Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4836. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 07-Nov-2014 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\myh11\Desktop\CB\g) chair b3lyp-631g.chk Default route: MaxDisk=10GB -------------------------------------------------- # opt=(calcfc,ts) b3lyp/6-31g(d) geom=connectivity -------------------------------------------------- 1/5=1,10=4,14=-1,18=20,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,71=2,74=-5,140=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1,13=1/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7/10=1,18=20,25=1/1,2,3,16; 1/5=1,10=4,14=-1,18=20,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,14=-1,18=20,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- g) chair b3lyp-631g ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0.95037 -1.21863 -0.2542 H 1.31166 -2.14526 0.19153 H 0.81426 -1.29989 -1.33119 C 1.43139 0.00001 0.26018 H 1.82319 0.00001 1.27791 C 0.95036 1.21864 -0.2542 H 0.81425 1.2999 -1.33119 H 1.31163 2.14527 0.19153 C -0.95037 1.21863 0.2542 H -1.31166 2.14526 -0.19153 H -0.81426 1.29989 1.33119 C -1.43139 -0.00001 -0.26018 H -1.82319 -0.00001 -1.27791 C -0.95036 -1.21864 0.2542 H -0.81425 -1.2999 1.33119 H -1.31163 -2.14527 -0.19153 Add virtual bond connecting atoms C9 and C6 Dist= 3.72D+00. Add virtual bond connecting atoms C14 and C1 Dist= 3.72D+00. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0899 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.0886 calculate D2E/DX2 analytically ! ! R3 R(1,4) 1.4075 calculate D2E/DX2 analytically ! ! R4 R(1,14) 1.9675 calculate D2E/DX2 analytically ! ! R5 R(4,5) 1.0905 calculate D2E/DX2 analytically ! ! R6 R(4,6) 1.4075 calculate D2E/DX2 analytically ! ! R7 R(6,7) 1.0886 calculate D2E/DX2 analytically ! ! R8 R(6,8) 1.0899 calculate D2E/DX2 analytically ! ! R9 R(6,9) 1.9675 calculate D2E/DX2 analytically ! ! R10 R(9,10) 1.0899 calculate D2E/DX2 analytically ! ! R11 R(9,11) 1.0886 calculate D2E/DX2 analytically ! ! R12 R(9,12) 1.4075 calculate D2E/DX2 analytically ! ! R13 R(12,13) 1.0905 calculate D2E/DX2 analytically ! ! R14 R(12,14) 1.4075 calculate D2E/DX2 analytically ! ! R15 R(14,15) 1.0886 calculate D2E/DX2 analytically ! ! R16 R(14,16) 1.0899 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 112.4945 calculate D2E/DX2 analytically ! ! A2 A(2,1,4) 118.2537 calculate D2E/DX2 analytically ! ! A3 A(2,1,14) 102.3892 calculate D2E/DX2 analytically ! ! A4 A(3,1,4) 117.9645 calculate D2E/DX2 analytically ! ! A5 A(3,1,14) 97.7501 calculate D2E/DX2 analytically ! ! A6 A(4,1,14) 103.6341 calculate D2E/DX2 analytically ! ! A7 A(1,4,5) 117.6354 calculate D2E/DX2 analytically ! ! A8 A(1,4,6) 119.9524 calculate D2E/DX2 analytically ! ! A9 A(5,4,6) 117.6354 calculate D2E/DX2 analytically ! ! A10 A(4,6,7) 117.9645 calculate D2E/DX2 analytically ! ! A11 A(4,6,8) 118.2538 calculate D2E/DX2 analytically ! ! A12 A(4,6,9) 103.6341 calculate D2E/DX2 analytically ! ! A13 A(7,6,8) 112.4944 calculate D2E/DX2 analytically ! ! A14 A(7,6,9) 97.7501 calculate D2E/DX2 analytically ! ! A15 A(8,6,9) 102.3892 calculate D2E/DX2 analytically ! ! A16 A(6,9,10) 102.3892 calculate D2E/DX2 analytically ! ! A17 A(6,9,11) 97.7502 calculate D2E/DX2 analytically ! ! A18 A(6,9,12) 103.6341 calculate D2E/DX2 analytically ! ! A19 A(10,9,11) 112.4944 calculate D2E/DX2 analytically ! ! A20 A(10,9,12) 118.2537 calculate D2E/DX2 analytically ! ! A21 A(11,9,12) 117.9645 calculate D2E/DX2 analytically ! ! A22 A(9,12,13) 117.6354 calculate D2E/DX2 analytically ! ! A23 A(9,12,14) 119.9524 calculate D2E/DX2 analytically ! ! A24 A(13,12,14) 117.6354 calculate D2E/DX2 analytically ! ! A25 A(1,14,12) 103.6341 calculate D2E/DX2 analytically ! ! A26 A(1,14,15) 97.7502 calculate D2E/DX2 analytically ! ! A27 A(1,14,16) 102.3893 calculate D2E/DX2 analytically ! ! A28 A(12,14,15) 117.9645 calculate D2E/DX2 analytically ! ! A29 A(12,14,16) 118.2537 calculate D2E/DX2 analytically ! ! A30 A(15,14,16) 112.4945 calculate D2E/DX2 analytically ! ! D1 D(2,1,4,5) -22.6211 calculate D2E/DX2 analytically ! ! D2 D(2,1,4,6) -177.578 calculate D2E/DX2 analytically ! ! D3 D(3,1,4,5) -163.6147 calculate D2E/DX2 analytically ! ! D4 D(3,1,4,6) 41.4284 calculate D2E/DX2 analytically ! ! D5 D(14,1,4,5) 89.7736 calculate D2E/DX2 analytically ! ! D6 D(14,1,4,6) -65.1833 calculate D2E/DX2 analytically ! ! D7 D(2,1,14,12) 177.5252 calculate D2E/DX2 analytically ! ! D8 D(2,1,14,15) 56.1943 calculate D2E/DX2 analytically ! ! D9 D(2,1,14,16) -58.9706 calculate D2E/DX2 analytically ! ! D10 D(3,1,14,12) -67.31 calculate D2E/DX2 analytically ! ! D11 D(3,1,14,15) 171.3591 calculate D2E/DX2 analytically ! ! D12 D(3,1,14,16) 56.1942 calculate D2E/DX2 analytically ! ! D13 D(4,1,14,12) 54.021 calculate D2E/DX2 analytically ! ! D14 D(4,1,14,15) -67.31 calculate D2E/DX2 analytically ! ! D15 D(4,1,14,16) 177.5252 calculate D2E/DX2 analytically ! ! D16 D(1,4,6,7) -41.4284 calculate D2E/DX2 analytically ! ! D17 D(1,4,6,8) 177.578 calculate D2E/DX2 analytically ! ! D18 D(1,4,6,9) 65.1833 calculate D2E/DX2 analytically ! ! D19 D(5,4,6,7) 163.6147 calculate D2E/DX2 analytically ! ! D20 D(5,4,6,8) 22.6211 calculate D2E/DX2 analytically ! ! D21 D(5,4,6,9) -89.7736 calculate D2E/DX2 analytically ! ! D22 D(4,6,9,10) -177.5253 calculate D2E/DX2 analytically ! ! D23 D(4,6,9,11) 67.31 calculate D2E/DX2 analytically ! ! D24 D(4,6,9,12) -54.021 calculate D2E/DX2 analytically ! ! D25 D(7,6,9,10) -56.1943 calculate D2E/DX2 analytically ! ! D26 D(7,6,9,11) -171.3591 calculate D2E/DX2 analytically ! ! D27 D(7,6,9,12) 67.3099 calculate D2E/DX2 analytically ! ! D28 D(8,6,9,10) 58.9705 calculate D2E/DX2 analytically ! ! D29 D(8,6,9,11) -56.1943 calculate D2E/DX2 analytically ! ! D30 D(8,6,9,12) -177.5253 calculate D2E/DX2 analytically ! ! D31 D(6,9,12,13) -89.7736 calculate D2E/DX2 analytically ! ! D32 D(6,9,12,14) 65.1833 calculate D2E/DX2 analytically ! ! D33 D(10,9,12,13) 22.621 calculate D2E/DX2 analytically ! ! D34 D(10,9,12,14) 177.5779 calculate D2E/DX2 analytically ! ! D35 D(11,9,12,13) 163.6146 calculate D2E/DX2 analytically ! ! D36 D(11,9,12,14) -41.4285 calculate D2E/DX2 analytically ! ! D37 D(9,12,14,1) -65.1833 calculate D2E/DX2 analytically ! ! D38 D(9,12,14,15) 41.4285 calculate D2E/DX2 analytically ! ! D39 D(9,12,14,16) -177.578 calculate D2E/DX2 analytically ! ! D40 D(13,12,14,1) 89.7736 calculate D2E/DX2 analytically ! ! D41 D(13,12,14,15) -163.6146 calculate D2E/DX2 analytically ! ! D42 D(13,12,14,16) -22.6211 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 98 maximum allowed number of steps= 100. Search for a saddle point of order 1. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.950371 -1.218629 -0.254200 2 1 0 1.311657 -2.145258 0.191533 3 1 0 0.814263 -1.299890 -1.331189 4 6 0 1.431388 0.000009 0.260182 5 1 0 1.823193 0.000011 1.277907 6 6 0 0.950357 1.218640 -0.254200 7 1 0 0.814248 1.299899 -1.331189 8 1 0 1.311631 2.145273 0.191532 9 6 0 -0.950371 1.218629 0.254200 10 1 0 -1.311656 2.145258 -0.191533 11 1 0 -0.814264 1.299890 1.331189 12 6 0 -1.431388 -0.000008 -0.260182 13 1 0 -1.823194 -0.000010 -1.277906 14 6 0 -0.950356 -1.218641 0.254200 15 1 0 -0.814248 -1.299900 1.331189 16 1 0 -1.311632 -2.145273 -0.191533 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.089884 0.000000 3 H 1.088593 1.811279 0.000000 4 C 1.407496 2.149702 2.145470 0.000000 5 H 2.143421 2.458466 3.084650 1.090539 0.000000 6 C 2.437269 3.412481 2.742521 1.407495 2.143420 7 H 2.742520 3.799369 2.599789 2.145469 3.084649 8 H 3.412480 4.290531 3.799369 2.149700 2.458466 9 C 3.132334 4.054187 3.459816 2.675415 3.197759 10 H 4.054187 5.043514 4.205638 3.511471 4.072913 11 H 3.459817 4.205639 4.061922 2.807080 2.940868 12 C 2.675416 3.511473 2.807080 2.909685 3.599724 13 H 3.197760 4.072914 2.940868 3.599725 4.452900 14 C 1.967545 2.445250 2.373592 2.675415 3.197759 15 H 2.373593 2.555957 3.120946 2.807080 2.940868 16 H 2.445251 2.651110 2.555957 3.511473 4.072914 6 7 8 9 10 6 C 0.000000 7 H 1.088593 0.000000 8 H 1.089883 1.811278 0.000000 9 C 1.967546 2.373593 2.445250 0.000000 10 H 2.445251 2.555957 2.651108 1.089884 0.000000 11 H 2.373594 3.120947 2.555958 1.088593 1.811278 12 C 2.675415 2.807079 3.511471 1.407495 2.149701 13 H 3.197760 2.940868 4.072912 2.143420 2.458465 14 C 3.132334 3.459816 4.054187 2.437270 3.412482 15 H 3.459817 4.061922 4.205639 2.742521 3.799370 16 H 4.054187 4.205638 5.043514 3.412481 4.290531 11 12 13 14 15 11 H 0.000000 12 C 2.145469 0.000000 13 H 3.084649 1.090538 0.000000 14 C 2.742522 1.407497 2.143422 0.000000 15 H 2.599790 2.145470 3.084650 1.088593 0.000000 16 H 3.799369 2.149701 2.458466 1.089883 1.811278 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.950363 1.218635 -0.254200 2 1 0 -1.311643 2.145267 0.191533 3 1 0 -0.814254 1.299895 -1.331189 4 6 0 -1.431388 0.000000 0.260182 5 1 0 -1.823193 0.000001 1.277907 6 6 0 -0.950365 -1.218634 -0.254200 7 1 0 -0.814256 -1.299894 -1.331189 8 1 0 -1.311645 -2.145264 0.191532 9 6 0 0.950363 -1.218635 0.254200 10 1 0 1.311642 -2.145267 -0.191533 11 1 0 0.814256 -1.299895 1.331189 12 6 0 1.431388 -0.000001 -0.260182 13 1 0 1.823194 -0.000002 -1.277906 14 6 0 0.950364 1.218635 0.254200 15 1 0 0.814257 1.299895 1.331189 16 1 0 1.311646 2.145264 -0.191533 --------------------------------------------------------------------- Rotational constants (GHZ): 4.5147763 4.0709078 2.4592538 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted cartesian basis functions of A symmetry. There are 110 symmetry adapted basis functions of A symmetry. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 230.6276618387 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 110 RedAO= T EigKep= 4.42D-03 NBF= 110 NBsUse= 110 1.00D-06 EigRej= -1.00D+00 NBFU= 110 ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 1 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=19626819. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -234.556983030 A.U. after 12 cycles NFock= 12 Conv=0.89D-08 -V/T= 2.0102 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 110 NBasis= 110 NAE= 23 NBE= 23 NFC= 0 NFV= 0 NROrb= 110 NOA= 23 NOB= 23 NVA= 87 NVB= 87 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 17 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=1111111111111111 Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=19573683. There are 51 degrees of freedom in the 1st order CPHF. IDoFFX=6 NUNeed= 0. 45 vectors produced by pass 0 Test12= 3.92D-15 1.96D-09 XBig12= 1.09D-01 1.60D-01. AX will form 45 AO Fock derivatives at one time. 45 vectors produced by pass 1 Test12= 3.92D-15 1.96D-09 XBig12= 1.60D-02 4.99D-02. 45 vectors produced by pass 2 Test12= 3.92D-15 1.96D-09 XBig12= 1.11D-04 2.02D-03. 45 vectors produced by pass 3 Test12= 3.92D-15 1.96D-09 XBig12= 2.09D-07 8.95D-05. 45 vectors produced by pass 4 Test12= 3.92D-15 1.96D-09 XBig12= 1.37D-10 2.38D-06. 25 vectors produced by pass 5 Test12= 3.92D-15 1.96D-09 XBig12= 9.61D-14 6.39D-08. InvSVY: IOpt=1 It= 1 EMax= 5.55D-16 Solved reduced A of dimension 250 with 51 vectors. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -10.18656 -10.18656 -10.18654 -10.18654 -10.16937 Alpha occ. eigenvalues -- -10.16937 -0.80656 -0.74816 -0.69942 -0.62958 Alpha occ. eigenvalues -- -0.55618 -0.54153 -0.46974 -0.44894 -0.43222 Alpha occ. eigenvalues -- -0.40024 -0.37180 -0.36423 -0.35736 -0.34740 Alpha occ. eigenvalues -- -0.33447 -0.26415 -0.19349 Alpha virt. eigenvalues -- -0.01122 0.06354 0.10945 0.11177 0.13036 Alpha virt. eigenvalues -- 0.14652 0.15199 0.15430 0.18920 0.19152 Alpha virt. eigenvalues -- 0.19791 0.19916 0.22333 0.30420 0.31675 Alpha virt. eigenvalues -- 0.35233 0.35281 0.50257 0.51132 0.51633 Alpha virt. eigenvalues -- 0.52406 0.57505 0.57623 0.60942 0.62536 Alpha virt. eigenvalues -- 0.63430 0.64907 0.66891 0.74335 0.74748 Alpha virt. eigenvalues -- 0.79551 0.80637 0.81027 0.83903 0.85956 Alpha virt. eigenvalues -- 0.86125 0.87828 0.90601 0.93796 0.94167 Alpha virt. eigenvalues -- 0.94237 0.96054 0.97654 1.04808 1.16474 Alpha virt. eigenvalues -- 1.17992 1.22315 1.24483 1.37531 1.39591 Alpha virt. eigenvalues -- 1.40547 1.52919 1.56365 1.58510 1.71491 Alpha virt. eigenvalues -- 1.73395 1.74578 1.80036 1.80932 1.89200 Alpha virt. eigenvalues -- 1.95331 2.01550 2.04006 2.08511 2.08582 Alpha virt. eigenvalues -- 2.09168 2.24239 2.24531 2.26416 2.27465 Alpha virt. eigenvalues -- 2.28709 2.29589 2.31001 2.47294 2.51651 Alpha virt. eigenvalues -- 2.58636 2.59399 2.76196 2.79159 2.81319 Alpha virt. eigenvalues -- 2.84713 4.14463 4.25296 4.26651 4.42182 Alpha virt. eigenvalues -- 4.42275 4.50733 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.092113 0.359563 0.375396 0.552865 -0.053272 -0.047609 2 H 0.359563 0.577363 -0.041723 -0.028095 -0.007270 0.005478 3 H 0.375396 -0.041723 0.575624 -0.033089 0.005619 -0.008052 4 C 0.552865 -0.028095 -0.033089 4.831592 0.377856 0.552866 5 H -0.053272 -0.007270 0.005619 0.377856 0.616932 -0.053272 6 C -0.047609 0.005478 -0.008052 0.552866 -0.053272 5.092113 7 H -0.008052 -0.000122 0.004809 -0.033089 0.005619 0.375396 8 H 0.005478 -0.000204 -0.000122 -0.028095 -0.007270 0.359563 9 C -0.021657 0.000565 -0.000150 -0.040063 -0.001121 0.148780 10 H 0.000565 -0.000002 -0.000044 0.002173 -0.000048 -0.009391 11 H -0.000150 -0.000044 0.000066 -0.007663 0.001524 -0.023416 12 C -0.040062 0.002172 -0.007663 -0.055274 -0.000547 -0.040063 13 H -0.001121 -0.000048 0.001524 -0.000547 0.000027 -0.001121 14 C 0.148781 -0.009392 -0.023416 -0.040063 -0.001121 -0.021657 15 H -0.023416 -0.002091 0.002412 -0.007663 0.001524 -0.000150 16 H -0.009392 -0.000788 -0.002091 0.002172 -0.000048 0.000565 7 8 9 10 11 12 1 C -0.008052 0.005478 -0.021657 0.000565 -0.000150 -0.040062 2 H -0.000122 -0.000204 0.000565 -0.000002 -0.000044 0.002172 3 H 0.004809 -0.000122 -0.000150 -0.000044 0.000066 -0.007663 4 C -0.033089 -0.028095 -0.040063 0.002173 -0.007663 -0.055274 5 H 0.005619 -0.007270 -0.001121 -0.000048 0.001524 -0.000547 6 C 0.375396 0.359563 0.148780 -0.009391 -0.023416 -0.040063 7 H 0.575624 -0.041723 -0.023416 -0.002091 0.002412 -0.007663 8 H -0.041723 0.577363 -0.009391 -0.000788 -0.002091 0.002172 9 C -0.023416 -0.009391 5.092113 0.359563 0.375396 0.552866 10 H -0.002091 -0.000788 0.359563 0.577363 -0.041723 -0.028095 11 H 0.002412 -0.002091 0.375396 -0.041723 0.575624 -0.033089 12 C -0.007663 0.002172 0.552866 -0.028095 -0.033089 4.831592 13 H 0.001524 -0.000048 -0.053272 -0.007270 0.005619 0.377856 14 C -0.000150 0.000565 -0.047609 0.005478 -0.008052 0.552865 15 H 0.000066 -0.000044 -0.008052 -0.000122 0.004809 -0.033089 16 H -0.000044 -0.000002 0.005478 -0.000204 -0.000122 -0.028095 13 14 15 16 1 C -0.001121 0.148781 -0.023416 -0.009392 2 H -0.000048 -0.009392 -0.002091 -0.000788 3 H 0.001524 -0.023416 0.002412 -0.002091 4 C -0.000547 -0.040063 -0.007663 0.002172 5 H 0.000027 -0.001121 0.001524 -0.000048 6 C -0.001121 -0.021657 -0.000150 0.000565 7 H 0.001524 -0.000150 0.000066 -0.000044 8 H -0.000048 0.000565 -0.000044 -0.000002 9 C -0.053272 -0.047609 -0.008052 0.005478 10 H -0.007270 0.005478 -0.000122 -0.000204 11 H 0.005619 -0.008052 0.004809 -0.000122 12 C 0.377856 0.552865 -0.033089 -0.028095 13 H 0.616932 -0.053272 0.005619 -0.007270 14 C -0.053272 5.092114 0.375396 0.359563 15 H 0.005619 0.375396 0.575624 -0.041723 16 H -0.007270 0.359563 -0.041723 0.577363 Mulliken charges: 1 1 C -0.330029 2 H 0.144637 3 H 0.150900 4 C -0.045884 5 H 0.114868 6 C -0.330029 7 H 0.150900 8 H 0.144637 9 C -0.330029 10 H 0.144637 11 H 0.150900 12 C -0.045884 13 H 0.114868 14 C -0.330029 15 H 0.150900 16 H 0.144637 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.034492 4 C 0.068984 6 C -0.034492 9 C -0.034492 12 C 0.068984 14 C -0.034492 APT charges: 1 1 C -0.898625 2 H 0.504677 3 H 0.375125 4 C -0.382936 5 H 0.420580 6 C -0.898625 7 H 0.375125 8 H 0.504678 9 C -0.898625 10 H 0.504677 11 H 0.375126 12 C -0.382936 13 H 0.420580 14 C -0.898625 15 H 0.375125 16 H 0.504678 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 C -0.018822 4 C 0.037644 6 C -0.018822 9 C -0.018822 12 C 0.037644 14 C -0.018822 Electronic spatial extent (au): = 571.0628 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -42.3974 YY= -35.5128 ZZ= -36.3848 XY= 0.0000 XZ= -1.6705 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -4.2990 YY= 2.5855 ZZ= 1.7135 XY= 0.0000 XZ= -1.6705 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -386.0146 YYYY= -319.8185 ZZZZ= -91.2957 XXXY= 0.0001 XXXZ= -10.2055 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= -1.4145 ZZZY= 0.0000 XXYY= -111.4069 XXZZ= -73.1124 YYZZ= -70.6284 XXYZ= 0.0000 YYXZ= -3.3160 ZZXY= 0.0000 N-N= 2.306276618387D+02 E-N=-1.003390470774D+03 KE= 2.321956822418D+02 Exact polarizability: 0.000 0.000 0.000 0.000 0.000 0.000 Approx polarizability: 136.609 0.000 119.567 -14.514 0.000 78.978 Calling FoFJK, ICntrl= 100147 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000001984 -0.000025670 -0.000014324 2 1 -0.000002425 0.000006475 0.000000837 3 1 0.000004393 0.000000383 0.000007717 4 6 0.000016921 -0.000000580 0.000035164 5 1 -0.000005269 0.000000021 -0.000007612 6 6 -0.000001870 0.000025638 -0.000014909 7 1 0.000004271 -0.000000395 0.000007710 8 1 -0.000002238 -0.000005928 0.000001163 9 6 0.000001531 0.000025662 0.000014550 10 1 0.000002363 -0.000006286 -0.000000954 11 1 -0.000004181 -0.000000376 -0.000007656 12 6 -0.000016492 -0.000000714 -0.000034465 13 1 0.000005200 -0.000000055 0.000007257 14 6 0.000001722 -0.000024499 0.000014180 15 1 -0.000004299 0.000000331 -0.000007635 16 1 0.000002356 0.000005992 -0.000001025 ------------------------------------------------------------------- Cartesian Forces: Max 0.000035164 RMS 0.000012132 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000023039 RMS 0.000005531 Search for a saddle point. Step number 1 out of a maximum of 98 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swapping is turned off. Second derivative matrix not updated -- analytic derivatives used. ITU= 0 Eigenvalues --- -0.03985 0.00455 0.00759 0.00945 0.01135 Eigenvalues --- 0.01542 0.02426 0.02543 0.03863 0.04037 Eigenvalues --- 0.04296 0.04569 0.05224 0.05363 0.05465 Eigenvalues --- 0.05730 0.05792 0.05830 0.06041 0.07182 Eigenvalues --- 0.07380 0.07580 0.08838 0.10563 0.11485 Eigenvalues --- 0.13866 0.15142 0.15274 0.34242 0.34807 Eigenvalues --- 0.34953 0.35056 0.35138 0.35231 0.35275 Eigenvalues --- 0.35528 0.35582 0.35685 0.35882 0.41741 Eigenvalues --- 0.45072 0.47077 Eigenvectors required to have negative eigenvalues: R4 R9 R14 R3 R12 1 0.56421 -0.56421 -0.11339 -0.11339 0.11339 R6 D2 D17 D34 D39 1 0.11339 0.10870 0.10870 0.10870 0.10870 RFO step: Lambda0=2.117125919D-13 Lambda= 0.00000000D+00. Linear search not attempted -- option 19 set. Iteration 1 RMS(Cart)= 0.00002481 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.05958 -0.00001 0.00000 -0.00002 -0.00002 2.05956 R2 2.05714 -0.00001 0.00000 -0.00002 -0.00002 2.05712 R3 2.65978 0.00002 0.00000 0.00004 0.00004 2.65983 R4 3.71812 0.00000 0.00000 0.00012 0.00012 3.71824 R5 2.06082 -0.00001 0.00000 -0.00004 -0.00004 2.06078 R6 2.65978 0.00002 0.00000 0.00005 0.00005 2.65983 R7 2.05714 -0.00001 0.00000 -0.00002 -0.00002 2.05712 R8 2.05958 -0.00001 0.00000 -0.00002 -0.00002 2.05956 R9 3.71812 0.00001 0.00000 0.00012 0.00012 3.71824 R10 2.05958 -0.00001 0.00000 -0.00002 -0.00002 2.05956 R11 2.05714 -0.00001 0.00000 -0.00002 -0.00002 2.05712 R12 2.65978 0.00002 0.00000 0.00005 0.00005 2.65983 R13 2.06082 -0.00001 0.00000 -0.00004 -0.00004 2.06078 R14 2.65978 0.00002 0.00000 0.00004 0.00004 2.65983 R15 2.05714 -0.00001 0.00000 -0.00002 -0.00002 2.05712 R16 2.05958 -0.00001 0.00000 -0.00002 -0.00002 2.05956 A1 1.96340 0.00000 0.00000 0.00002 0.00002 1.96342 A2 2.06392 0.00000 0.00000 -0.00001 -0.00001 2.06391 A3 1.78703 0.00000 0.00000 -0.00001 -0.00001 1.78702 A4 2.05887 0.00000 0.00000 0.00001 0.00001 2.05888 A5 1.70606 0.00000 0.00000 0.00000 0.00000 1.70606 A6 1.80876 0.00000 0.00000 -0.00002 -0.00002 1.80874 A7 2.05312 0.00000 0.00000 0.00002 0.00002 2.05314 A8 2.09357 0.00000 0.00000 0.00000 0.00000 2.09356 A9 2.05313 0.00000 0.00000 0.00002 0.00002 2.05314 A10 2.05887 0.00000 0.00000 0.00001 0.00001 2.05888 A11 2.06392 0.00000 0.00000 -0.00001 -0.00001 2.06391 A12 1.80876 0.00000 0.00000 -0.00002 -0.00002 1.80874 A13 1.96340 0.00000 0.00000 0.00002 0.00002 1.96342 A14 1.70606 0.00000 0.00000 0.00000 0.00000 1.70606 A15 1.78703 0.00000 0.00000 -0.00001 -0.00001 1.78702 A16 1.78703 0.00000 0.00000 -0.00001 -0.00001 1.78702 A17 1.70606 0.00000 0.00000 0.00000 0.00000 1.70606 A18 1.80876 0.00000 0.00000 -0.00002 -0.00002 1.80874 A19 1.96340 0.00000 0.00000 0.00002 0.00002 1.96342 A20 2.06392 0.00000 0.00000 -0.00001 -0.00001 2.06391 A21 2.05887 0.00000 0.00000 0.00001 0.00001 2.05888 A22 2.05313 0.00000 0.00000 0.00002 0.00002 2.05314 A23 2.09357 0.00000 0.00000 0.00000 0.00000 2.09356 A24 2.05313 0.00000 0.00000 0.00002 0.00002 2.05314 A25 1.80876 0.00000 0.00000 -0.00002 -0.00002 1.80874 A26 1.70606 0.00000 0.00000 0.00000 0.00000 1.70606 A27 1.78703 0.00000 0.00000 -0.00001 -0.00001 1.78702 A28 2.05887 0.00000 0.00000 0.00001 0.00001 2.05888 A29 2.06392 0.00000 0.00000 -0.00001 -0.00001 2.06391 A30 1.96340 0.00000 0.00000 0.00002 0.00002 1.96342 D1 -0.39481 0.00000 0.00000 0.00006 0.00006 -0.39475 D2 -3.09932 0.00000 0.00000 -0.00001 -0.00001 -3.09933 D3 -2.85562 0.00000 0.00000 0.00002 0.00002 -2.85559 D4 0.72306 0.00000 0.00000 -0.00005 -0.00005 0.72301 D5 1.56684 0.00000 0.00000 0.00003 0.00003 1.56688 D6 -1.13766 0.00000 0.00000 -0.00004 -0.00004 -1.13770 D7 3.09840 0.00000 0.00000 0.00000 0.00000 3.09840 D8 0.98078 0.00000 0.00000 0.00000 0.00000 0.98077 D9 -1.02923 0.00000 0.00000 -0.00002 -0.00002 -1.02925 D10 -1.17478 0.00000 0.00000 0.00002 0.00002 -1.17476 D11 2.99078 0.00000 0.00000 0.00002 0.00002 2.99080 D12 0.98077 0.00000 0.00000 0.00000 0.00000 0.98077 D13 0.94284 0.00000 0.00000 0.00002 0.00002 0.94287 D14 -1.17478 0.00000 0.00000 0.00002 0.00002 -1.17476 D15 3.09840 0.00000 0.00000 0.00000 0.00000 3.09840 D16 -0.72306 0.00000 0.00000 0.00005 0.00005 -0.72301 D17 3.09932 0.00000 0.00000 0.00001 0.00001 3.09933 D18 1.13766 0.00000 0.00000 0.00004 0.00004 1.13770 D19 2.85562 0.00000 0.00000 -0.00002 -0.00002 2.85559 D20 0.39481 0.00000 0.00000 -0.00006 -0.00006 0.39475 D21 -1.56684 0.00000 0.00000 -0.00003 -0.00003 -1.56688 D22 -3.09840 0.00000 0.00000 0.00000 0.00000 -3.09840 D23 1.17478 0.00000 0.00000 -0.00002 -0.00002 1.17476 D24 -0.94284 0.00000 0.00000 -0.00002 -0.00002 -0.94287 D25 -0.98078 0.00000 0.00000 0.00000 0.00000 -0.98077 D26 -2.99078 0.00000 0.00000 -0.00002 -0.00002 -2.99080 D27 1.17478 0.00000 0.00000 -0.00002 -0.00002 1.17476 D28 1.02923 0.00000 0.00000 0.00003 0.00003 1.02925 D29 -0.98078 0.00000 0.00000 0.00000 0.00000 -0.98077 D30 -3.09840 0.00000 0.00000 0.00000 0.00000 -3.09840 D31 -1.56685 0.00000 0.00000 -0.00003 -0.00003 -1.56688 D32 1.13766 0.00000 0.00000 0.00004 0.00004 1.13770 D33 0.39481 0.00000 0.00000 -0.00006 -0.00006 0.39475 D34 3.09932 0.00000 0.00000 0.00001 0.00001 3.09933 D35 2.85561 0.00000 0.00000 -0.00002 -0.00002 2.85559 D36 -0.72306 0.00000 0.00000 0.00005 0.00005 -0.72301 D37 -1.13766 0.00000 0.00000 -0.00004 -0.00004 -1.13770 D38 0.72306 0.00000 0.00000 -0.00005 -0.00005 0.72301 D39 -3.09932 0.00000 0.00000 -0.00001 -0.00001 -3.09933 D40 1.56685 0.00000 0.00000 0.00003 0.00003 1.56688 D41 -2.85561 0.00000 0.00000 0.00002 0.00002 -2.85559 D42 -0.39481 0.00000 0.00000 0.00006 0.00006 -0.39475 Item Value Threshold Converged? Maximum Force 0.000023 0.000450 YES RMS Force 0.000006 0.000300 YES Maximum Displacement 0.000077 0.001800 YES RMS Displacement 0.000025 0.001200 YES Predicted change in Energy=-3.820903D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0899 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0886 -DE/DX = 0.0 ! ! R3 R(1,4) 1.4075 -DE/DX = 0.0 ! ! R4 R(1,14) 1.9675 -DE/DX = 0.0 ! ! R5 R(4,5) 1.0905 -DE/DX = 0.0 ! ! R6 R(4,6) 1.4075 -DE/DX = 0.0 ! ! R7 R(6,7) 1.0886 -DE/DX = 0.0 ! ! R8 R(6,8) 1.0899 -DE/DX = 0.0 ! ! R9 R(6,9) 1.9675 -DE/DX = 0.0 ! ! R10 R(9,10) 1.0899 -DE/DX = 0.0 ! ! R11 R(9,11) 1.0886 -DE/DX = 0.0 ! ! R12 R(9,12) 1.4075 -DE/DX = 0.0 ! ! R13 R(12,13) 1.0905 -DE/DX = 0.0 ! ! R14 R(12,14) 1.4075 -DE/DX = 0.0 ! ! R15 R(14,15) 1.0886 -DE/DX = 0.0 ! ! R16 R(14,16) 1.0899 -DE/DX = 0.0 ! ! A1 A(2,1,3) 112.4945 -DE/DX = 0.0 ! ! A2 A(2,1,4) 118.2537 -DE/DX = 0.0 ! ! A3 A(2,1,14) 102.3892 -DE/DX = 0.0 ! ! A4 A(3,1,4) 117.9645 -DE/DX = 0.0 ! ! A5 A(3,1,14) 97.7501 -DE/DX = 0.0 ! ! A6 A(4,1,14) 103.6341 -DE/DX = 0.0 ! ! A7 A(1,4,5) 117.6354 -DE/DX = 0.0 ! ! A8 A(1,4,6) 119.9524 -DE/DX = 0.0 ! ! A9 A(5,4,6) 117.6354 -DE/DX = 0.0 ! ! A10 A(4,6,7) 117.9645 -DE/DX = 0.0 ! ! A11 A(4,6,8) 118.2538 -DE/DX = 0.0 ! ! A12 A(4,6,9) 103.6341 -DE/DX = 0.0 ! ! A13 A(7,6,8) 112.4944 -DE/DX = 0.0 ! ! A14 A(7,6,9) 97.7501 -DE/DX = 0.0 ! ! A15 A(8,6,9) 102.3892 -DE/DX = 0.0 ! ! A16 A(6,9,10) 102.3892 -DE/DX = 0.0 ! ! A17 A(6,9,11) 97.7502 -DE/DX = 0.0 ! ! A18 A(6,9,12) 103.6341 -DE/DX = 0.0 ! ! A19 A(10,9,11) 112.4944 -DE/DX = 0.0 ! ! A20 A(10,9,12) 118.2537 -DE/DX = 0.0 ! ! A21 A(11,9,12) 117.9645 -DE/DX = 0.0 ! ! A22 A(9,12,13) 117.6354 -DE/DX = 0.0 ! ! A23 A(9,12,14) 119.9524 -DE/DX = 0.0 ! ! A24 A(13,12,14) 117.6354 -DE/DX = 0.0 ! ! A25 A(1,14,12) 103.6341 -DE/DX = 0.0 ! ! A26 A(1,14,15) 97.7502 -DE/DX = 0.0 ! ! A27 A(1,14,16) 102.3893 -DE/DX = 0.0 ! ! A28 A(12,14,15) 117.9645 -DE/DX = 0.0 ! ! A29 A(12,14,16) 118.2537 -DE/DX = 0.0 ! ! A30 A(15,14,16) 112.4945 -DE/DX = 0.0 ! ! D1 D(2,1,4,5) -22.6211 -DE/DX = 0.0 ! ! D2 D(2,1,4,6) -177.578 -DE/DX = 0.0 ! ! D3 D(3,1,4,5) -163.6147 -DE/DX = 0.0 ! ! D4 D(3,1,4,6) 41.4284 -DE/DX = 0.0 ! ! D5 D(14,1,4,5) 89.7736 -DE/DX = 0.0 ! ! D6 D(14,1,4,6) -65.1833 -DE/DX = 0.0 ! ! D7 D(2,1,14,12) 177.5252 -DE/DX = 0.0 ! ! D8 D(2,1,14,15) 56.1943 -DE/DX = 0.0 ! ! D9 D(2,1,14,16) -58.9706 -DE/DX = 0.0 ! ! D10 D(3,1,14,12) -67.31 -DE/DX = 0.0 ! ! D11 D(3,1,14,15) 171.3591 -DE/DX = 0.0 ! ! D12 D(3,1,14,16) 56.1942 -DE/DX = 0.0 ! ! D13 D(4,1,14,12) 54.021 -DE/DX = 0.0 ! ! D14 D(4,1,14,15) -67.31 -DE/DX = 0.0 ! ! D15 D(4,1,14,16) 177.5252 -DE/DX = 0.0 ! ! D16 D(1,4,6,7) -41.4284 -DE/DX = 0.0 ! ! D17 D(1,4,6,8) 177.578 -DE/DX = 0.0 ! ! D18 D(1,4,6,9) 65.1833 -DE/DX = 0.0 ! ! D19 D(5,4,6,7) 163.6147 -DE/DX = 0.0 ! ! D20 D(5,4,6,8) 22.6211 -DE/DX = 0.0 ! ! D21 D(5,4,6,9) -89.7736 -DE/DX = 0.0 ! ! D22 D(4,6,9,10) -177.5253 -DE/DX = 0.0 ! ! D23 D(4,6,9,11) 67.31 -DE/DX = 0.0 ! ! D24 D(4,6,9,12) -54.021 -DE/DX = 0.0 ! ! D25 D(7,6,9,10) -56.1943 -DE/DX = 0.0 ! ! D26 D(7,6,9,11) -171.3591 -DE/DX = 0.0 ! ! D27 D(7,6,9,12) 67.3099 -DE/DX = 0.0 ! ! D28 D(8,6,9,10) 58.9705 -DE/DX = 0.0 ! ! D29 D(8,6,9,11) -56.1943 -DE/DX = 0.0 ! ! D30 D(8,6,9,12) -177.5253 -DE/DX = 0.0 ! ! D31 D(6,9,12,13) -89.7736 -DE/DX = 0.0 ! ! D32 D(6,9,12,14) 65.1833 -DE/DX = 0.0 ! ! D33 D(10,9,12,13) 22.621 -DE/DX = 0.0 ! ! D34 D(10,9,12,14) 177.5779 -DE/DX = 0.0 ! ! D35 D(11,9,12,13) 163.6146 -DE/DX = 0.0 ! ! D36 D(11,9,12,14) -41.4285 -DE/DX = 0.0 ! ! D37 D(9,12,14,1) -65.1833 -DE/DX = 0.0 ! ! D38 D(9,12,14,15) 41.4285 -DE/DX = 0.0 ! ! D39 D(9,12,14,16) -177.578 -DE/DX = 0.0 ! ! D40 D(13,12,14,1) 89.7736 -DE/DX = 0.0 ! ! D41 D(13,12,14,15) -163.6146 -DE/DX = 0.0 ! ! D42 D(13,12,14,16) -22.6211 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.950371 -1.218629 -0.254200 2 1 0 1.311657 -2.145258 0.191533 3 1 0 0.814263 -1.299890 -1.331189 4 6 0 1.431388 0.000009 0.260182 5 1 0 1.823193 0.000011 1.277907 6 6 0 0.950357 1.218640 -0.254200 7 1 0 0.814248 1.299899 -1.331189 8 1 0 1.311631 2.145273 0.191532 9 6 0 -0.950371 1.218629 0.254200 10 1 0 -1.311656 2.145258 -0.191533 11 1 0 -0.814264 1.299890 1.331189 12 6 0 -1.431388 -0.000008 -0.260182 13 1 0 -1.823194 -0.000010 -1.277906 14 6 0 -0.950356 -1.218641 0.254200 15 1 0 -0.814248 -1.299900 1.331189 16 1 0 -1.311632 -2.145273 -0.191533 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.089884 0.000000 3 H 1.088593 1.811279 0.000000 4 C 1.407496 2.149702 2.145470 0.000000 5 H 2.143421 2.458466 3.084650 1.090539 0.000000 6 C 2.437269 3.412481 2.742521 1.407495 2.143420 7 H 2.742520 3.799369 2.599789 2.145469 3.084649 8 H 3.412480 4.290531 3.799369 2.149700 2.458466 9 C 3.132334 4.054187 3.459816 2.675415 3.197759 10 H 4.054187 5.043514 4.205638 3.511471 4.072913 11 H 3.459817 4.205639 4.061922 2.807080 2.940868 12 C 2.675416 3.511473 2.807080 2.909685 3.599724 13 H 3.197760 4.072914 2.940868 3.599725 4.452900 14 C 1.967545 2.445250 2.373592 2.675415 3.197759 15 H 2.373593 2.555957 3.120946 2.807080 2.940868 16 H 2.445251 2.651110 2.555957 3.511473 4.072914 6 7 8 9 10 6 C 0.000000 7 H 1.088593 0.000000 8 H 1.089883 1.811278 0.000000 9 C 1.967546 2.373593 2.445250 0.000000 10 H 2.445251 2.555957 2.651108 1.089884 0.000000 11 H 2.373594 3.120947 2.555958 1.088593 1.811278 12 C 2.675415 2.807079 3.511471 1.407495 2.149701 13 H 3.197760 2.940868 4.072912 2.143420 2.458465 14 C 3.132334 3.459816 4.054187 2.437270 3.412482 15 H 3.459817 4.061922 4.205639 2.742521 3.799370 16 H 4.054187 4.205638 5.043514 3.412481 4.290531 11 12 13 14 15 11 H 0.000000 12 C 2.145469 0.000000 13 H 3.084649 1.090538 0.000000 14 C 2.742522 1.407497 2.143422 0.000000 15 H 2.599790 2.145470 3.084650 1.088593 0.000000 16 H 3.799369 2.149701 2.458466 1.089883 1.811278 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.950363 1.218635 -0.254200 2 1 0 -1.311643 2.145267 0.191533 3 1 0 -0.814254 1.299895 -1.331189 4 6 0 -1.431388 0.000000 0.260182 5 1 0 -1.823193 0.000001 1.277907 6 6 0 -0.950365 -1.218634 -0.254200 7 1 0 -0.814256 -1.299894 -1.331189 8 1 0 -1.311645 -2.145264 0.191532 9 6 0 0.950363 -1.218635 0.254200 10 1 0 1.311642 -2.145267 -0.191533 11 1 0 0.814256 -1.299895 1.331189 12 6 0 1.431388 -0.000001 -0.260182 13 1 0 1.823194 -0.000002 -1.277906 14 6 0 0.950364 1.218635 0.254200 15 1 0 0.814257 1.299895 1.331189 16 1 0 1.311646 2.145264 -0.191533 --------------------------------------------------------------------- Rotational constants (GHZ): 4.5147763 4.0709078 2.4592538 1|1| IMPERIAL COLLEGE-CHWS-LAP66|FTS|RB3LYP|6-31G(d)|C6H10|MYH11|07-No v-2014|0||# opt=(calcfc,ts) b3lyp/6-31g(d) geom=connectivity||g) chair b3lyp-631g||0,1|C,0.950371,-1.218629,-0.2542|H,1.311657,-2.145258,0.1 91533|H,0.814263,-1.29989,-1.331189|C,1.431388,0.000009,0.260182|H,1.8 23193,0.000011,1.277907|C,0.950357,1.21864,-0.2542|H,0.814248,1.299899 ,-1.331189|H,1.311631,2.145273,0.191532|C,-0.950371,1.218629,0.2542|H, -1.311656,2.145258,-0.191533|H,-0.814264,1.29989,1.331189|C,-1.431388, -0.000008,-0.260182|H,-1.823194,-0.00001,-1.277906|C,-0.950356,-1.2186 41,0.2542|H,-0.814248,-1.2999,1.331189|H,-1.311632,-2.145273,-0.191533 ||Version=EM64W-G09RevD.01|State=1-A|HF=-234.556983|RMSD=8.860e-009|RM SF=1.213e-005|Dipole=-0.0000006,0.0000007,-0.0000002|Polar=0.,0.,0.,0. ,0.,0.|Quadrupole=-3.1962376,1.9222829,1.2739547,-0.0000284,1.2419884, 0.0000068|PG=C01 [X(C6H10)]||@ EDUCATION WITHOUT COMMON SENSE IS A LOAD OF BOOKS ON THE BACK OF AN ASS. Job cpu time: 0 days 0 hours 3 minutes 12.0 seconds. File lengths (MBytes): RWF= 26 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri Nov 07 07:01:12 2014.