Entering Link 1 = C:\G03W\l1.exe PID= 5384. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 17-Feb-2009 ****************************************** %chk=jfg_nh3_mp2_d3h.chk %mem=1000MB %nproc=1 Will use up to 1 processors via shared memory. --------------------------------------------- # opt mp2=full/6-311+g(d,p) geom=connectivity --------------------------------------------- 1/18=20,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=4,6=6,7=111,11=9,16=1,25=1,30=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,10=90/1; 9/15=2,16=-3/6; 10/5=1/2; 6/7=2,8=2,9=2,10=2/1; 7/12=2/1,2,3,16; 1/18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; 2/9=110/2; 3/5=4,6=6,7=111,11=9,16=1,25=1,30=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 8/6=4,10=90/1; 9/15=2,16=-3/6; 10/5=1/2; 7/12=2/1,2,3,16; 1/18=20/3(-8); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; -------------------------------------- NH3 mp2 high symmetry d3h optimisation -------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 N X 1 2. H 1 B1 2 A1 H 1 B2 2 A2 3 D1 0 H 1 B3 2 A3 3 D2 0 Variables: B1 1.01 B2 1.01 B3 1.01 A1 90. A2 90. A3 90. D1 120. D2 -120. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.01 estimate D2E/DX2 ! ! R2 R(1,3) 1.01 estimate D2E/DX2 ! ! R3 R(1,4) 1.01 estimate D2E/DX2 ! ! A1 A(2,1,3) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! A4 L(3,1,4,2,-2) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 1.010000 0.000000 0.000000 3 1 0 -0.505000 -0.874686 0.000000 4 1 0 -0.505000 0.874686 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.010000 0.000000 3 H 1.010000 1.749371 0.000000 4 H 1.010000 1.749371 1.749371 0.000000 Stoichiometry H3N Framework group D3H[O(N),3C2(H)] Deg. of freedom 1 Full point group D3H Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.010000 0.000000 3 1 0 0.874686 -0.505000 0.000000 4 1 0 -0.874686 -0.505000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 327.7163029 327.7163029 163.8581514 Standard basis: 6-311+G(d,p) (5D, 7F) There are 20 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 11 symmetry adapted basis functions of B1 symmetry. There are 7 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 40 basis functions, 60 primitive gaussians, 41 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.9101813716 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 3.00D+00 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 40 RedAO= T NBF= 20 2 11 7 NBsUse= 40 1.00D-06 NBFU= 20 2 11 7 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 6.39D-02 ExpMax= 6.29D+03 ExpMxC= 9.49D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (A1') (A1') (E') (E') (A2") Virtual (A1') (E') (E') (A2") (E') (E') (A1') (E') (E') (A1') (E') (E') (A2") (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (A1') The electronic state of the initial guess is 1-A1'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 1250401. SCF Done: E(RHF) = -56.2059299223 A.U. after 9 cycles Convg = 0.7533D-08 -V/T = 2.0025 S**2 = 0.0000 Range of M.O.s used for correlation: 1 40 NBasis= 40 NAE= 5 NBE= 5 NFC= 0 NFV= 0 NROrb= 40 NOA= 5 NOB= 5 NVA= 35 NVB= 35 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 1 to 5 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.6988045290D-02 E2= -0.2449975881D-01 alpha-beta T2 = 0.4516734517D-01 E2= -0.1713362947D+00 beta-beta T2 = 0.6988045290D-02 E2= -0.2449975881D-01 ANorm= 0.1029146946D+01 E2 = -0.2203358124D+00 EUMP2 = -0.56426265734642D+02 DoAtom=TTTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Store integrals in memory, NReq= 1191578. There are 1 degrees of freedom in the 1st order CPHF. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. Inv2: IOpt= 1 Iter= 1 AM= 2.86D-16 Conv= 1.00D-12. Inverted reduced A of dimension 9 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1') (A1') (E') (E') (A2") Virtual (A1') (E') (E') (A2") (A1') (E') (E') (E') (E') (A1') (E') (E') (A2") (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -15.53046 -1.12119 -0.64766 -0.64766 -0.38941 Alpha virt. eigenvalues -- 0.12153 0.15113 0.15113 0.19770 0.27710 Alpha virt. eigenvalues -- 0.28443 0.28443 0.67054 0.67054 0.72308 Alpha virt. eigenvalues -- 0.94758 0.94758 1.00816 1.11100 1.44099 Alpha virt. eigenvalues -- 1.44099 1.70960 1.87616 1.87616 2.01641 Alpha virt. eigenvalues -- 2.25179 2.42931 2.42931 2.79979 2.79979 Alpha virt. eigenvalues -- 2.86360 2.89064 2.89064 3.38521 3.49769 Alpha virt. eigenvalues -- 3.49769 4.31427 5.26732 5.26732 37.06006 Condensed to atoms (all electrons): 1 2 3 4 1 N 6.626831 0.385359 0.385359 0.385359 2 H 0.385359 0.398531 -0.022430 -0.022430 3 H 0.385359 -0.022430 0.398531 -0.022430 4 H 0.385359 -0.022430 -0.022430 0.398531 Mulliken atomic charges: 1 1 N -0.782909 2 H 0.260970 3 H 0.260970 4 H 0.260970 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 H 0.000000 3 H 0.000000 4 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 26.8392 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -5.6446 YY= -5.6446 ZZ= -10.1112 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.4889 YY= 1.4889 ZZ= -2.9777 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 1.3686 ZZZ= 0.0000 XYY= 0.0000 XXY= -1.3686 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.4011 YYYY= -9.4011 ZZZZ= -12.8966 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.1337 XXZZ= -4.1895 YYZZ= -4.1895 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.191018137157D+01 E-N=-1.556244206558D+02 KE= 5.606494949071D+01 Symmetry A1 KE= 5.046279280624D+01 Symmetry A2 KE= 7.459382374153D-31 Symmetry B1 KE= 2.597506910306D+00 Symmetry B2 KE= 3.004649774166D+00 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 1 -0.011196053 0.000000000 0.000000000 3 1 0.005598026 0.009696066 0.000000000 4 1 0.005598026 -0.009696066 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.011196053 RMS 0.005598026 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.011196053 RMS 0.007329537 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.45973 R2 0.00000 0.45973 R3 0.00000 0.00000 0.45973 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A4 A3 0.16000 A4 0.00000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.45973 0.45973 Eigenvalues --- 0.459731000.00000 RFO step: Lambda=-8.16545949D-04. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.01591503 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.90862 -0.01120 0.00000 -0.02431 -0.02431 1.88431 R2 1.90862 -0.01120 0.00000 -0.02431 -0.02431 1.88431 R3 1.90862 -0.01120 0.00000 -0.02431 -0.02431 1.88431 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.011196 0.000450 NO RMS Force 0.007330 0.000300 NO Maximum Displacement 0.024311 0.001800 NO RMS Displacement 0.015915 0.001200 NO Predicted change in Energy=-4.089981D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.997135 0.000000 0.000000 3 1 0 -0.498568 -0.863545 0.000000 4 1 0 -0.498568 0.863545 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 0.997135 0.000000 3 H 0.997135 1.727089 0.000000 4 H 0.997135 1.727089 1.727089 0.000000 Stoichiometry H3N Framework group D3H[O(N),3C2(H)] Deg. of freedom 1 Full point group D3H Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.997135 0.000000 3 1 0 0.863545 -0.498568 0.000000 4 1 0 -0.863545 -0.498568 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 336.2269660 336.2269660 168.1134830 Standard basis: 6-311+G(d,p) (5D, 7F) There are 20 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 11 symmetry adapted basis functions of B1 symmetry. There are 7 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 40 basis functions, 60 primitive gaussians, 41 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 12.0638414989 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 3.00D+00 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 40 RedAO= T NBF= 20 2 11 7 NBsUse= 40 1.00D-06 NBFU= 20 2 11 7 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (A1') (A1') (E') (E') (A2") Virtual (A1') (E') (E') (A2") (A1') (E') (E') (E') (E') (A1') (E') (E') (A2") (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (A1') Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 6.39D-02 ExpMax= 6.29D+03 ExpMxC= 9.49D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 1250401. SCF Done: E(RHF) = -56.2070936731 A.U. after 8 cycles Convg = 0.2634D-08 -V/T = 2.0013 S**2 = 0.0000 Range of M.O.s used for correlation: 1 40 NBasis= 40 NAE= 5 NBE= 5 NFC= 0 NFV= 0 NROrb= 40 NOA= 5 NOB= 5 NVA= 35 NVB= 35 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 1 to 5 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.6901369821D-02 E2= -0.2444503894D-01 alpha-beta T2 = 0.4447144934D-01 E2= -0.1706629420D+00 beta-beta T2 = 0.6901369821D-02 E2= -0.2444503894D-01 ANorm= 0.1028724545D+01 E2 = -0.2195530199D+00 EUMP2 = -0.56426646693050D+02 DoAtom=TTTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Store integrals in memory, NReq= 1191578. There are 1 degrees of freedom in the 1st order CPHF. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. Inv2: IOpt= 1 Iter= 1 AM= 4.79D-16 Conv= 1.00D-12. Inverted reduced A of dimension 9 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 1 0.000913219 0.000000000 0.000000000 3 1 -0.000456609 -0.000790870 0.000000000 4 1 -0.000456609 0.000790870 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000913219 RMS 0.000456609 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000913219 RMS 0.000597842 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Update second derivatives using D2CorX and points 1 2 Trust test= 9.31D-01 RLast= 4.21D-02 DXMaxT set to 3.00D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.47252 R2 0.01279 0.47252 R3 0.01279 0.01279 0.47252 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A4 A3 0.16000 A4 0.00000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.45973 0.45973 Eigenvalues --- 0.498111000.00000 RFO step: Lambda= 0.00000000D+00. Quartic linear search produced a step of -0.07266. Iteration 1 RMS(Cart)= 0.00115637 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.88431 0.00091 0.00177 0.00000 0.00177 1.88608 R2 1.88431 0.00091 0.00177 0.00000 0.00177 1.88608 R3 1.88431 0.00091 0.00177 0.00000 0.00177 1.88608 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000913 0.000450 NO RMS Force 0.000598 0.000300 NO Maximum Displacement 0.001766 0.001800 YES RMS Displacement 0.001156 0.001200 YES Predicted change in Energy=-2.508062D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.998070 0.000000 0.000000 3 1 0 -0.499035 -0.864354 0.000000 4 1 0 -0.499035 0.864354 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 0.998070 0.000000 3 H 0.998070 1.728708 0.000000 4 H 0.998070 1.728708 1.728708 0.000000 Stoichiometry H3N Framework group D3H[O(N),3C2(H)] Deg. of freedom 1 Full point group D3H Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.998070 0.000000 3 1 0 0.864354 -0.499035 0.000000 4 1 0 -0.864354 -0.499035 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 335.5974825 335.5974825 167.7987413 Standard basis: 6-311+G(d,p) (5D, 7F) There are 20 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 11 symmetry adapted basis functions of B1 symmetry. There are 7 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 262144 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 40 basis functions, 60 primitive gaussians, 41 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 12.0525432576 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 3.00D+00 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 40 RedAO= T NBF= 20 2 11 7 NBsUse= 40 1.00D-06 NBFU= 20 2 11 7 Initial guess read from the read-write file: Initial guess orbital symmetries: Occupied (A1') (A1') (E') (E') (A2") Virtual (A1') (E') (E') (A2") (A1') (E') (E') (E') (E') (A1') (E') (E') (A2") (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (A1') Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 integrals in memory in canonical form, NReq= 1250401. SCF Done: E(RHF) = -56.2070393890 A.U. after 7 cycles Convg = 0.1990D-08 -V/T = 2.0014 S**2 = 0.0000 Range of M.O.s used for correlation: 1 40 NBasis= 40 NAE= 5 NBE= 5 NFC= 0 NFV= 0 NROrb= 40 NOA= 5 NOB= 5 NVA= 35 NVB= 35 Fully direct method using O(ONN) memory. JobTyp=1 Pass 1: I= 1 to 5 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T. Spin components of T(2) and E(2): alpha-alpha T2 = 0.6907629614D-02 E2= -0.2444898031D-01 alpha-beta T2 = 0.4452158111D-01 E2= -0.1707117603D+00 beta-beta T2 = 0.6907629614D-02 E2= -0.2444898031D-01 ANorm= 0.1028754995D+01 E2 = -0.2196097209D+00 EUMP2 = -0.56426649109909D+02 DoAtom=TTTT Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Store integrals in memory, NReq= 1191578. There are 1 degrees of freedom in the 1st order CPHF. 1 vectors were produced by pass 0. AX will form 1 AO Fock derivatives at one time. 1 vectors were produced by pass 1. 1 vectors were produced by pass 2. 1 vectors were produced by pass 3. 1 vectors were produced by pass 4. 1 vectors were produced by pass 5. 1 vectors were produced by pass 6. 1 vectors were produced by pass 7. 1 vectors were produced by pass 8. Inv2: IOpt= 1 Iter= 1 AM= 2.89D-16 Conv= 1.00D-12. Inverted reduced A of dimension 9 with in-core refinement. End of Minotr Frequency-dependent properties file 721 does not exist. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000000 0.000000000 0.000000000 2 1 -0.000000151 0.000000000 0.000000000 3 1 0.000000075 0.000000131 0.000000000 4 1 0.000000075 -0.000000131 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000151 RMS 0.000000075 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000000151 RMS 0.000000099 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Update second derivatives using D2CorX and points 1 2 3 Trust test= 9.64D-01 RLast= 3.06D-03 DXMaxT set to 3.00D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.47884 R2 0.01912 0.47884 R3 0.01912 0.01912 0.47884 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 A4 0.00000 0.00000 0.00000 0.00000 0.00000 A3 A4 A3 0.16000 A4 0.00000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.45973 0.45973 Eigenvalues --- 0.517081000.00000 RFO step: Lambda= 0.00000000D+00. Quartic linear search produced a step of -0.00017. Iteration 1 RMS(Cart)= 0.00000019 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.88608 0.00000 0.00000 0.00000 0.00000 1.88608 R2 1.88608 0.00000 0.00000 0.00000 0.00000 1.88608 R3 1.88608 0.00000 0.00000 0.00000 0.00000 1.88608 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000000 0.000450 YES RMS Force 0.000000 0.000300 YES Maximum Displacement 0.000000 0.001800 YES RMS Displacement 0.000000 0.001200 YES Predicted change in Energy=-6.599466D-14 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 0.9981 -DE/DX = 0.0 ! ! R2 R(1,3) 0.9981 -DE/DX = 0.0 ! ! R3 R(1,4) 0.9981 -DE/DX = 0.0 ! ! A1 A(2,1,3) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,4) 120.0 -DE/DX = 0.0 ! ! A3 A(3,1,4) 120.0 -DE/DX = 0.0 ! ! A4 L(3,1,4,2,-2) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.998070 0.000000 0.000000 3 1 0 -0.499035 -0.864354 0.000000 4 1 0 -0.499035 0.864354 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 0.998070 0.000000 3 H 0.998070 1.728708 0.000000 4 H 0.998070 1.728708 1.728708 0.000000 Stoichiometry H3N Framework group D3H[O(N),3C2(H)] Deg. of freedom 1 Full point group D3H Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.998070 0.000000 3 1 0 0.864354 -0.499035 0.000000 4 1 0 -0.864354 -0.499035 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 335.5974825 335.5974825 167.7987413 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1') (A1') (E') (E') (A2") Virtual (A1') (E') (E') (A2") (A1') (E') (E') (E') (E') (A1') (E') (E') (A2") (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -15.52707 -1.12734 -0.65337 -0.65337 -0.39026 Alpha virt. eigenvalues -- 0.12071 0.15040 0.15040 0.19750 0.28168 Alpha virt. eigenvalues -- 0.28745 0.28745 0.67170 0.67170 0.72886 Alpha virt. eigenvalues -- 0.95206 0.95206 1.00776 1.11036 1.44303 Alpha virt. eigenvalues -- 1.44303 1.72038 1.88480 1.88480 2.02814 Alpha virt. eigenvalues -- 2.26641 2.44049 2.44049 2.81187 2.81187 Alpha virt. eigenvalues -- 2.85338 2.88679 2.88679 3.39979 3.52877 Alpha virt. eigenvalues -- 3.52877 4.31786 5.30554 5.30554 37.09214 Condensed to atoms (all electrons): 1 2 3 4 1 N 6.614082 0.388186 0.388186 0.388186 2 H 0.388186 0.397462 -0.022597 -0.022597 3 H 0.388186 -0.022597 0.397462 -0.022597 4 H 0.388186 -0.022597 -0.022597 0.397462 Mulliken atomic charges: 1 1 N -0.778640 2 H 0.259547 3 H 0.259547 4 H 0.259547 Sum of Mulliken charges= 0.00000 Atomic charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 2 H 0.000000 3 H 0.000000 4 H 0.000000 Sum of Mulliken charges= 0.00000 Electronic spatial extent (au): = 26.5652 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -5.6592 YY= -5.6592 ZZ= -10.0588 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.4665 YY= 1.4665 ZZ= -2.9331 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 1.3127 ZZZ= 0.0000 XYY= 0.0000 XXY= -1.3127 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.2767 YYYY= -9.2767 ZZZZ= -12.7993 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.0922 XXZZ= -4.1308 YYZZ= -4.1308 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.205254325757D+01 E-N=-1.559461505267D+02 KE= 5.612977469682D+01 Symmetry A1 KE= 5.050024973553D+01 Symmetry A2 KE= 8.457404032888D-19 Symmetry B1 KE= 2.625100550783D+00 Symmetry B2 KE= 3.004424410504D+00 1|1|UNPC-UNK|FOpt|RMP2-FU|6-311+G(d,p)|H3N1|PCUSER|17-Feb-2009|0||# op t mp2=full/6-311+g(d,p) geom=connectivity||NH3 mp2 high symmetry d3h o ptimisation||0,1|N,0.,0.,0.|H,0.9980701109,0.,0.|H,-0.4990350554,-0.86 43540708,0.|H,-0.4990350554,0.8643540708,0.||Version=IA32W-G03RevE.01| State=1-A1'|HF=-56.2070394|MP2=-56.4266491|RMSD=1.990e-009|RMSF=7.542e -008|Thermal=0.|Dipole=0.,0.,0.|PG=D03H [O(N1),3C2(H1)]||@ VIRTUE IS LEARNED AT YOUR MOTHER'S KNEE, VICES ARE PICKED UP AT SOME OTHER JOINT. Job cpu time: 0 days 0 hours 1 minutes 41.0 seconds. File lengths (MBytes): RWF= 12 Int= 0 D2E= 0 Chk= 7 Scr= 1 Normal termination of Gaussian 03 at Tue Feb 17 07:48:12 2009.