Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 8088. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 24-May-2018 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\jgh116\2nd year\Computational Labs\MO Computational\2n dyearlab\Project\JGH116_[P(CH3)4]+_OPT_redo.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------------------- [P(CH3)4]+ Optimisation ----------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.81667 H 0.89013 -0.51391 2.18942 H 0. 1.02783 2.18942 H -0.89013 -0.51391 2.18942 C 0. -1.71277 -0.60556 H -0.89013 -2.23551 -0.24529 H 0. -1.7216 -1.69885 H 0.89013 -2.23551 -0.24529 C -1.4833 0.85638 -0.60556 H -1.49095 1.88863 -0.24529 H -1.49095 0.8608 -1.69885 H -2.38107 0.34689 -0.24529 C 1.4833 0.85638 -0.60556 H 2.38107 0.34689 -0.24529 H 1.49095 0.8608 -1.69885 H 1.49095 1.88863 -0.24529 P 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 estimate D2E/DX2 ! ! R2 R(1,3) 1.0933 estimate D2E/DX2 ! ! R3 R(1,4) 1.0933 estimate D2E/DX2 ! ! R4 R(1,17) 1.8167 estimate D2E/DX2 ! ! R5 R(5,6) 1.0933 estimate D2E/DX2 ! ! R6 R(5,7) 1.0933 estimate D2E/DX2 ! ! R7 R(5,8) 1.0933 estimate D2E/DX2 ! ! R8 R(5,17) 1.8167 estimate D2E/DX2 ! ! R9 R(9,10) 1.0933 estimate D2E/DX2 ! ! R10 R(9,11) 1.0933 estimate D2E/DX2 ! ! R11 R(9,12) 1.0933 estimate D2E/DX2 ! ! R12 R(9,17) 1.8167 estimate D2E/DX2 ! ! R13 R(13,14) 1.0933 estimate D2E/DX2 ! ! R14 R(13,15) 1.0933 estimate D2E/DX2 ! ! R15 R(13,16) 1.0933 estimate D2E/DX2 ! ! R16 R(13,17) 1.8167 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.0045 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.0045 estimate D2E/DX2 ! ! A3 A(2,1,17) 109.934 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.0045 estimate D2E/DX2 ! ! A5 A(3,1,17) 109.934 estimate D2E/DX2 ! ! A6 A(4,1,17) 109.934 estimate D2E/DX2 ! ! A7 A(6,5,7) 109.0045 estimate D2E/DX2 ! ! A8 A(6,5,8) 109.0045 estimate D2E/DX2 ! ! A9 A(6,5,17) 109.934 estimate D2E/DX2 ! ! A10 A(7,5,8) 109.0045 estimate D2E/DX2 ! ! A11 A(7,5,17) 109.934 estimate D2E/DX2 ! ! A12 A(8,5,17) 109.934 estimate D2E/DX2 ! ! A13 A(10,9,11) 109.0045 estimate D2E/DX2 ! ! A14 A(10,9,12) 109.0045 estimate D2E/DX2 ! ! A15 A(10,9,17) 109.934 estimate D2E/DX2 ! ! A16 A(11,9,12) 109.0045 estimate D2E/DX2 ! ! A17 A(11,9,17) 109.934 estimate D2E/DX2 ! ! A18 A(12,9,17) 109.934 estimate D2E/DX2 ! ! A19 A(14,13,15) 109.0045 estimate D2E/DX2 ! ! A20 A(14,13,16) 109.0045 estimate D2E/DX2 ! ! A21 A(14,13,17) 109.934 estimate D2E/DX2 ! ! A22 A(15,13,16) 109.0045 estimate D2E/DX2 ! ! A23 A(15,13,17) 109.934 estimate D2E/DX2 ! ! A24 A(16,13,17) 109.934 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 60.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 180.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) -60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) 180.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) -60.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) -60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) 60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 180.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) -60.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) 180.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) 60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) -60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 180.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 60.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 60.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) -180.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) 180.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) -60.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) -60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) 60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) -60.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) 180.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) 180.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) 60.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) -60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) -60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) 180.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816667 2 1 0 0.890125 -0.513914 2.189425 3 1 0 0.000000 1.027828 2.189425 4 1 0 -0.890125 -0.513914 2.189425 5 6 0 0.000000 -1.712770 -0.605556 6 1 0 -0.890125 -2.235514 -0.245286 7 1 0 0.000000 -1.721600 -1.698854 8 1 0 0.890125 -2.235514 -0.245286 9 6 0 -1.483302 0.856385 -0.605556 10 1 0 -1.490950 1.888628 -0.245286 11 1 0 -1.490950 0.860800 -1.698854 12 1 0 -2.381075 0.346886 -0.245286 13 6 0 1.483302 0.856385 -0.605556 14 1 0 2.381075 0.346886 -0.245286 15 1 0 1.490950 0.860800 -1.698854 16 1 0 1.490950 1.888628 -0.245286 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093334 0.000000 3 H 1.093334 1.780250 0.000000 4 H 1.093334 1.780250 1.780250 0.000000 5 C 2.966604 3.168832 3.914434 3.168832 0.000000 6 H 3.168832 3.472897 4.167678 2.981899 1.093334 7 H 3.914434 4.167678 4.762149 4.167678 1.093334 8 H 3.168832 2.981899 4.167678 3.472897 1.093334 9 C 2.966604 3.914434 3.168832 3.168832 2.966604 10 H 3.168832 4.167678 2.981899 3.472897 3.914434 11 H 3.914434 4.762149 4.167678 4.167678 3.168832 12 H 3.168832 4.167678 3.472897 2.981899 3.168832 13 C 2.966604 3.168832 3.168832 3.914434 2.966604 14 H 3.168832 2.981899 3.472897 4.167678 3.168832 15 H 3.914434 4.167678 4.167678 4.762149 3.168832 16 H 3.168832 3.472897 2.981899 4.167678 3.914434 17 P 1.816667 2.418680 2.418680 2.418680 1.816667 6 7 8 9 10 6 H 0.000000 7 H 1.780250 0.000000 8 H 1.780250 1.780250 0.000000 9 C 3.168832 3.168832 3.914434 0.000000 10 H 4.167678 4.167678 4.762149 1.093334 0.000000 11 H 3.472897 2.981899 4.167678 1.093334 1.780250 12 H 2.981899 3.472897 4.167678 1.093334 1.780250 13 C 3.914434 3.168832 3.168832 2.966604 3.168832 14 H 4.167678 3.472897 2.981899 3.914434 4.167678 15 H 4.167678 2.981899 3.472897 3.168832 3.472897 16 H 4.762149 4.167678 4.167678 3.168832 2.981899 17 P 2.418680 2.418680 2.418680 1.816667 2.418680 11 12 13 14 15 11 H 0.000000 12 H 1.780250 0.000000 13 C 3.168832 3.914434 0.000000 14 H 4.167678 4.762149 1.093334 0.000000 15 H 2.981899 4.167678 1.093334 1.780250 0.000000 16 H 3.472897 4.167678 1.093334 1.780250 1.780250 17 P 2.418680 2.418680 1.816667 2.418680 2.418680 16 17 16 H 0.000000 17 P 2.418680 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048853 1.048853 1.048853 2 1 0 1.683674 0.424847 1.683674 3 1 0 1.683674 1.683674 0.424847 4 1 0 0.424847 1.683674 1.683674 5 6 0 -1.048853 -1.048853 1.048853 6 1 0 -1.683674 -0.424847 1.683674 7 1 0 -1.683674 -1.683674 0.424847 8 1 0 -0.424847 -1.683674 1.683674 9 6 0 -1.048853 1.048853 -1.048853 10 1 0 -0.424847 1.683674 -1.683674 11 1 0 -1.683674 0.424847 -1.683674 12 1 0 -1.683674 1.683674 -0.424847 13 6 0 1.048853 -1.048853 -1.048853 14 1 0 1.683674 -1.683674 -0.424847 15 1 0 0.424847 -1.683674 -1.683674 16 1 0 1.683674 -0.424847 -1.683674 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3079913 3.3079913 3.3079913 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6438297850 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030213 A.U. after 10 cycles NFock= 10 Conv=0.33D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34290 -10.37614 -10.37614 -10.37614 -10.37614 Alpha occ. eigenvalues -- -6.80830 -4.96984 -4.96984 -4.96984 -0.99265 Alpha occ. eigenvalues -- -0.89081 -0.89081 -0.89081 -0.73302 -0.63369 Alpha occ. eigenvalues -- -0.63369 -0.63369 -0.60222 -0.60222 -0.57874 Alpha occ. eigenvalues -- -0.57874 -0.57874 -0.53927 -0.53927 -0.53927 Alpha virt. eigenvalues -- -0.11011 -0.11011 -0.11011 -0.10151 -0.05118 Alpha virt. eigenvalues -- -0.04129 -0.04129 -0.03821 -0.03821 -0.03821 Alpha virt. eigenvalues -- 0.00636 0.00636 0.00636 0.02555 0.02555 Alpha virt. eigenvalues -- 0.02555 0.19717 0.19717 0.19717 0.24758 Alpha virt. eigenvalues -- 0.24758 0.29670 0.43580 0.43580 0.43580 Alpha virt. eigenvalues -- 0.46745 0.46745 0.46745 0.47400 0.56972 Alpha virt. eigenvalues -- 0.56972 0.57683 0.57683 0.57683 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.69738 0.69738 0.69738 Alpha virt. eigenvalues -- 0.71108 0.71606 0.71606 0.71606 0.74103 Alpha virt. eigenvalues -- 0.74103 0.81601 0.81601 0.81601 1.09558 Alpha virt. eigenvalues -- 1.09558 1.09558 1.22824 1.22824 1.22824 Alpha virt. eigenvalues -- 1.23849 1.30713 1.30713 1.50563 1.50563 Alpha virt. eigenvalues -- 1.50563 1.75088 1.85235 1.85235 1.85235 Alpha virt. eigenvalues -- 1.85333 1.87433 1.87433 1.88010 1.88010 Alpha virt. eigenvalues -- 1.88010 1.93271 1.93271 1.93271 1.96514 Alpha virt. eigenvalues -- 1.96514 1.96514 2.14671 2.14671 2.14671 Alpha virt. eigenvalues -- 2.19085 2.19085 2.19085 2.19387 2.19387 Alpha virt. eigenvalues -- 2.41972 2.47516 2.47516 2.47516 2.61127 Alpha virt. eigenvalues -- 2.61127 2.65358 2.65358 2.65358 2.67377 Alpha virt. eigenvalues -- 2.67377 2.67377 2.95809 3.00638 3.00638 Alpha virt. eigenvalues -- 3.00638 3.22455 3.22455 3.22455 3.24325 Alpha virt. eigenvalues -- 3.24325 3.25158 3.25158 3.25158 3.34963 Alpha virt. eigenvalues -- 4.26246 4.27334 4.27334 4.27334 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.135745 0.377503 0.377503 0.377503 -0.032236 -0.001792 2 H 0.377503 0.484070 -0.016369 -0.016369 -0.001792 -0.000137 3 H 0.377503 -0.016369 0.484070 -0.016369 0.001666 0.000006 4 H 0.377503 -0.016369 -0.016369 0.484070 -0.001792 0.000784 5 C -0.032236 -0.001792 0.001666 -0.001792 5.135745 0.377503 6 H -0.001792 -0.000137 0.000006 0.000784 0.377503 0.484070 7 H 0.001666 0.000006 -0.000029 0.000006 0.377503 -0.016369 8 H -0.001792 0.000784 0.000006 -0.000137 0.377503 -0.016369 9 C -0.032236 0.001666 -0.001792 -0.001792 -0.032236 -0.001792 10 H -0.001792 0.000006 0.000784 -0.000137 0.001666 0.000006 11 H 0.001666 -0.000029 0.000006 0.000006 -0.001792 -0.000137 12 H -0.001792 0.000006 -0.000137 0.000784 -0.001792 0.000784 13 C -0.032236 -0.001792 -0.001792 0.001666 -0.032236 0.001666 14 H -0.001792 0.000784 -0.000137 0.000006 -0.001792 0.000006 15 H 0.001666 0.000006 0.000006 -0.000029 -0.001792 0.000006 16 H -0.001792 -0.000137 0.000784 0.000006 0.001666 -0.000029 17 P 0.345233 -0.021427 -0.021427 -0.021427 0.345233 -0.021427 7 8 9 10 11 12 1 C 0.001666 -0.001792 -0.032236 -0.001792 0.001666 -0.001792 2 H 0.000006 0.000784 0.001666 0.000006 -0.000029 0.000006 3 H -0.000029 0.000006 -0.001792 0.000784 0.000006 -0.000137 4 H 0.000006 -0.000137 -0.001792 -0.000137 0.000006 0.000784 5 C 0.377503 0.377503 -0.032236 0.001666 -0.001792 -0.001792 6 H -0.016369 -0.016369 -0.001792 0.000006 -0.000137 0.000784 7 H 0.484070 -0.016369 -0.001792 0.000006 0.000784 -0.000137 8 H -0.016369 0.484070 0.001666 -0.000029 0.000006 0.000006 9 C -0.001792 0.001666 5.135745 0.377503 0.377503 0.377503 10 H 0.000006 -0.000029 0.377503 0.484070 -0.016369 -0.016369 11 H 0.000784 0.000006 0.377503 -0.016369 0.484070 -0.016369 12 H -0.000137 0.000006 0.377503 -0.016369 -0.016369 0.484070 13 C -0.001792 -0.001792 -0.032236 -0.001792 -0.001792 0.001666 14 H -0.000137 0.000784 0.001666 0.000006 0.000006 -0.000029 15 H 0.000784 -0.000137 -0.001792 -0.000137 0.000784 0.000006 16 H 0.000006 0.000006 -0.001792 0.000784 -0.000137 0.000006 17 P -0.021427 -0.021427 0.345233 -0.021427 -0.021427 -0.021427 13 14 15 16 17 1 C -0.032236 -0.001792 0.001666 -0.001792 0.345233 2 H -0.001792 0.000784 0.000006 -0.000137 -0.021427 3 H -0.001792 -0.000137 0.000006 0.000784 -0.021427 4 H 0.001666 0.000006 -0.000029 0.000006 -0.021427 5 C -0.032236 -0.001792 -0.001792 0.001666 0.345233 6 H 0.001666 0.000006 0.000006 -0.000029 -0.021427 7 H -0.001792 -0.000137 0.000784 0.000006 -0.021427 8 H -0.001792 0.000784 -0.000137 0.000006 -0.021427 9 C -0.032236 0.001666 -0.001792 -0.001792 0.345233 10 H -0.001792 0.000006 -0.000137 0.000784 -0.021427 11 H -0.001792 0.000006 0.000784 -0.000137 -0.021427 12 H 0.001666 -0.000029 0.000006 0.000006 -0.021427 13 C 5.135745 0.377503 0.377503 0.377503 0.345233 14 H 0.377503 0.484070 -0.016369 -0.016369 -0.021427 15 H 0.377503 -0.016369 0.484070 -0.016369 -0.021427 16 H 0.377503 -0.016369 -0.016369 0.484070 -0.021427 17 P 0.345233 -0.021427 -0.021427 -0.021427 13.150780 Mulliken charges: 1 1 C -0.511025 2 H 0.193224 3 H 0.193224 4 H 0.193224 5 C -0.511025 6 H 0.193224 7 H 0.193224 8 H 0.193224 9 C -0.511025 10 H 0.193224 11 H 0.193224 12 H 0.193224 13 C -0.511025 14 H 0.193224 15 H 0.193224 16 H 0.193224 17 P 0.725413 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068647 5 C 0.068647 9 C 0.068647 13 C 0.068647 17 P 0.725413 Electronic spatial extent (au): = 603.2685 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2618 YY= -31.2618 ZZ= -31.2618 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9923 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.9107 YYYY= -246.9107 ZZZZ= -246.9107 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.4088 XXZZ= -74.4088 YYZZ= -74.4088 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626438297850D+02 E-N=-1.693503368799D+03 KE= 4.978518560324D+02 Symmetry A KE= 2.853337271903D+02 Symmetry B1 KE= 7.083937628071D+01 Symmetry B2 KE= 7.083937628071D+01 Symmetry B3 KE= 7.083937628071D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.000046530 2 1 -0.000020581 0.000011882 -0.000027199 3 1 0.000000000 -0.000023764 -0.000027199 4 1 0.000020581 0.000011882 -0.000027199 5 6 0.000000000 0.000043869 0.000015510 6 1 0.000020581 0.000029604 -0.000002136 7 1 0.000000000 0.000017722 0.000031472 8 1 -0.000020581 0.000029604 -0.000002136 9 6 0.000037991 -0.000021934 0.000015510 10 1 0.000015348 -0.000032625 -0.000002136 11 1 0.000015348 -0.000008861 0.000031472 12 1 0.000035928 0.000003021 -0.000002136 13 6 -0.000037991 -0.000021934 0.000015510 14 1 -0.000035928 0.000003021 -0.000002136 15 1 -0.000015348 -0.000008861 0.000031472 16 1 -0.000015348 -0.000032625 -0.000002136 17 15 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000046530 RMS 0.000021835 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000128127 RMS 0.000032261 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00944 0.00944 0.00944 0.00944 0.05318 Eigenvalues --- 0.05318 0.05318 0.06099 0.06099 0.06099 Eigenvalues --- 0.06099 0.06099 0.06099 0.06099 0.06099 Eigenvalues --- 0.14690 0.14690 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24847 Eigenvalues --- 0.24847 0.24847 0.24847 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 Eigenvalues --- 0.34430 0.34430 0.34430 0.34430 0.34430 RFO step: Lambda=-3.47139116D-07 EMin= 9.43783896D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00031310 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.77D-08 for atom 15. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R2 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R3 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R4 3.43300 -0.00013 0.00000 -0.00052 -0.00052 3.43249 R5 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R6 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R7 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R8 3.43300 -0.00013 0.00000 -0.00052 -0.00052 3.43249 R9 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R10 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R11 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R12 3.43300 -0.00013 0.00000 -0.00052 -0.00052 3.43249 R13 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R14 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R15 2.06610 -0.00003 0.00000 -0.00009 -0.00009 2.06601 R16 3.43300 -0.00013 0.00000 -0.00052 -0.00052 3.43249 A1 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A2 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A3 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A4 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A5 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A6 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A7 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A8 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A9 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A10 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A11 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A12 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A13 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A14 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A15 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A16 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A17 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A18 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A19 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A20 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A21 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A22 1.90249 0.00002 0.00000 0.00011 0.00011 1.90260 A23 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A24 1.91871 -0.00002 0.00000 -0.00011 -0.00011 1.91860 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D12 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D15 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D18 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D30 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D33 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D36 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 Item Value Threshold Converged? Maximum Force 0.000128 0.000450 YES RMS Force 0.000032 0.000300 YES Maximum Displacement 0.000762 0.001800 YES RMS Displacement 0.000313 0.001200 YES Predicted change in Energy=-1.735696D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0933 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0933 -DE/DX = 0.0 ! ! R4 R(1,17) 1.8167 -DE/DX = -0.0001 ! ! R5 R(5,6) 1.0933 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0933 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0933 -DE/DX = 0.0 ! ! R8 R(5,17) 1.8167 -DE/DX = -0.0001 ! ! R9 R(9,10) 1.0933 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0933 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0933 -DE/DX = 0.0 ! ! R12 R(9,17) 1.8167 -DE/DX = -0.0001 ! ! R13 R(13,14) 1.0933 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(13,17) 1.8167 -DE/DX = -0.0001 ! ! A1 A(2,1,3) 109.0045 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.0045 -DE/DX = 0.0 ! ! A3 A(2,1,17) 109.934 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.0045 -DE/DX = 0.0 ! ! A5 A(3,1,17) 109.934 -DE/DX = 0.0 ! ! A6 A(4,1,17) 109.934 -DE/DX = 0.0 ! ! A7 A(6,5,7) 109.0045 -DE/DX = 0.0 ! ! A8 A(6,5,8) 109.0045 -DE/DX = 0.0 ! ! A9 A(6,5,17) 109.934 -DE/DX = 0.0 ! ! A10 A(7,5,8) 109.0045 -DE/DX = 0.0 ! ! A11 A(7,5,17) 109.934 -DE/DX = 0.0 ! ! A12 A(8,5,17) 109.934 -DE/DX = 0.0 ! ! A13 A(10,9,11) 109.0045 -DE/DX = 0.0 ! ! A14 A(10,9,12) 109.0045 -DE/DX = 0.0 ! ! A15 A(10,9,17) 109.934 -DE/DX = 0.0 ! ! A16 A(11,9,12) 109.0045 -DE/DX = 0.0 ! ! A17 A(11,9,17) 109.934 -DE/DX = 0.0 ! ! A18 A(12,9,17) 109.934 -DE/DX = 0.0 ! ! A19 A(14,13,15) 109.0045 -DE/DX = 0.0 ! ! A20 A(14,13,16) 109.0045 -DE/DX = 0.0 ! ! A21 A(14,13,17) 109.934 -DE/DX = 0.0 ! ! A22 A(15,13,16) 109.0045 -DE/DX = 0.0 ! ! A23 A(15,13,17) 109.934 -DE/DX = 0.0 ! ! A24 A(16,13,17) 109.934 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 60.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 180.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) 180.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) -60.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) -60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) 60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 180.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) -60.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) 180.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) 60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) -60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 180.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 60.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 60.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 180.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) 180.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) -60.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) -60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) 60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) -60.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) 180.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 180.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) 60.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) -60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) -60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) 180.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816667 2 1 0 0.890125 -0.513914 2.189425 3 1 0 0.000000 1.027828 2.189425 4 1 0 -0.890125 -0.513914 2.189425 5 6 0 0.000000 -1.712770 -0.605556 6 1 0 -0.890125 -2.235514 -0.245286 7 1 0 0.000000 -1.721600 -1.698854 8 1 0 0.890125 -2.235514 -0.245286 9 6 0 -1.483302 0.856385 -0.605556 10 1 0 -1.490949 1.888628 -0.245286 11 1 0 -1.490949 0.860800 -1.698854 12 1 0 -2.381075 0.346886 -0.245286 13 6 0 1.483302 0.856385 -0.605556 14 1 0 2.381075 0.346886 -0.245286 15 1 0 1.490949 0.860800 -1.698854 16 1 0 1.490949 1.888628 -0.245286 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093334 0.000000 3 H 1.093334 1.780250 0.000000 4 H 1.093334 1.780250 1.780250 0.000000 5 C 2.966604 3.168832 3.914434 3.168832 0.000000 6 H 3.168832 3.472897 4.167678 2.981899 1.093334 7 H 3.914434 4.167678 4.762149 4.167678 1.093334 8 H 3.168832 2.981899 4.167678 3.472897 1.093334 9 C 2.966604 3.914434 3.168832 3.168832 2.966604 10 H 3.168832 4.167678 2.981899 3.472897 3.914434 11 H 3.914434 4.762149 4.167678 4.167678 3.168832 12 H 3.168832 4.167678 3.472897 2.981899 3.168832 13 C 2.966604 3.168832 3.168832 3.914434 2.966604 14 H 3.168832 2.981899 3.472897 4.167678 3.168832 15 H 3.914434 4.167678 4.167678 4.762149 3.168832 16 H 3.168832 3.472897 2.981899 4.167678 3.914434 17 P 1.816667 2.418680 2.418680 2.418680 1.816667 6 7 8 9 10 6 H 0.000000 7 H 1.780250 0.000000 8 H 1.780250 1.780250 0.000000 9 C 3.168832 3.168832 3.914434 0.000000 10 H 4.167678 4.167678 4.762149 1.093334 0.000000 11 H 3.472897 2.981899 4.167678 1.093334 1.780250 12 H 2.981899 3.472897 4.167678 1.093334 1.780250 13 C 3.914434 3.168832 3.168832 2.966604 3.168832 14 H 4.167678 3.472897 2.981899 3.914434 4.167678 15 H 4.167678 2.981899 3.472897 3.168832 3.472897 16 H 4.762149 4.167678 4.167678 3.168832 2.981899 17 P 2.418680 2.418680 2.418680 1.816667 2.418680 11 12 13 14 15 11 H 0.000000 12 H 1.780250 0.000000 13 C 3.168832 3.914434 0.000000 14 H 4.167678 4.762149 1.093334 0.000000 15 H 2.981899 4.167678 1.093334 1.780250 0.000000 16 H 3.472897 4.167678 1.093334 1.780250 1.780250 17 P 2.418680 2.418680 1.816667 2.418680 2.418680 16 17 16 H 0.000000 17 P 2.418680 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048853 1.048853 1.048853 2 1 0 1.683674 0.424847 1.683674 3 1 0 1.683674 1.683674 0.424847 4 1 0 0.424847 1.683674 1.683674 5 6 0 -1.048853 -1.048853 1.048853 6 1 0 -1.683674 -0.424847 1.683674 7 1 0 -1.683674 -1.683674 0.424847 8 1 0 -0.424847 -1.683674 1.683674 9 6 0 -1.048853 1.048853 -1.048853 10 1 0 -0.424847 1.683674 -1.683674 11 1 0 -1.683674 0.424847 -1.683674 12 1 0 -1.683674 1.683674 -0.424847 13 6 0 1.048853 -1.048853 -1.048853 14 1 0 1.683674 -1.683674 -0.424847 15 1 0 0.424847 -1.683674 -1.683674 16 1 0 1.683674 -0.424847 -1.683674 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3079913 3.3079913 3.3079913 1|1| IMPERIAL COLLEGE-CHWS-130|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)|JGH1 16|24-May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=gr id=ultrafine||[P(CH3)4]+ Optimisation||1,1|C,0.0000000002,-0.000000001 8,1.81666669|H,0.8901251073,-0.5139139747,2.1894248|H,0.0000000024,1.0 278279395,2.1894248014|H,-0.8901251089,-0.513913971,2.1894248002|C,-0. 0000000036,-1.7127697794,-0.6055555632|H,-0.8901251127,-2.2355141518,- 0.2452855289|H,-0.0000000037,-1.7216001816,-1.6988537432|H,0.890125103 5,-2.2355141554,-0.2452855291|C,-1.4833021384,0.8563848932,-0.60555556 09|H,-1.4909494897,1.888628036,-0.2452855252|H,-1.490949492,0.86080009 57,-1.6988537408|H,-2.3810746009,0.3468861255,-0.2452855265|C,1.483302 1418,0.8563848872,-0.6055555612|H,2.3810746023,0.3468861158,-0.2452855 27|H,1.4909494951,0.8608000896,-1.6988537412|H,1.4909494974,1.88862802 99,-0.2452855256|P,0.,-0.0000000002,0.0000000012||Version=EM64W-G09Rev D.01|State=1-A1|HF=-500.8270302|RMSD=3.331e-009|RMSF=2.183e-005|Dipole =0.,0.,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2)]| |@ GOORD'S AXIOM: A MEETING IS AN EVENT AT WHICH THE MINUTES ARE KEPT AND THE HOURS ARE LOST. Job cpu time: 0 days 0 hours 6 minutes 52.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 24 15:47:22 2018.