Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 8040. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 23-May-2018 ****************************************** %chk=\\icnas3.cc.ic.ac.uk\sb1016\Desktop\yr2 lab inorganic\PR+\PR+_OPT4.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -------- PR+_opt4 -------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 P 0. 0. 0. C 1.04886 1.04886 1.04886 H 1.6837 0.42487 1.6837 H 1.6837 1.6837 0.42487 H 0.42487 1.6837 1.6837 C -1.04886 -1.04886 1.04886 H -1.6837 -0.42487 1.6837 H -1.6837 -1.6837 0.42487 H -0.42487 -1.6837 1.6837 C -1.04886 1.04886 -1.04886 H -0.42487 1.6837 -1.6837 H -1.6837 0.42487 -1.6837 H -1.6837 1.6837 -0.42487 C 1.04886 -1.04886 -1.04886 H 1.6837 -1.6837 -0.42487 H 0.42487 -1.6837 -1.6837 H 1.6837 -0.42487 -1.6837 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.8167 estimate D2E/DX2 ! ! R2 R(1,6) 1.8167 estimate D2E/DX2 ! ! R3 R(1,10) 1.8167 estimate D2E/DX2 ! ! R4 R(1,14) 1.8167 estimate D2E/DX2 ! ! R5 R(2,3) 1.0933 estimate D2E/DX2 ! ! R6 R(2,4) 1.0933 estimate D2E/DX2 ! ! R7 R(2,5) 1.0933 estimate D2E/DX2 ! ! R8 R(6,7) 1.0933 estimate D2E/DX2 ! ! R9 R(6,8) 1.0933 estimate D2E/DX2 ! ! R10 R(6,9) 1.0933 estimate D2E/DX2 ! ! R11 R(10,11) 1.0933 estimate D2E/DX2 ! ! R12 R(10,12) 1.0933 estimate D2E/DX2 ! ! R13 R(10,13) 1.0933 estimate D2E/DX2 ! ! R14 R(14,15) 1.0933 estimate D2E/DX2 ! ! R15 R(14,16) 1.0933 estimate D2E/DX2 ! ! R16 R(14,17) 1.0933 estimate D2E/DX2 ! ! A1 A(2,1,6) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,10) 109.4712 estimate D2E/DX2 ! ! A3 A(2,1,14) 109.4712 estimate D2E/DX2 ! ! A4 A(6,1,10) 109.4712 estimate D2E/DX2 ! ! A5 A(6,1,14) 109.4712 estimate D2E/DX2 ! ! A6 A(10,1,14) 109.4712 estimate D2E/DX2 ! ! A7 A(1,2,3) 109.9357 estimate D2E/DX2 ! ! A8 A(1,2,4) 109.9357 estimate D2E/DX2 ! ! A9 A(1,2,5) 109.9357 estimate D2E/DX2 ! ! A10 A(3,2,4) 109.0028 estimate D2E/DX2 ! ! A11 A(3,2,5) 109.0028 estimate D2E/DX2 ! ! A12 A(4,2,5) 109.0028 estimate D2E/DX2 ! ! A13 A(1,6,7) 109.9357 estimate D2E/DX2 ! ! A14 A(1,6,8) 109.9357 estimate D2E/DX2 ! ! A15 A(1,6,9) 109.9357 estimate D2E/DX2 ! ! A16 A(7,6,8) 109.0028 estimate D2E/DX2 ! ! A17 A(7,6,9) 109.0028 estimate D2E/DX2 ! ! A18 A(8,6,9) 109.0028 estimate D2E/DX2 ! ! A19 A(1,10,11) 109.9357 estimate D2E/DX2 ! ! A20 A(1,10,12) 109.9357 estimate D2E/DX2 ! ! A21 A(1,10,13) 109.9357 estimate D2E/DX2 ! ! A22 A(11,10,12) 109.0028 estimate D2E/DX2 ! ! A23 A(11,10,13) 109.0028 estimate D2E/DX2 ! ! A24 A(12,10,13) 109.0028 estimate D2E/DX2 ! ! A25 A(1,14,15) 109.9357 estimate D2E/DX2 ! ! A26 A(1,14,16) 109.9357 estimate D2E/DX2 ! ! A27 A(1,14,17) 109.9357 estimate D2E/DX2 ! ! A28 A(15,14,16) 109.0028 estimate D2E/DX2 ! ! A29 A(15,14,17) 109.0028 estimate D2E/DX2 ! ! A30 A(16,14,17) 109.0028 estimate D2E/DX2 ! ! D1 D(6,1,2,3) 60.0 estimate D2E/DX2 ! ! D2 D(6,1,2,4) 180.0 estimate D2E/DX2 ! ! D3 D(6,1,2,5) -60.0 estimate D2E/DX2 ! ! D4 D(10,1,2,3) 180.0 estimate D2E/DX2 ! ! D5 D(10,1,2,4) -60.0 estimate D2E/DX2 ! ! D6 D(10,1,2,5) 60.0 estimate D2E/DX2 ! ! D7 D(14,1,2,3) -60.0 estimate D2E/DX2 ! ! D8 D(14,1,2,4) 60.0 estimate D2E/DX2 ! ! D9 D(14,1,2,5) 180.0 estimate D2E/DX2 ! ! D10 D(2,1,6,7) 60.0 estimate D2E/DX2 ! ! D11 D(2,1,6,8) 180.0 estimate D2E/DX2 ! ! D12 D(2,1,6,9) -60.0 estimate D2E/DX2 ! ! D13 D(10,1,6,7) -60.0 estimate D2E/DX2 ! ! D14 D(10,1,6,8) 60.0 estimate D2E/DX2 ! ! D15 D(10,1,6,9) 180.0 estimate D2E/DX2 ! ! D16 D(14,1,6,7) 180.0 estimate D2E/DX2 ! ! D17 D(14,1,6,8) -60.0 estimate D2E/DX2 ! ! D18 D(14,1,6,9) 60.0 estimate D2E/DX2 ! ! D19 D(2,1,10,11) 60.0 estimate D2E/DX2 ! ! D20 D(2,1,10,12) 180.0 estimate D2E/DX2 ! ! D21 D(2,1,10,13) -60.0 estimate D2E/DX2 ! ! D22 D(6,1,10,11) 180.0 estimate D2E/DX2 ! ! D23 D(6,1,10,12) -60.0 estimate D2E/DX2 ! ! D24 D(6,1,10,13) 60.0 estimate D2E/DX2 ! ! D25 D(14,1,10,11) -60.0 estimate D2E/DX2 ! ! D26 D(14,1,10,12) 60.0 estimate D2E/DX2 ! ! D27 D(14,1,10,13) 180.0 estimate D2E/DX2 ! ! D28 D(2,1,14,15) 60.0 estimate D2E/DX2 ! ! D29 D(2,1,14,16) 180.0 estimate D2E/DX2 ! ! D30 D(2,1,14,17) -60.0 estimate D2E/DX2 ! ! D31 D(6,1,14,15) -60.0 estimate D2E/DX2 ! ! D32 D(6,1,14,16) 60.0 estimate D2E/DX2 ! ! D33 D(6,1,14,17) 180.0 estimate D2E/DX2 ! ! D34 D(10,1,14,15) 180.0 estimate D2E/DX2 ! ! D35 D(10,1,14,16) -60.0 estimate D2E/DX2 ! ! D36 D(10,1,14,17) 60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048860 1.048860 1.048860 3 1 0 1.683702 0.424873 1.683702 4 1 0 1.683702 1.683702 0.424873 5 1 0 0.424873 1.683702 1.683702 6 6 0 -1.048860 -1.048860 1.048860 7 1 0 -1.683702 -0.424873 1.683702 8 1 0 -1.683702 -1.683702 0.424873 9 1 0 -0.424873 -1.683702 1.683702 10 6 0 -1.048860 1.048860 -1.048860 11 1 0 -0.424873 1.683702 -1.683702 12 1 0 -1.683702 0.424873 -1.683702 13 1 0 -1.683702 1.683702 -0.424873 14 6 0 1.048860 -1.048860 -1.048860 15 1 0 1.683702 -1.683702 -0.424873 16 1 0 0.424873 -1.683702 -1.683702 17 1 0 1.683702 -0.424873 -1.683702 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 P 0.000000 2 C 1.816679 0.000000 3 H 2.418723 1.093347 0.000000 4 H 2.418723 1.093347 1.780253 0.000000 5 H 2.418723 1.093347 1.780253 1.780253 0.000000 6 C 1.816679 2.966624 3.168881 3.914480 3.168881 7 H 2.418723 3.168881 3.472964 4.167751 2.981975 8 H 2.418723 3.914480 4.167751 4.762228 4.167751 9 H 2.418723 3.168881 2.981975 4.167751 3.472964 10 C 1.816679 2.966624 3.914480 3.168881 3.168881 11 H 2.418723 3.168881 4.167751 2.981975 3.472964 12 H 2.418723 3.914480 4.762228 4.167751 4.167751 13 H 2.418723 3.168881 4.167751 3.472964 2.981975 14 C 1.816679 2.966624 3.168881 3.168881 3.914480 15 H 2.418723 3.168881 2.981975 3.472964 4.167751 16 H 2.418723 3.914480 4.167751 4.167751 4.762228 17 H 2.418723 3.168881 3.472964 2.981975 4.167751 6 7 8 9 10 6 C 0.000000 7 H 1.093347 0.000000 8 H 1.093347 1.780253 0.000000 9 H 1.093347 1.780253 1.780253 0.000000 10 C 2.966624 3.168881 3.168881 3.914480 0.000000 11 H 3.914480 4.167751 4.167751 4.762228 1.093347 12 H 3.168881 3.472964 2.981975 4.167751 1.093347 13 H 3.168881 2.981975 3.472964 4.167751 1.093347 14 C 2.966624 3.914480 3.168881 3.168881 2.966624 15 H 3.168881 4.167751 3.472964 2.981975 3.914480 16 H 3.168881 4.167751 2.981975 3.472964 3.168881 17 H 3.914480 4.762228 4.167751 4.167751 3.168881 11 12 13 14 15 11 H 0.000000 12 H 1.780253 0.000000 13 H 1.780253 1.780253 0.000000 14 C 3.168881 3.168881 3.914480 0.000000 15 H 4.167751 4.167751 4.762228 1.093347 0.000000 16 H 3.472964 2.981975 4.167751 1.093347 1.780253 17 H 2.981975 3.472964 4.167751 1.093347 1.780253 16 17 16 H 0.000000 17 H 1.780253 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048860 1.048860 1.048860 3 1 0 1.683702 0.424873 1.683702 4 1 0 1.683702 1.683702 0.424873 5 1 0 0.424873 1.683702 1.683702 6 6 0 -1.048860 -1.048860 1.048860 7 1 0 -1.683702 -0.424873 1.683702 8 1 0 -1.683702 -1.683702 0.424873 9 1 0 -0.424873 -1.683702 1.683702 10 6 0 -1.048860 1.048860 -1.048860 11 1 0 -0.424873 1.683702 -1.683702 12 1 0 -1.683702 0.424873 -1.683702 13 1 0 -1.683702 1.683702 -0.424873 14 6 0 1.048860 -1.048860 -1.048860 15 1 0 1.683702 -1.683702 -0.424873 16 1 0 0.424873 -1.683702 -1.683702 17 1 0 1.683702 -0.424873 -1.683702 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3079240 3.3079240 3.3079240 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6410806592 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030175 A.U. after 10 cycles NFock= 10 Conv=0.33D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34290 -10.37614 -10.37614 -10.37614 -10.37614 Alpha occ. eigenvalues -- -6.80830 -4.96985 -4.96985 -4.96985 -0.99264 Alpha occ. eigenvalues -- -0.89080 -0.89080 -0.89080 -0.73302 -0.63369 Alpha occ. eigenvalues -- -0.63369 -0.63369 -0.60221 -0.60221 -0.57873 Alpha occ. eigenvalues -- -0.57873 -0.57873 -0.53927 -0.53927 -0.53927 Alpha virt. eigenvalues -- -0.11012 -0.11012 -0.11012 -0.10151 -0.05118 Alpha virt. eigenvalues -- -0.04130 -0.04130 -0.03821 -0.03821 -0.03821 Alpha virt. eigenvalues -- 0.00636 0.00636 0.00636 0.02555 0.02555 Alpha virt. eigenvalues -- 0.02555 0.19717 0.19717 0.19717 0.24759 Alpha virt. eigenvalues -- 0.24759 0.29669 0.43581 0.43581 0.43581 Alpha virt. eigenvalues -- 0.46746 0.46746 0.46746 0.47401 0.56972 Alpha virt. eigenvalues -- 0.56972 0.57683 0.57683 0.57683 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.69738 0.69738 0.69738 Alpha virt. eigenvalues -- 0.71107 0.71605 0.71605 0.71605 0.74102 Alpha virt. eigenvalues -- 0.74102 0.81599 0.81599 0.81599 1.09557 Alpha virt. eigenvalues -- 1.09557 1.09557 1.22824 1.22824 1.22824 Alpha virt. eigenvalues -- 1.23850 1.30712 1.30712 1.50562 1.50562 Alpha virt. eigenvalues -- 1.50562 1.75087 1.85236 1.85236 1.85236 Alpha virt. eigenvalues -- 1.85333 1.87433 1.87433 1.88011 1.88011 Alpha virt. eigenvalues -- 1.88011 1.93270 1.93270 1.93270 1.96511 Alpha virt. eigenvalues -- 1.96511 1.96511 2.14668 2.14668 2.14668 Alpha virt. eigenvalues -- 2.19081 2.19081 2.19081 2.19382 2.19382 Alpha virt. eigenvalues -- 2.41974 2.47518 2.47518 2.47518 2.61125 Alpha virt. eigenvalues -- 2.61125 2.65355 2.65355 2.65355 2.67375 Alpha virt. eigenvalues -- 2.67375 2.67375 2.95804 3.00633 3.00633 Alpha virt. eigenvalues -- 3.00633 3.22453 3.22453 3.22453 3.24323 Alpha virt. eigenvalues -- 3.24323 3.25157 3.25157 3.25157 3.34962 Alpha virt. eigenvalues -- 4.26246 4.27333 4.27333 4.27333 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 P 13.150709 0.345234 -0.021425 -0.021425 -0.021425 0.345234 2 C 0.345234 5.135760 0.377499 0.377499 0.377499 -0.032234 3 H -0.021425 0.377499 0.484073 -0.016371 -0.016371 -0.001792 4 H -0.021425 0.377499 -0.016371 0.484073 -0.016371 0.001666 5 H -0.021425 0.377499 -0.016371 -0.016371 0.484073 -0.001792 6 C 0.345234 -0.032234 -0.001792 0.001666 -0.001792 5.135760 7 H -0.021425 -0.001792 -0.000137 0.000006 0.000784 0.377499 8 H -0.021425 0.001666 0.000006 -0.000029 0.000006 0.377499 9 H -0.021425 -0.001792 0.000784 0.000006 -0.000137 0.377499 10 C 0.345234 -0.032234 0.001666 -0.001792 -0.001792 -0.032234 11 H -0.021425 -0.001792 0.000006 0.000784 -0.000137 0.001666 12 H -0.021425 0.001666 -0.000029 0.000006 0.000006 -0.001792 13 H -0.021425 -0.001792 0.000006 -0.000137 0.000784 -0.001792 14 C 0.345234 -0.032234 -0.001792 -0.001792 0.001666 -0.032234 15 H -0.021425 -0.001792 0.000784 -0.000137 0.000006 -0.001792 16 H -0.021425 0.001666 0.000006 0.000006 -0.000029 -0.001792 17 H -0.021425 -0.001792 -0.000137 0.000784 0.000006 0.001666 7 8 9 10 11 12 1 P -0.021425 -0.021425 -0.021425 0.345234 -0.021425 -0.021425 2 C -0.001792 0.001666 -0.001792 -0.032234 -0.001792 0.001666 3 H -0.000137 0.000006 0.000784 0.001666 0.000006 -0.000029 4 H 0.000006 -0.000029 0.000006 -0.001792 0.000784 0.000006 5 H 0.000784 0.000006 -0.000137 -0.001792 -0.000137 0.000006 6 C 0.377499 0.377499 0.377499 -0.032234 0.001666 -0.001792 7 H 0.484073 -0.016371 -0.016371 -0.001792 0.000006 -0.000137 8 H -0.016371 0.484073 -0.016371 -0.001792 0.000006 0.000784 9 H -0.016371 -0.016371 0.484073 0.001666 -0.000029 0.000006 10 C -0.001792 -0.001792 0.001666 5.135760 0.377499 0.377499 11 H 0.000006 0.000006 -0.000029 0.377499 0.484073 -0.016371 12 H -0.000137 0.000784 0.000006 0.377499 -0.016371 0.484073 13 H 0.000784 -0.000137 0.000006 0.377499 -0.016371 -0.016371 14 C 0.001666 -0.001792 -0.001792 -0.032234 -0.001792 -0.001792 15 H 0.000006 -0.000137 0.000784 0.001666 0.000006 0.000006 16 H 0.000006 0.000784 -0.000137 -0.001792 -0.000137 0.000784 17 H -0.000029 0.000006 0.000006 -0.001792 0.000784 -0.000137 13 14 15 16 17 1 P -0.021425 0.345234 -0.021425 -0.021425 -0.021425 2 C -0.001792 -0.032234 -0.001792 0.001666 -0.001792 3 H 0.000006 -0.001792 0.000784 0.000006 -0.000137 4 H -0.000137 -0.001792 -0.000137 0.000006 0.000784 5 H 0.000784 0.001666 0.000006 -0.000029 0.000006 6 C -0.001792 -0.032234 -0.001792 -0.001792 0.001666 7 H 0.000784 0.001666 0.000006 0.000006 -0.000029 8 H -0.000137 -0.001792 -0.000137 0.000784 0.000006 9 H 0.000006 -0.001792 0.000784 -0.000137 0.000006 10 C 0.377499 -0.032234 0.001666 -0.001792 -0.001792 11 H -0.016371 -0.001792 0.000006 -0.000137 0.000784 12 H -0.016371 -0.001792 0.000006 0.000784 -0.000137 13 H 0.484073 0.001666 -0.000029 0.000006 0.000006 14 C 0.001666 5.135760 0.377499 0.377499 0.377499 15 H -0.000029 0.377499 0.484073 -0.016371 -0.016371 16 H 0.000006 0.377499 -0.016371 0.484073 -0.016371 17 H 0.000006 0.377499 -0.016371 -0.016371 0.484073 Mulliken charges: 1 1 P 0.725451 2 C -0.511036 3 H 0.193225 4 H 0.193225 5 H 0.193225 6 C -0.511036 7 H 0.193225 8 H 0.193225 9 H 0.193225 10 C -0.511036 11 H 0.193225 12 H 0.193225 13 H 0.193225 14 C -0.511036 15 H 0.193225 16 H 0.193225 17 H 0.193225 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 P 0.725451 2 C 0.068637 6 C 0.068637 10 C 0.068637 14 C 0.068637 Electronic spatial extent (au): = 603.2806 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2615 YY= -31.2615 ZZ= -31.2615 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9934 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.9146 YYYY= -246.9146 ZZZZ= -246.9146 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.4089 XXZZ= -74.4089 YYZZ= -74.4089 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626410806592D+02 E-N=-1.693497691373D+03 KE= 4.978515432665D+02 Symmetry A KE= 2.853336608648D+02 Symmetry B1 KE= 7.083929413389D+01 Symmetry B2 KE= 7.083929413389D+01 Symmetry B3 KE= 7.083929413389D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 15 0.000000000 0.000000000 0.000000000 2 6 -0.000019833 -0.000019833 -0.000019833 3 1 -0.000031986 0.000005204 -0.000031986 4 1 -0.000031986 -0.000031986 0.000005204 5 1 0.000005204 -0.000031986 -0.000031986 6 6 0.000019833 0.000019833 -0.000019833 7 1 0.000031986 -0.000005204 -0.000031986 8 1 0.000031986 0.000031986 0.000005204 9 1 -0.000005204 0.000031986 -0.000031986 10 6 0.000019833 -0.000019833 0.000019833 11 1 -0.000005204 -0.000031986 0.000031986 12 1 0.000031986 0.000005204 0.000031986 13 1 0.000031986 -0.000031986 -0.000005204 14 6 -0.000019833 0.000019833 0.000019833 15 1 -0.000031986 0.000031986 -0.000005204 16 1 0.000005204 0.000031986 0.000031986 17 1 -0.000031986 -0.000005204 0.000031986 ------------------------------------------------------------------- Cartesian Forces: Max 0.000031986 RMS 0.000024091 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000136143 RMS 0.000035807 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00944 0.00944 0.00944 0.00944 0.05318 Eigenvalues --- 0.05318 0.05318 0.06098 0.06098 0.06098 Eigenvalues --- 0.06098 0.06098 0.06098 0.06098 0.06098 Eigenvalues --- 0.14690 0.14690 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24846 Eigenvalues --- 0.24846 0.24846 0.24846 0.34429 0.34429 Eigenvalues --- 0.34429 0.34429 0.34429 0.34429 0.34429 Eigenvalues --- 0.34429 0.34429 0.34429 0.34429 0.34429 RFO step: Lambda=-4.27533455D-07 EMin= 9.43623556D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00034817 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000001 ClnCor: largest displacement from symmetrization is 1.16D-08 for atom 15. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.43303 -0.00014 0.00000 -0.00055 -0.00055 3.43248 R2 3.43303 -0.00014 0.00000 -0.00055 -0.00055 3.43248 R3 3.43303 -0.00014 0.00000 -0.00055 -0.00055 3.43248 R4 3.43303 -0.00014 0.00000 -0.00055 -0.00055 3.43248 R5 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R6 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R7 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R8 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R9 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R10 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R11 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R12 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R13 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R14 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R15 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 R16 2.06613 -0.00004 0.00000 -0.00012 -0.00012 2.06601 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A7 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A8 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A9 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A10 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A11 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A12 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A13 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A14 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A15 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A16 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A17 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A18 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A19 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A20 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A21 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A22 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A23 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A24 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A25 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A26 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A27 1.91874 -0.00002 0.00000 -0.00014 -0.00014 1.91860 A28 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A29 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 A30 1.90246 0.00002 0.00000 0.00014 0.00014 1.90260 D1 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D14 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D18 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D32 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D33 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D34 -3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D35 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D36 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 Item Value Threshold Converged? Maximum Force 0.000136 0.000450 YES RMS Force 0.000036 0.000300 YES Maximum Displacement 0.000498 0.001800 YES RMS Displacement 0.000348 0.001200 YES Predicted change in Energy=-2.137667D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.8167 -DE/DX = -0.0001 ! ! R2 R(1,6) 1.8167 -DE/DX = -0.0001 ! ! R3 R(1,10) 1.8167 -DE/DX = -0.0001 ! ! R4 R(1,14) 1.8167 -DE/DX = -0.0001 ! ! R5 R(2,3) 1.0933 -DE/DX = 0.0 ! ! R6 R(2,4) 1.0933 -DE/DX = 0.0 ! ! R7 R(2,5) 1.0933 -DE/DX = 0.0 ! ! R8 R(6,7) 1.0933 -DE/DX = 0.0 ! ! R9 R(6,8) 1.0933 -DE/DX = 0.0 ! ! R10 R(6,9) 1.0933 -DE/DX = 0.0 ! ! R11 R(10,11) 1.0933 -DE/DX = 0.0 ! ! R12 R(10,12) 1.0933 -DE/DX = 0.0 ! ! R13 R(10,13) 1.0933 -DE/DX = 0.0 ! ! R14 R(14,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(14,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(14,17) 1.0933 -DE/DX = 0.0 ! ! A1 A(2,1,6) 109.4712 -DE/DX = 0.0 ! ! A2 A(2,1,10) 109.4712 -DE/DX = 0.0 ! ! A3 A(2,1,14) 109.4712 -DE/DX = 0.0 ! ! A4 A(6,1,10) 109.4712 -DE/DX = 0.0 ! ! A5 A(6,1,14) 109.4712 -DE/DX = 0.0 ! ! A6 A(10,1,14) 109.4712 -DE/DX = 0.0 ! ! A7 A(1,2,3) 109.9357 -DE/DX = 0.0 ! ! A8 A(1,2,4) 109.9357 -DE/DX = 0.0 ! ! A9 A(1,2,5) 109.9357 -DE/DX = 0.0 ! ! A10 A(3,2,4) 109.0028 -DE/DX = 0.0 ! ! A11 A(3,2,5) 109.0028 -DE/DX = 0.0 ! ! A12 A(4,2,5) 109.0028 -DE/DX = 0.0 ! ! A13 A(1,6,7) 109.9357 -DE/DX = 0.0 ! ! A14 A(1,6,8) 109.9357 -DE/DX = 0.0 ! ! A15 A(1,6,9) 109.9357 -DE/DX = 0.0 ! ! A16 A(7,6,8) 109.0028 -DE/DX = 0.0 ! ! A17 A(7,6,9) 109.0028 -DE/DX = 0.0 ! ! A18 A(8,6,9) 109.0028 -DE/DX = 0.0 ! ! A19 A(1,10,11) 109.9357 -DE/DX = 0.0 ! ! A20 A(1,10,12) 109.9357 -DE/DX = 0.0 ! ! A21 A(1,10,13) 109.9357 -DE/DX = 0.0 ! ! A22 A(11,10,12) 109.0028 -DE/DX = 0.0 ! ! A23 A(11,10,13) 109.0028 -DE/DX = 0.0 ! ! A24 A(12,10,13) 109.0028 -DE/DX = 0.0 ! ! A25 A(1,14,15) 109.9357 -DE/DX = 0.0 ! ! A26 A(1,14,16) 109.9357 -DE/DX = 0.0 ! ! A27 A(1,14,17) 109.9357 -DE/DX = 0.0 ! ! A28 A(15,14,16) 109.0028 -DE/DX = 0.0 ! ! A29 A(15,14,17) 109.0028 -DE/DX = 0.0 ! ! A30 A(16,14,17) 109.0028 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) 60.0 -DE/DX = 0.0 ! ! D2 D(6,1,2,4) 180.0 -DE/DX = 0.0 ! ! D3 D(6,1,2,5) -60.0 -DE/DX = 0.0 ! ! D4 D(10,1,2,3) 180.0 -DE/DX = 0.0 ! ! D5 D(10,1,2,4) -60.0 -DE/DX = 0.0 ! ! D6 D(10,1,2,5) 60.0 -DE/DX = 0.0 ! ! D7 D(14,1,2,3) -60.0 -DE/DX = 0.0 ! ! D8 D(14,1,2,4) 60.0 -DE/DX = 0.0 ! ! D9 D(14,1,2,5) 180.0 -DE/DX = 0.0 ! ! D10 D(2,1,6,7) 60.0 -DE/DX = 0.0 ! ! D11 D(2,1,6,8) 180.0 -DE/DX = 0.0 ! ! D12 D(2,1,6,9) -60.0 -DE/DX = 0.0 ! ! D13 D(10,1,6,7) -60.0 -DE/DX = 0.0 ! ! D14 D(10,1,6,8) 60.0 -DE/DX = 0.0 ! ! D15 D(10,1,6,9) 180.0 -DE/DX = 0.0 ! ! D16 D(14,1,6,7) 180.0 -DE/DX = 0.0 ! ! D17 D(14,1,6,8) -60.0 -DE/DX = 0.0 ! ! D18 D(14,1,6,9) 60.0 -DE/DX = 0.0 ! ! D19 D(2,1,10,11) 60.0 -DE/DX = 0.0 ! ! D20 D(2,1,10,12) 180.0 -DE/DX = 0.0 ! ! D21 D(2,1,10,13) -60.0 -DE/DX = 0.0 ! ! D22 D(6,1,10,11) 180.0 -DE/DX = 0.0 ! ! D23 D(6,1,10,12) -60.0 -DE/DX = 0.0 ! ! D24 D(6,1,10,13) 60.0 -DE/DX = 0.0 ! ! D25 D(14,1,10,11) -60.0 -DE/DX = 0.0 ! ! D26 D(14,1,10,12) 60.0 -DE/DX = 0.0 ! ! D27 D(14,1,10,13) 180.0 -DE/DX = 0.0 ! ! D28 D(2,1,14,15) 60.0 -DE/DX = 0.0 ! ! D29 D(2,1,14,16) 180.0 -DE/DX = 0.0 ! ! D30 D(2,1,14,17) -60.0 -DE/DX = 0.0 ! ! D31 D(6,1,14,15) -60.0 -DE/DX = 0.0 ! ! D32 D(6,1,14,16) 60.0 -DE/DX = 0.0 ! ! D33 D(6,1,14,17) 180.0 -DE/DX = 0.0 ! ! D34 D(10,1,14,15) 180.0 -DE/DX = 0.0 ! ! D35 D(10,1,14,16) -60.0 -DE/DX = 0.0 ! ! D36 D(10,1,14,17) 60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048860 1.048860 1.048860 3 1 0 1.683702 0.424873 1.683702 4 1 0 1.683702 1.683702 0.424873 5 1 0 0.424873 1.683702 1.683702 6 6 0 -1.048860 -1.048860 1.048860 7 1 0 -1.683702 -0.424873 1.683702 8 1 0 -1.683702 -1.683702 0.424873 9 1 0 -0.424873 -1.683702 1.683702 10 6 0 -1.048860 1.048860 -1.048860 11 1 0 -0.424873 1.683702 -1.683702 12 1 0 -1.683702 0.424873 -1.683702 13 1 0 -1.683702 1.683702 -0.424873 14 6 0 1.048860 -1.048860 -1.048860 15 1 0 1.683702 -1.683702 -0.424873 16 1 0 0.424873 -1.683702 -1.683702 17 1 0 1.683702 -0.424873 -1.683702 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 P 0.000000 2 C 1.816679 0.000000 3 H 2.418723 1.093347 0.000000 4 H 2.418723 1.093347 1.780253 0.000000 5 H 2.418723 1.093347 1.780253 1.780253 0.000000 6 C 1.816679 2.966624 3.168881 3.914480 3.168881 7 H 2.418723 3.168881 3.472964 4.167751 2.981975 8 H 2.418723 3.914480 4.167751 4.762228 4.167751 9 H 2.418723 3.168881 2.981975 4.167751 3.472964 10 C 1.816679 2.966624 3.914480 3.168881 3.168881 11 H 2.418723 3.168881 4.167751 2.981975 3.472964 12 H 2.418723 3.914480 4.762228 4.167751 4.167751 13 H 2.418723 3.168881 4.167751 3.472964 2.981975 14 C 1.816679 2.966624 3.168881 3.168881 3.914480 15 H 2.418723 3.168881 2.981975 3.472964 4.167751 16 H 2.418723 3.914480 4.167751 4.167751 4.762228 17 H 2.418723 3.168881 3.472964 2.981975 4.167751 6 7 8 9 10 6 C 0.000000 7 H 1.093347 0.000000 8 H 1.093347 1.780253 0.000000 9 H 1.093347 1.780253 1.780253 0.000000 10 C 2.966624 3.168881 3.168881 3.914480 0.000000 11 H 3.914480 4.167751 4.167751 4.762228 1.093347 12 H 3.168881 3.472964 2.981975 4.167751 1.093347 13 H 3.168881 2.981975 3.472964 4.167751 1.093347 14 C 2.966624 3.914480 3.168881 3.168881 2.966624 15 H 3.168881 4.167751 3.472964 2.981975 3.914480 16 H 3.168881 4.167751 2.981975 3.472964 3.168881 17 H 3.914480 4.762228 4.167751 4.167751 3.168881 11 12 13 14 15 11 H 0.000000 12 H 1.780253 0.000000 13 H 1.780253 1.780253 0.000000 14 C 3.168881 3.168881 3.914480 0.000000 15 H 4.167751 4.167751 4.762228 1.093347 0.000000 16 H 3.472964 2.981975 4.167751 1.093347 1.780253 17 H 2.981975 3.472964 4.167751 1.093347 1.780253 16 17 16 H 0.000000 17 H 1.780253 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048860 1.048860 1.048860 3 1 0 1.683702 0.424873 1.683702 4 1 0 1.683702 1.683702 0.424873 5 1 0 0.424873 1.683702 1.683702 6 6 0 -1.048860 -1.048860 1.048860 7 1 0 -1.683702 -0.424873 1.683702 8 1 0 -1.683702 -1.683702 0.424873 9 1 0 -0.424873 -1.683702 1.683702 10 6 0 -1.048860 1.048860 -1.048860 11 1 0 -0.424873 1.683702 -1.683702 12 1 0 -1.683702 0.424873 -1.683702 13 1 0 -1.683702 1.683702 -0.424873 14 6 0 1.048860 -1.048860 -1.048860 15 1 0 1.683702 -1.683702 -0.424873 16 1 0 0.424873 -1.683702 -1.683702 17 1 0 1.683702 -0.424873 -1.683702 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3079240 3.3079240 3.3079240 1|1| IMPERIAL COLLEGE-CHWS-125|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)|SB10 16|23-May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=gr id=ultrafine||PR+_opt4||1,1|P,0.,0.,0.|C,1.04886,1.04886,1.04886|H,1.6 83702,0.424873,1.683702|H,1.683702,1.683702,0.424873|H,0.424873,1.6837 02,1.683702|C,-1.04886,-1.04886,1.04886|H,-1.683702,-0.424873,1.683702 |H,-1.683702,-1.683702,0.424873|H,-0.424873,-1.683702,1.683702|C,-1.04 886,1.04886,-1.04886|H,-0.424873,1.683702,-1.683702|H,-1.683702,0.4248 73,-1.683702|H,-1.683702,1.683702,-0.424873|C,1.04886,-1.04886,-1.0488 6|H,1.683702,-1.683702,-0.424873|H,0.424873,-1.683702,-1.683702|H,1.68 3702,-0.424873,-1.683702||Version=EM64W-G09RevD.01|State=1-A1|HF=-500. 8270302|RMSD=3.336e-009|RMSF=2.409e-005|Dipole=0.,0.,0.|Quadrupole=0., 0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2)]||@ IT IS A CAPITAL MISTAKE TO THEORIZE BEFORE ONE HAS DATA. INSENSIBLY ONE BEGINS TO TWIST FACTS TO SUIT THEORIES RATHER THAN THEORIES TO SUIT FACTS. -- SHERLOCK HOLMES Job cpu time: 0 days 0 hours 1 minutes 29.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Wed May 23 14:17:25 2018.