.77915 0.77915 0.77915 1.03590 Alpha virt. eigenvalues -- 1.03590 1.27495 1.27495 1.27495 1.30285 Alpha virt. eigenvalues -- 1.30285 1.30285 1.58818 1.61880 1.61880 Alpha virt. eigenvalues -- 1.61880 1.63899 1.63899 1.69274 1.69274 Alpha virt. eigenvalues -- 1.69274 1.82227 1.82227 1.82227 1.83661 Alpha virt. eigenvalues -- 1.86858 1.86858 1.86858 1.90597 1.91321 Alpha virt. eigenvalues -- 1.91321 1.91321 1.92366 1.92366 2.10497 Alpha virt. eigenvalues -- 2.10497 2.10497 2.21817 2.21817 2.21817 Alpha virt. eigenvalues -- 2.40717 2.40717 2.44141 2.44141 2.44141 Alpha virt. eigenvalues -- 2.47244 2.47845 2.47845 2.47845 2.66407 Alpha virt. eigenvalues -- 2.66407 2.66407 2.71265 2.71265 2.75277 Alpha virt. eigenvalues -- 2.75277 2.75277 2.95979 3.03756 3.03756 Alpha virt. eigenvalues -- 3.03756 3.20523 3.20523 3.20523 3.23324 Alpha virt. eigenvalues -- 3.23324 3.23324 3.32454 3.32454 3.96327 Alpha virt. eigenvalues -- 4.31130 4.33175 4.33175 4.33175 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.928700 0.390119 0.390119 0.390119 -0.045924 -0.002990 2 H 0.390119 0.499896 -0.023037 -0.023037 -0.002990 -0.000389 3 H 0.390119 -0.023037 0.499896 -0.023037 0.003862 0.000010 4 H 0.390119 -0.023037 -0.023037 0.499896 -0.002990 0.003155 5 C -0.045924 -0.002990 0.003862 -0.002990 4.928700 0.390119 6 H -0.002990 -0.000389 0.000010 0.003155 0.390119 0.499896 7 H 0.003862 0.000010 -0.000192 0.000010 0.390119 -0.023037 8 H -0.002990 0.003155 0.000010 -0.000389 0.390119 -0.023037 9 C -0.045924 0.003862 -0.002990 -0.002990 -0.045924 -0.002990 10 H -0.002990 0.000010 0.003155 -0.000389 0.003862 0.000010 11 H 0.003862 -0.000192 0.000010 0.000010 -0.002990 -0.000389 12 H -0.002990 0.000010 -0.000389 0.003155 -0.002990 0.003155 13 C -0.045924 -0.002990 -0.002990 0.003862 -0.045924 0.003862 14 H 0.003862 0.000010 0.000010 -0.000192 -0.002990 0.000010 15 H -0.002990 -0.000389 0.003155 0.000010 0.003862 -0.000192 16 H -0.002990 0.003155 -0.000389 0.000010 -0.002990 0.000010 17 N 0.240689 -0.028837 -0.028837 -0.028837 0.240689 -0.028837 7 8 9 10 11 12 1 C 0.003862 -0.002990 -0.045924 -0.002990 0.003862 -0.002990 2 H 0.000010 0.003155 0.003862 0.000010 -0.000192 0.000010 3 H -0.000192 0.000010 -0.002990 0.003155 0.000010 -0.000389 4 H 0.000010 -0.000389 -0.002990 -0.000389 0.000010 0.003155 5 C 0.390119 0.390119 -0.045924 0.003862 -0.002990 -0.002990 6 H -0.023037 -0.023037 -0.002990 0.000010 -0.000389 0.003155 7 H 0.499896 -0.023037 -0.002990 0.000010 0.003155 -0.000389 8 H -0.023037 0.499896 0.003862 -0.000192 0.000010 0.000010 9 C -0.002990 0.003862 4.928700 0.390119 0.390119 0.390119 10 H 0.000010 -0.000192 0.390119 0.499896 -0.023037 -0.023037 11 H 0.003155 0.000010 0.390119 -0.023037 0.499896 -0.023037 12 H -0.000389 0.000010 0.390119 -0.023037 -0.023037 0.499896 13 C -0.002990 -0.002990 -0.045924 -0.002990 -0.002990 0.003862 14 H 0.003155 -0.000389 -0.002990 -0.000389 0.003155 0.000010 15 H 0.000010 0.000010 -0.002990 0.003155 -0.000389 0.000010 16 H -0.000389 0.003155 0.003862 0.000010 0.000010 -0.000192 17 N -0.028837 -0.028837 0.240689 -0.028837 -0.028837 -0.028837 13 14 15 16 17 1 C -0.045924 0.003862 -0.002990 -0.002990 0.240689 2 H -0.002990 0.000010 -0.000389 0.003155 -0.028837 3 H -0.002990 0.000010 0.003155 -0.000389 -0.028837 4 H 0.003862 -0.000192 0.000010 0.000010 -0.028837 5 C -0.045924 -0.002990 0.003862 -0.002990 0.240689 6 H 0.003862 0.000010 -0.000192 0.000010 -0.028837 7 H -0.002990 0.003155 0.000010 -0.000389 -0.028837 8 H -0.002990 -0.000389 0.000010 0.003155 -0.028837 9 C -0.045924 -0.002990 -0.002990 0.003862 0.240689 10 H -0.002990 -0.000389 0.003155 0.000010 -0.028837 11 H -0.002990 0.003155 -0.000389 0.000010 -0.028837 12 H 0.003862 0.000010 0.000010 -0.000192 -0.028837 13 C 4.928700 0.390119 0.390119 0.390119 0.240689 14 H 0.390119 0.499896 -0.023037 -0.023037 -0.028837 15 H 0.390119 -0.023037 0.499896 -0.023037 -0.028837 16 H 0.390119 -0.023037 -0.023037 0.499896 -0.028837 17 N 0.240689 -0.028837 -0.028837 -0.028837 6.780386 Mulliken charges: 1 1 C -0.195620 2 H 0.181631 3 H 0.181631 4 H 0.181631 5 C -0.195620 6 H 0.181631 7 H 0.181631 8 H 0.181631 9 C -0.195620 10 H 0.181631 11 H 0.181631 12 H 0.181631 13 C -0.195620 14 H 0.181631 15 H 0.181631 16 H 0.181631 17 N -0.397096 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.349274 5 C 0.349274 9 C 0.349274 13 C 0.349274 17 N -0.397096 Electronic spatial extent (au): = 447.1190 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -25.8375 YY= -25.8375 ZZ= -25.8375 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.9866 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -181.0893 YYYY= -181.0893 ZZZZ= -181.0893 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -53.9817 XXZZ= -53.9817 YYZZ= -53.9817 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.130907675599D+02 E-N=-9.116419924505D+02 KE= 2.120119168606D+02 Symmetry A KE= 8.621757719557D+01 Symmetry B1 KE= 4.193144655500D+01 Symmetry B2 KE= 4.193144655500D+01 Symmetry B3 KE= 4.193144655500D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 0.000052014 2 1 -0.000000820 0.000000473 -0.000017925 3 1 0.000000000 -0.000000947 -0.000017925 4 1 0.000000820 0.000000473 -0.000017925 5 6 0.000000000 -0.000049039 -0.000017338 6 1 0.000000820 0.000017057 0.000005529 7 1 0.000000000 0.000016584 0.000006867 8 1 -0.000000820 0.000017057 0.000005529 9 6 -0.000042469 0.000024520 -0.000017338 10 1 0.000014362 -0.000009239 0.000005529 11 1 0.000014362 -0.000008292 0.000006867 12 1 0.000015182 -0.000007819 0.000005529 13 6 0.000042469 0.000024520 -0.000017338 14 1 -0.000014362 -0.000008292 0.000006867 15 1 -0.000014362 -0.000009239 0.000005529 16 1 -0.000015182 -0.000007819 0.000005529 17 7 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000052014 RMS 0.000016971 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000017529 RMS 0.000009733 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00245 0.00245 0.00245 0.00245 0.04746 Eigenvalues --- 0.04746 0.04746 0.05832 0.05832 0.05832 Eigenvalues --- 0.05832 0.05832 0.05832 0.05832 0.05832 Eigenvalues --- 0.14391 0.14391 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.31410 Eigenvalues --- 0.31410 0.31410 0.31410 0.34792 0.34792 Eigenvalues --- 0.34792 0.34792 0.34792 0.34792 0.34792 Eigenvalues --- 0.34792 0.34792 0.34792 0.34792 0.34792 RFO step: Lambda=-4.66891285D-08 EMin= 2.44571020D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00008874 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.17D-08 for atom 11. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R2 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R3 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R4 2.85236 0.00000 0.00000 -0.00001 -0.00001 2.85236 R5 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R6 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R7 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R8 2.85236 0.00000 0.00000 -0.00001 -0.00001 2.85236 R9 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R10 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R11 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R12 2.85236 0.00000 0.00000 -0.00001 -0.00001 2.85236 R13 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R14 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R15 2.06014 -0.00001 0.00000 -0.00002 -0.00002 2.06012 R16 2.85236 0.00000 0.00000 -0.00001 -0.00001 2.85236 A1 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A2 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A3 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A4 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A5 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A6 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A7 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A8 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A9 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A10 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A11 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A12 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A13 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A14 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A15 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A16 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A17 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A18 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A19 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A20 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A21 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A22 1.92062 0.00002 0.00000 0.00011 0.00011 1.92072 A23 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A24 1.90054 -0.00002 0.00000 -0.00011 -0.00011 1.90043 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D12 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D15 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D18 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D29 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D32 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D35 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000018 0.000450 YES RMS Force 0.000010 0.000300 YES Maximum Displacement 0.000231 0.001800 YES RMS Displacement 0.000089 0.001200 YES Predicted change in Energy=-2.334456D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0902 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0902 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0902 -DE/DX = 0.0 ! ! R4 R(1,17) 1.5094 -DE/DX = 0.0 ! ! R5 R(5,6) 1.0902 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0902 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0902 -DE/DX = 0.0 ! ! R8 R(5,17) 1.5094 -DE/DX = 0.0 ! ! R9 R(9,10) 1.0902 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0902 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0902 -DE/DX = 0.0 ! ! R12 R(9,17) 1.5094 -DE/DX = 0.0 ! ! R13 R(13,14) 1.0902 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0902 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0902 -DE/DX = 0.0 ! ! R16 R(13,17) 1.5094 -DE/DX = 0.0 ! ! A1 A(2,1,3) 110.0432 -DE/DX = 0.0 ! ! A2 A(2,1,4) 110.0432 -DE/DX = 0.0 ! ! A3 A(2,1,17) 108.893 -DE/DX = 0.0 ! ! A4 A(3,1,4) 110.0432 -DE/DX = 0.0 ! ! A5 A(3,1,17) 108.893 -DE/DX = 0.0 ! ! A6 A(4,1,17) 108.893 -DE/DX = 0.0 ! ! A7 A(6,5,7) 110.0432 -DE/DX = 0.0 ! ! A8 A(6,5,8) 110.0432 -DE/DX = 0.0 ! ! A9 A(6,5,17) 108.893 -DE/DX = 0.0 ! ! A10 A(7,5,8) 110.0432 -DE/DX = 0.0 ! ! A11 A(7,5,17) 108.893 -DE/DX = 0.0 ! ! A12 A(8,5,17) 108.893 -DE/DX = 0.0 ! ! A13 A(10,9,11) 110.0432 -DE/DX = 0.0 ! ! A14 A(10,9,12) 110.0432 -DE/DX = 0.0 ! ! A15 A(10,9,17) 108.893 -DE/DX = 0.0 ! ! A16 A(11,9,12) 110.0432 -DE/DX = 0.0 ! ! A17 A(11,9,17) 108.893 -DE/DX = 0.0 ! ! A18 A(12,9,17) 108.893 -DE/DX = 0.0 ! ! A19 A(14,13,15) 110.0432 -DE/DX = 0.0 ! ! A20 A(14,13,16) 110.0432 -DE/DX = 0.0 ! ! A21 A(14,13,17) 108.893 -DE/DX = 0.0 ! ! A22 A(15,13,16) 110.0432 -DE/DX = 0.0 ! ! A23 A(15,13,17) 108.893 -DE/DX = 0.0 ! ! A24 A(16,13,17) 108.893 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 60.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 180.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) 180.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) -60.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) -60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) 60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 180.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) -60.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) 180.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) 60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) -60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 180.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 60.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 60.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 180.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) 180.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) -60.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) -60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) 60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 180.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 60.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -60.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) -60.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) 180.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) 60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) 60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) -60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.509404 2 1 0 0.893256 -0.515722 1.862405 3 1 0 0.000000 1.031444 1.862405 4 1 0 -0.893256 -0.515722 1.862405 5 6 0 0.000000 -1.423080 -0.503135 6 1 0 -0.893256 -1.927800 -0.134575 7 1 0 0.000000 -1.412078 -1.593256 8 1 0 0.893256 -1.927800 -0.134575 9 6 0 -1.232423 0.711540 -0.503135 10 1 0 -1.222896 1.737483 -0.134575 11 1 0 -1.222896 0.706039 -1.593256 12 1 0 -2.116152 0.190317 -0.134575 13 6 0 1.232423 0.711540 -0.503135 14 1 0 1.222896 0.706039 -1.593256 15 1 0 1.222896 1.737483 -0.134575 16 1 0 2.116152 0.190317 -0.134575 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.090177 0.000000 3 H 1.090177 1.786513 0.000000 4 H 1.090177 1.786513 1.786513 0.000000 5 C 2.464847 2.686445 3.408880 2.686445 0.000000 6 H 2.686445 3.028782 3.680076 2.445791 1.090177 7 H 3.408880 3.680076 4.232304 3.680076 1.090177 8 H 2.686445 2.445791 3.680076 3.028782 1.090177 9 C 2.464847 3.408880 2.686445 2.686445 2.464847 10 H 2.686445 3.680076 2.445791 3.028782 3.408880 11 H 3.408880 4.232304 3.680076 3.680076 2.686445 12 H 2.686445 3.680076 3.028782 2.445791 2.686445 13 C 2.464847 2.686445 2.686445 3.408880 2.464847 14 H 3.408880 3.680076 3.680076 4.232304 2.686445 15 H 2.686445 3.028782 2.445791 3.680076 3.408880 16 H 2.686445 2.445791 3.028782 3.680076 2.686445 17 N 1.509404 2.128950 2.128950 2.128950 1.509404 6 7 8 9 10 6 H 0.000000 7 H 1.786513 0.000000 8 H 1.786513 1.786513 0.000000 9 C 2.686445 2.686445 3.408880 0.000000 10 H 3.680076 3.680076 4.232304 1.090177 0.000000 11 H 3.028782 2.445791 3.680076 1.090177 1.786513 12 H 2.445791 3.028782 3.680076 1.090177 1.786513 13 C 3.408880 2.686445 2.686445 2.464847 2.686445 14 H 3.680076 2.445791 3.028782 2.686445 3.028782 15 H 4.232304 3.680076 3.680076 2.686445 2.445791 16 H 3.680076 3.028782 2.445791 3.408880 3.680076 17 N 2.128950 2.128950 2.128950 1.509404 2.128950 11 12 13 14 15 11 H 0.000000 12 H 1.786513 0.000000 13 C 2.686445 3.408880 0.000000 14 H 2.445791 3.680076 1.090177 0.000000 15 H 3.028782 3.680076 1.090177 1.786513 0.000000 16 H 3.680076 4.232304 1.090177 1.786513 1.786513 17 N 2.128950 2.128950 1.509404 2.128950 2.128950 16 17 16 H 0.000000 17 N 2.128950 0.000000 Stoichiometry C4H12N(1+) Framework group TD[O(N),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.871455 0.871455 0.871455 2 1 0 1.496345 0.233090 1.496345 3 1 0 1.496345 1.496345 0.233090 4 1 0 0.233090 1.496345 1.496345 5 6 0 -0.871455 -0.871455 0.871455 6 1 0 -1.496345 -0.233090 1.496345 7 1 0 -1.496345 -1.496345 0.233090 8 1 0 -0.233090 -1.496345 1.496345 9 6 0 -0.871455 0.871455 -0.871455 10 1 0 -0.233090 1.496345 -1.496345 11 1 0 -1.496345 0.233090 -1.496345 12 1 0 -1.496345 1.496345 -0.233090 13 6 0 0.871455 -0.871455 -0.871455 14 1 0 0.233090 -1.496345 -1.496345 15 1 0 1.496345 -0.233090 -1.496345 16 1 0 1.496345 -1.496345 -0.233090 17 7 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4.6174920 4.6174920 4.6174920 1|1| IMPERIAL COLLEGE-CHWS-270|FOpt|RB3LYP|6-31G(d,p)|C4H12N1(1+)|YZ13 712|09-Feb-2015|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=g rid=ultrafine||Title Card Required||1,1|C,0.0000000004,0.0000000042,1. 50940431|H,0.8932562733,-0.5157217443,1.86240537|H,0.0000000002,1.0314 435037,1.8624053674|H,-0.8932562719,-0.5157217449,1.8624053705|C,0.000 0000003,-1.4230800304,-0.5031347674|H,-0.893256272,-1.9277998702,-0.13 45746576|H,0.,-1.4120781232,-1.5932560438|H,0.8932562732,-1.9277998696 ,-0.1345746581|C,-1.2324234587,0.7115400155,-0.503134771|H,-1.22289552 61,1.7374825605,-0.1345746643|H,-1.2228955261,0.7060390589,-1.59325604 73|H,-2.1161517982,0.1903173119,-0.1345746612|C,1.232423458,0.71154001 63,-0.5031347717|H,1.2228955248,0.7060390597,-1.593256048|H,1.22289552 49,1.7374825612,-0.134574665|H,2.116151798,0.1903173132,-0.1345746624| N,0.,0.0000000014,0.||Version=EM64W-G09RevD.01|State=1-A1|HF=-214.1812 842|RMSD=7.776e-010|RMSF=1.697e-005|Dipole=0.,0.,0.|Quadrupole=0.,0.,0 .,0.,0.,0.|PG=TD [O(N1),4C3(C1),6SGD(H2)]||@ THE PROGRESS OF RIVERS TO THE SEA IS NOT AS RAPID AS THAT OF MAN TO ERROR. -- VOLTAIRE Job cpu time: 0 days 0 hours 0 minutes 13.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Mon Feb 09 14:04:12 2015.