Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4884. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 09-May-2019 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\xc2017\Desktop\com lab\P(CH3)4_CXQ_OPT_1.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------ P(CH3)4 OPTI ------------ Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 1.04884 1.04884 1.04884 H 0.42486 1.68369 1.68369 H 1.68369 0.42486 1.68369 H 1.68369 1.68369 0.42486 C -1.04884 -1.04884 1.04884 H -1.68369 -0.42486 1.68369 H -1.68369 -1.68369 0.42486 H -0.42486 -1.68369 1.68369 C 1.04884 -1.04884 -1.04884 H 0.42486 -1.68369 -1.68369 H 1.68369 -0.42486 -1.68369 H 1.68369 -1.68369 -0.42486 C -1.04884 1.04884 -1.04884 H -0.42486 1.68369 -1.68369 H -1.68369 0.42486 -1.68369 H -1.68369 1.68369 -0.42486 P 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0934 estimate D2E/DX2 ! ! R2 R(1,3) 1.0934 estimate D2E/DX2 ! ! R3 R(1,4) 1.0934 estimate D2E/DX2 ! ! R4 R(1,17) 1.8166 estimate D2E/DX2 ! ! R5 R(5,6) 1.0934 estimate D2E/DX2 ! ! R6 R(5,7) 1.0934 estimate D2E/DX2 ! ! R7 R(5,8) 1.0934 estimate D2E/DX2 ! ! R8 R(5,17) 1.8166 estimate D2E/DX2 ! ! R9 R(9,10) 1.0934 estimate D2E/DX2 ! ! R10 R(9,11) 1.0934 estimate D2E/DX2 ! ! R11 R(9,12) 1.0934 estimate D2E/DX2 ! ! R12 R(9,17) 1.8166 estimate D2E/DX2 ! ! R13 R(13,14) 1.0934 estimate D2E/DX2 ! ! R14 R(13,15) 1.0934 estimate D2E/DX2 ! ! R15 R(13,16) 1.0934 estimate D2E/DX2 ! ! R16 R(13,17) 1.8166 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.0022 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.0022 estimate D2E/DX2 ! ! A3 A(2,1,17) 109.9362 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.0022 estimate D2E/DX2 ! ! A5 A(3,1,17) 109.9362 estimate D2E/DX2 ! ! A6 A(4,1,17) 109.9362 estimate D2E/DX2 ! ! A7 A(6,5,7) 109.0022 estimate D2E/DX2 ! ! A8 A(6,5,8) 109.0022 estimate D2E/DX2 ! ! A9 A(6,5,17) 109.9362 estimate D2E/DX2 ! ! A10 A(7,5,8) 109.0022 estimate D2E/DX2 ! ! A11 A(7,5,17) 109.9362 estimate D2E/DX2 ! ! A12 A(8,5,17) 109.9362 estimate D2E/DX2 ! ! A13 A(10,9,11) 109.0022 estimate D2E/DX2 ! ! A14 A(10,9,12) 109.0022 estimate D2E/DX2 ! ! A15 A(10,9,17) 109.9362 estimate D2E/DX2 ! ! A16 A(11,9,12) 109.0022 estimate D2E/DX2 ! ! A17 A(11,9,17) 109.9362 estimate D2E/DX2 ! ! A18 A(12,9,17) 109.9362 estimate D2E/DX2 ! ! A19 A(14,13,15) 109.0022 estimate D2E/DX2 ! ! A20 A(14,13,16) 109.0022 estimate D2E/DX2 ! ! A21 A(14,13,17) 109.9362 estimate D2E/DX2 ! ! A22 A(15,13,16) 109.0022 estimate D2E/DX2 ! ! A23 A(15,13,17) 109.9362 estimate D2E/DX2 ! ! A24 A(16,13,17) 109.9362 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) -60.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 180.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) 60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) 60.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) -60.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 180.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) 180.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) 60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) -60.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) 180.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) -60.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) -60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) 60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 60.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 180.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 180.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 60.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) -60.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) 180.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) 60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) -60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 180.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) -60.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) 180.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) -60.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) 60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) -60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) 60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048838 1.048838 1.048838 2 1 0 0.424858 1.683686 1.683686 3 1 0 1.683686 0.424858 1.683686 4 1 0 1.683686 1.683686 0.424858 5 6 0 -1.048838 -1.048838 1.048838 6 1 0 -1.683686 -0.424858 1.683686 7 1 0 -1.683686 -1.683686 0.424858 8 1 0 -0.424858 -1.683686 1.683686 9 6 0 1.048838 -1.048838 -1.048838 10 1 0 0.424858 -1.683686 -1.683686 11 1 0 1.683686 -0.424858 -1.683686 12 1 0 1.683686 -1.683686 -0.424858 13 6 0 -1.048838 1.048838 -1.048838 14 1 0 -0.424858 1.683686 -1.683686 15 1 0 -1.683686 0.424858 -1.683686 16 1 0 -1.683686 1.683686 -0.424858 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093350 0.000000 3 H 1.093350 1.780252 0.000000 4 H 1.093350 1.780252 1.780252 0.000000 5 C 2.966562 3.168832 3.168832 3.914425 0.000000 6 H 3.168832 2.981932 3.472925 4.167709 1.093350 7 H 3.914425 4.167709 4.167709 4.762183 1.093350 8 H 3.168832 3.472925 2.981932 4.167709 1.093350 9 C 2.966562 3.914425 3.168832 3.168832 2.966562 10 H 3.914425 4.762183 4.167709 4.167709 3.168832 11 H 3.168832 4.167709 3.472925 2.981932 3.914425 12 H 3.168832 4.167709 2.981932 3.472925 3.168832 13 C 2.966562 3.168832 3.914425 3.168832 2.966562 14 H 3.168832 3.472925 4.167709 2.981932 3.914425 15 H 3.914425 4.167709 4.762183 4.167709 3.168832 16 H 3.168832 2.981932 4.167709 3.472925 3.168832 17 P 1.816641 2.418698 2.418698 2.418698 1.816641 6 7 8 9 10 6 H 0.000000 7 H 1.780252 0.000000 8 H 1.780252 1.780252 0.000000 9 C 3.914425 3.168832 3.168832 0.000000 10 H 4.167709 2.981932 3.472925 1.093350 0.000000 11 H 4.762183 4.167709 4.167709 1.093350 1.780252 12 H 4.167709 3.472925 2.981932 1.093350 1.780252 13 C 3.168832 3.168832 3.914425 2.966562 3.168832 14 H 4.167709 4.167709 4.762183 3.168832 3.472925 15 H 3.472925 2.981932 4.167709 3.168832 2.981932 16 H 2.981932 3.472925 4.167709 3.914425 4.167709 17 P 2.418698 2.418698 2.418698 1.816641 2.418698 11 12 13 14 15 11 H 0.000000 12 H 1.780252 0.000000 13 C 3.168832 3.914425 0.000000 14 H 2.981932 4.167709 1.093350 0.000000 15 H 3.472925 4.167709 1.093350 1.780252 0.000000 16 H 4.167709 4.762183 1.093350 1.780252 1.780252 17 P 2.418698 2.418698 1.816641 2.418698 2.418698 16 17 16 H 0.000000 17 P 2.418698 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048838 1.048838 1.048838 2 1 0 0.424858 1.683686 1.683686 3 1 0 1.683686 0.424858 1.683686 4 1 0 1.683686 1.683686 0.424858 5 6 0 -1.048838 -1.048838 1.048838 6 1 0 -1.683686 -0.424858 1.683686 7 1 0 -1.683686 -1.683686 0.424858 8 1 0 -0.424858 -1.683686 1.683686 9 6 0 1.048838 -1.048838 -1.048838 10 1 0 0.424858 -1.683686 -1.683686 11 1 0 1.683686 -0.424858 -1.683686 12 1 0 1.683686 -1.683686 -0.424858 13 6 0 -1.048838 1.048838 -1.048838 14 1 0 -0.424858 1.683686 -1.683686 15 1 0 -1.683686 0.424858 -1.683686 16 1 0 -1.683686 1.683686 -0.424858 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3080409 3.3080409 3.3080409 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6449953358 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030204 A.U. after 10 cycles NFock= 10 Conv=0.33D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34290 -10.37614 -10.37614 -10.37614 -10.37614 Alpha occ. eigenvalues -- -6.80830 -4.96984 -4.96984 -4.96984 -0.99265 Alpha occ. eigenvalues -- -0.89081 -0.89081 -0.89081 -0.73302 -0.63369 Alpha occ. eigenvalues -- -0.63369 -0.63369 -0.60221 -0.60221 -0.57873 Alpha occ. eigenvalues -- -0.57873 -0.57873 -0.53927 -0.53927 -0.53927 Alpha virt. eigenvalues -- -0.11011 -0.11011 -0.11011 -0.10151 -0.05116 Alpha virt. eigenvalues -- -0.04130 -0.04130 -0.03821 -0.03821 -0.03821 Alpha virt. eigenvalues -- 0.00636 0.00636 0.00636 0.02555 0.02555 Alpha virt. eigenvalues -- 0.02555 0.19717 0.19717 0.19717 0.24759 Alpha virt. eigenvalues -- 0.24759 0.29668 0.43581 0.43581 0.43581 Alpha virt. eigenvalues -- 0.46746 0.46746 0.46746 0.47402 0.56972 Alpha virt. eigenvalues -- 0.56972 0.57685 0.57685 0.57685 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.69737 0.69737 0.69737 Alpha virt. eigenvalues -- 0.71107 0.71608 0.71608 0.71608 0.74102 Alpha virt. eigenvalues -- 0.74102 0.81600 0.81600 0.81600 1.09558 Alpha virt. eigenvalues -- 1.09558 1.09558 1.22824 1.22824 1.22824 Alpha virt. eigenvalues -- 1.23849 1.30713 1.30713 1.50563 1.50563 Alpha virt. eigenvalues -- 1.50563 1.75089 1.85236 1.85236 1.85236 Alpha virt. eigenvalues -- 1.85333 1.87434 1.87434 1.88011 1.88011 Alpha virt. eigenvalues -- 1.88011 1.93270 1.93270 1.93270 1.96514 Alpha virt. eigenvalues -- 1.96514 1.96514 2.14668 2.14668 2.14668 Alpha virt. eigenvalues -- 2.19081 2.19081 2.19081 2.19382 2.19382 Alpha virt. eigenvalues -- 2.41975 2.47519 2.47519 2.47519 2.61124 Alpha virt. eigenvalues -- 2.61124 2.65355 2.65355 2.65355 2.67375 Alpha virt. eigenvalues -- 2.67375 2.67375 2.95804 3.00632 3.00632 Alpha virt. eigenvalues -- 3.00632 3.22453 3.22453 3.22453 3.24323 Alpha virt. eigenvalues -- 3.24323 3.25156 3.25156 3.25156 3.34963 Alpha virt. eigenvalues -- 4.26246 4.27334 4.27334 4.27334 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.135767 0.377499 0.377499 0.377499 -0.032238 -0.001792 2 H 0.377499 0.484072 -0.016370 -0.016370 -0.001792 0.000784 3 H 0.377499 -0.016370 0.484072 -0.016370 -0.001792 -0.000137 4 H 0.377499 -0.016370 -0.016370 0.484072 0.001666 0.000006 5 C -0.032238 -0.001792 -0.001792 0.001666 5.135767 0.377499 6 H -0.001792 0.000784 -0.000137 0.000006 0.377499 0.484072 7 H 0.001666 0.000006 0.000006 -0.000029 0.377499 -0.016370 8 H -0.001792 -0.000137 0.000784 0.000006 0.377499 -0.016370 9 C -0.032238 0.001666 -0.001792 -0.001792 -0.032238 0.001666 10 H 0.001666 -0.000029 0.000006 0.000006 -0.001792 0.000006 11 H -0.001792 0.000006 -0.000137 0.000784 0.001666 -0.000029 12 H -0.001792 0.000006 0.000784 -0.000137 -0.001792 0.000006 13 C -0.032238 -0.001792 0.001666 -0.001792 -0.032238 -0.001792 14 H -0.001792 -0.000137 0.000006 0.000784 0.001666 0.000006 15 H 0.001666 0.000006 -0.000029 0.000006 -0.001792 -0.000137 16 H -0.001792 0.000784 0.000006 -0.000137 -0.001792 0.000784 17 P 0.345244 -0.021424 -0.021424 -0.021424 0.345244 -0.021424 7 8 9 10 11 12 1 C 0.001666 -0.001792 -0.032238 0.001666 -0.001792 -0.001792 2 H 0.000006 -0.000137 0.001666 -0.000029 0.000006 0.000006 3 H 0.000006 0.000784 -0.001792 0.000006 -0.000137 0.000784 4 H -0.000029 0.000006 -0.001792 0.000006 0.000784 -0.000137 5 C 0.377499 0.377499 -0.032238 -0.001792 0.001666 -0.001792 6 H -0.016370 -0.016370 0.001666 0.000006 -0.000029 0.000006 7 H 0.484072 -0.016370 -0.001792 0.000784 0.000006 -0.000137 8 H -0.016370 0.484072 -0.001792 -0.000137 0.000006 0.000784 9 C -0.001792 -0.001792 5.135767 0.377499 0.377499 0.377499 10 H 0.000784 -0.000137 0.377499 0.484072 -0.016370 -0.016370 11 H 0.000006 0.000006 0.377499 -0.016370 0.484072 -0.016370 12 H -0.000137 0.000784 0.377499 -0.016370 -0.016370 0.484072 13 C -0.001792 0.001666 -0.032238 -0.001792 -0.001792 0.001666 14 H 0.000006 -0.000029 -0.001792 -0.000137 0.000784 0.000006 15 H 0.000784 0.000006 -0.001792 0.000784 -0.000137 0.000006 16 H -0.000137 0.000006 0.001666 0.000006 0.000006 -0.000029 17 P -0.021424 -0.021424 0.345244 -0.021424 -0.021424 -0.021424 13 14 15 16 17 1 C -0.032238 -0.001792 0.001666 -0.001792 0.345244 2 H -0.001792 -0.000137 0.000006 0.000784 -0.021424 3 H 0.001666 0.000006 -0.000029 0.000006 -0.021424 4 H -0.001792 0.000784 0.000006 -0.000137 -0.021424 5 C -0.032238 0.001666 -0.001792 -0.001792 0.345244 6 H -0.001792 0.000006 -0.000137 0.000784 -0.021424 7 H -0.001792 0.000006 0.000784 -0.000137 -0.021424 8 H 0.001666 -0.000029 0.000006 0.000006 -0.021424 9 C -0.032238 -0.001792 -0.001792 0.001666 0.345244 10 H -0.001792 -0.000137 0.000784 0.000006 -0.021424 11 H -0.001792 0.000784 -0.000137 0.000006 -0.021424 12 H 0.001666 0.000006 0.000006 -0.000029 -0.021424 13 C 5.135767 0.377499 0.377499 0.377499 0.345244 14 H 0.377499 0.484072 -0.016370 -0.016370 -0.021424 15 H 0.377499 -0.016370 0.484072 -0.016370 -0.021424 16 H 0.377499 -0.016370 -0.016370 0.484072 -0.021424 17 P 0.345244 -0.021424 -0.021424 -0.021424 13.150669 Mulliken charges: 1 1 C -0.511036 2 H 0.193225 3 H 0.193225 4 H 0.193225 5 C -0.511036 6 H 0.193225 7 H 0.193225 8 H 0.193225 9 C -0.511036 10 H 0.193225 11 H 0.193225 12 H 0.193225 13 C -0.511036 14 H 0.193225 15 H 0.193225 16 H 0.193225 17 P 0.725446 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068639 5 C 0.068639 9 C 0.068639 13 C 0.068639 17 P 0.725446 Electronic spatial extent (au): = 603.2637 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2615 YY= -31.2615 ZZ= -31.2615 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9932 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.9076 YYYY= -246.9076 ZZZZ= -246.9076 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.4068 XXZZ= -74.4068 YYZZ= -74.4068 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626449953358D+02 E-N=-1.693505602388D+03 KE= 4.978516935829D+02 Symmetry A KE= 2.853336443979D+02 Symmetry B1 KE= 7.083934972832D+01 Symmetry B2 KE= 7.083934972832D+01 Symmetry B3 KE= 7.083934972832D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000010359 -0.000010359 -0.000010359 2 1 0.000006017 -0.000032952 -0.000032952 3 1 -0.000032952 0.000006017 -0.000032952 4 1 -0.000032952 -0.000032952 0.000006017 5 6 0.000010359 0.000010359 -0.000010359 6 1 0.000032952 -0.000006017 -0.000032952 7 1 0.000032952 0.000032952 0.000006017 8 1 -0.000006017 0.000032952 -0.000032952 9 6 -0.000010359 0.000010359 0.000010359 10 1 0.000006017 0.000032952 0.000032952 11 1 -0.000032952 -0.000006017 0.000032952 12 1 -0.000032952 0.000032952 -0.000006017 13 6 0.000010359 -0.000010359 0.000010359 14 1 -0.000006017 -0.000032952 0.000032952 15 1 0.000032952 0.000006017 0.000032952 16 1 0.000032952 -0.000032952 -0.000006017 17 15 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000032952 RMS 0.000023340 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000121669 RMS 0.000033475 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00944 0.00944 0.00944 0.00944 0.05318 Eigenvalues --- 0.05318 0.05318 0.06099 0.06099 0.06099 Eigenvalues --- 0.06099 0.06099 0.06099 0.06099 0.06099 Eigenvalues --- 0.14690 0.14690 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24848 Eigenvalues --- 0.24848 0.24848 0.24848 0.34428 0.34428 Eigenvalues --- 0.34428 0.34428 0.34428 0.34428 0.34428 Eigenvalues --- 0.34428 0.34428 0.34428 0.34428 0.34428 RFO step: Lambda=-3.72707861D-07 EMin= 9.44127613D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00032390 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 7.90D-09 for atom 4. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R2 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R3 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R4 3.43295 -0.00012 0.00000 -0.00049 -0.00049 3.43246 R5 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R6 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R7 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R8 3.43295 -0.00012 0.00000 -0.00049 -0.00049 3.43246 R9 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R10 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R11 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R12 3.43295 -0.00012 0.00000 -0.00049 -0.00049 3.43246 R13 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R14 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R15 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R16 3.43295 -0.00012 0.00000 -0.00049 -0.00049 3.43246 A1 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A2 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A3 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A4 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A5 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A6 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A7 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A8 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A9 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A10 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A11 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A12 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A13 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A14 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A15 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A16 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A17 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A18 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A19 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A20 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A21 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A22 1.90245 0.00002 0.00000 0.00014 0.00014 1.90259 A23 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A24 1.91875 -0.00002 0.00000 -0.00014 -0.00014 1.91861 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D4 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D5 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D26 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 Item Value Threshold Converged? Maximum Force 0.000122 0.000450 YES RMS Force 0.000033 0.000300 YES Maximum Displacement 0.000468 0.001800 YES RMS Displacement 0.000324 0.001200 YES Predicted change in Energy=-1.863539D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0934 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0934 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0934 -DE/DX = 0.0 ! ! R4 R(1,17) 1.8166 -DE/DX = -0.0001 ! ! R5 R(5,6) 1.0934 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0934 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0934 -DE/DX = 0.0 ! ! R8 R(5,17) 1.8166 -DE/DX = -0.0001 ! ! R9 R(9,10) 1.0934 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0934 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0934 -DE/DX = 0.0 ! ! R12 R(9,17) 1.8166 -DE/DX = -0.0001 ! ! R13 R(13,14) 1.0934 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0934 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0934 -DE/DX = 0.0 ! ! R16 R(13,17) 1.8166 -DE/DX = -0.0001 ! ! A1 A(2,1,3) 109.0022 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.0022 -DE/DX = 0.0 ! ! A3 A(2,1,17) 109.9362 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.0022 -DE/DX = 0.0 ! ! A5 A(3,1,17) 109.9362 -DE/DX = 0.0 ! ! A6 A(4,1,17) 109.9362 -DE/DX = 0.0 ! ! A7 A(6,5,7) 109.0022 -DE/DX = 0.0 ! ! A8 A(6,5,8) 109.0022 -DE/DX = 0.0 ! ! A9 A(6,5,17) 109.9362 -DE/DX = 0.0 ! ! A10 A(7,5,8) 109.0022 -DE/DX = 0.0 ! ! A11 A(7,5,17) 109.9362 -DE/DX = 0.0 ! ! A12 A(8,5,17) 109.9362 -DE/DX = 0.0 ! ! A13 A(10,9,11) 109.0022 -DE/DX = 0.0 ! ! A14 A(10,9,12) 109.0022 -DE/DX = 0.0 ! ! A15 A(10,9,17) 109.9362 -DE/DX = 0.0 ! ! A16 A(11,9,12) 109.0022 -DE/DX = 0.0 ! ! A17 A(11,9,17) 109.9362 -DE/DX = 0.0 ! ! A18 A(12,9,17) 109.9362 -DE/DX = 0.0 ! ! A19 A(14,13,15) 109.0022 -DE/DX = 0.0 ! ! A20 A(14,13,16) 109.0022 -DE/DX = 0.0 ! ! A21 A(14,13,17) 109.9362 -DE/DX = 0.0 ! ! A22 A(15,13,16) 109.0022 -DE/DX = 0.0 ! ! A23 A(15,13,17) 109.9362 -DE/DX = 0.0 ! ! A24 A(16,13,17) 109.9362 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) -60.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 180.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) 60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) 60.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) -60.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 180.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) 180.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) 60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) -60.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) -180.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) -60.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) -60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) 60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 60.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 180.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 180.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 60.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) -60.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) 180.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) 60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) -60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 180.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -60.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 180.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) -60.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) 60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) -60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) 60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) -180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048838 1.048838 1.048838 2 1 0 0.424858 1.683686 1.683686 3 1 0 1.683686 0.424858 1.683686 4 1 0 1.683686 1.683686 0.424858 5 6 0 -1.048838 -1.048838 1.048838 6 1 0 -1.683686 -0.424858 1.683686 7 1 0 -1.683686 -1.683686 0.424858 8 1 0 -0.424858 -1.683686 1.683686 9 6 0 1.048838 -1.048838 -1.048838 10 1 0 0.424858 -1.683686 -1.683686 11 1 0 1.683686 -0.424858 -1.683686 12 1 0 1.683686 -1.683686 -0.424858 13 6 0 -1.048838 1.048838 -1.048838 14 1 0 -0.424858 1.683686 -1.683686 15 1 0 -1.683686 0.424858 -1.683686 16 1 0 -1.683686 1.683686 -0.424858 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093350 0.000000 3 H 1.093350 1.780252 0.000000 4 H 1.093350 1.780252 1.780252 0.000000 5 C 2.966562 3.168832 3.168832 3.914425 0.000000 6 H 3.168832 2.981932 3.472925 4.167709 1.093350 7 H 3.914425 4.167709 4.167709 4.762183 1.093350 8 H 3.168832 3.472925 2.981932 4.167709 1.093350 9 C 2.966562 3.914425 3.168832 3.168832 2.966562 10 H 3.914425 4.762183 4.167709 4.167709 3.168832 11 H 3.168832 4.167709 3.472925 2.981932 3.914425 12 H 3.168832 4.167709 2.981932 3.472925 3.168832 13 C 2.966562 3.168832 3.914425 3.168832 2.966562 14 H 3.168832 3.472925 4.167709 2.981932 3.914425 15 H 3.914425 4.167709 4.762183 4.167709 3.168832 16 H 3.168832 2.981932 4.167709 3.472925 3.168832 17 P 1.816641 2.418698 2.418698 2.418698 1.816641 6 7 8 9 10 6 H 0.000000 7 H 1.780252 0.000000 8 H 1.780252 1.780252 0.000000 9 C 3.914425 3.168832 3.168832 0.000000 10 H 4.167709 2.981932 3.472925 1.093350 0.000000 11 H 4.762183 4.167709 4.167709 1.093350 1.780252 12 H 4.167709 3.472925 2.981932 1.093350 1.780252 13 C 3.168832 3.168832 3.914425 2.966562 3.168832 14 H 4.167709 4.167709 4.762183 3.168832 3.472925 15 H 3.472925 2.981932 4.167709 3.168832 2.981932 16 H 2.981932 3.472925 4.167709 3.914425 4.167709 17 P 2.418698 2.418698 2.418698 1.816641 2.418698 11 12 13 14 15 11 H 0.000000 12 H 1.780252 0.000000 13 C 3.168832 3.914425 0.000000 14 H 2.981932 4.167709 1.093350 0.000000 15 H 3.472925 4.167709 1.093350 1.780252 0.000000 16 H 4.167709 4.762183 1.093350 1.780252 1.780252 17 P 2.418698 2.418698 1.816641 2.418698 2.418698 16 17 16 H 0.000000 17 P 2.418698 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048838 1.048838 1.048838 2 1 0 0.424858 1.683686 1.683686 3 1 0 1.683686 0.424858 1.683686 4 1 0 1.683686 1.683686 0.424858 5 6 0 -1.048838 -1.048838 1.048838 6 1 0 -1.683686 -0.424858 1.683686 7 1 0 -1.683686 -1.683686 0.424858 8 1 0 -0.424858 -1.683686 1.683686 9 6 0 1.048838 -1.048838 -1.048838 10 1 0 0.424858 -1.683686 -1.683686 11 1 0 1.683686 -0.424858 -1.683686 12 1 0 1.683686 -1.683686 -0.424858 13 6 0 -1.048838 1.048838 -1.048838 14 1 0 -0.424858 1.683686 -1.683686 15 1 0 -1.683686 0.424858 -1.683686 16 1 0 -1.683686 1.683686 -0.424858 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3080409 3.3080409 3.3080409 1|1| IMPERIAL COLLEGE-SKCH-135-015|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)| XC2017|09-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integra l=grid=ultrafine||P(CH3)4 OPTI||1,1|C,1.048838,1.048838,1.048838|H,0.4 24858,1.683686,1.683686|H,1.683686,0.424858,1.683686|H,1.683686,1.6836 86,0.424858|C,-1.048838,-1.048838,1.048838|H,-1.683686,-0.424858,1.683 686|H,-1.683686,-1.683686,0.424858|H,-0.424858,-1.683686,1.683686|C,1. 048838,-1.048838,-1.048838|H,0.424858,-1.683686,-1.683686|H,1.683686,- 0.424858,-1.683686|H,1.683686,-1.683686,-0.424858|C,-1.048838,1.048838 ,-1.048838|H,-0.424858,1.683686,-1.683686|H,-1.683686,0.424858,-1.6836 86|H,-1.683686,1.683686,-0.424858|P,0.,0.,0.||Version=EM64W-G09RevD.01 |State=1-A1|HF=-500.8270302|RMSD=3.346e-009|RMSF=2.334e-005|Dipole=0., 0.,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2)]||@ OF ALL THE WONDERS OF THE UNIVERSE, THE GREATEST IS MAN. -- ARISTOTLE Job cpu time: 0 days 0 hours 0 minutes 20.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 09 14:54:06 2019.