Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_c01/g09/l1.exe /home/scan-user-1/run/66669/Gau-594.inp -scrdir=/home/scan-user-1/run/66669/ Entering Link 1 = /apps/gaussian/g09_c01/g09/l1.exe PID= 595. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevC.01 23-Sep-2011 22-Nov-2012 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.2974703.cx1b/rwf ---------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity ---------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Charge = 1 Multiplicity = 1 Symbolic Z-Matrix: C 1.41555 0.00014 0. C 0.71661 1.21179 -0.00001 C -0.66707 1.19015 0.00001 C -0.66682 -1.19027 -0.00001 C 0.71688 -1.21163 0.00001 H 2.50075 0.00029 0. H 1.23404 2.16377 -0.00001 H -1.28573 2.07934 0.00001 H -2.32595 -0.00025 -0.00001 H -1.28525 -2.07962 0.00001 H 1.23447 -2.16353 0.00002 N -1.30903 -0.00015 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3988 estimate D2E/DX2 ! ! R2 R(1,5) 1.3988 estimate D2E/DX2 ! ! R3 R(1,6) 1.0852 estimate D2E/DX2 ! ! R4 R(2,3) 1.3838 estimate D2E/DX2 ! ! R5 R(2,7) 1.0835 estimate D2E/DX2 ! ! R6 R(3,8) 1.0832 estimate D2E/DX2 ! ! R7 R(3,12) 1.3524 estimate D2E/DX2 ! ! R8 R(4,5) 1.3839 estimate D2E/DX2 ! ! R9 R(4,10) 1.0832 estimate D2E/DX2 ! ! R10 R(4,12) 1.3523 estimate D2E/DX2 ! ! R11 R(5,11) 1.0835 estimate D2E/DX2 ! ! R12 R(9,12) 1.0169 estimate D2E/DX2 ! ! A1 A(2,1,5) 120.0549 estimate D2E/DX2 ! ! A2 A(2,1,6) 119.9711 estimate D2E/DX2 ! ! A3 A(5,1,6) 119.974 estimate D2E/DX2 ! ! A4 A(1,2,3) 119.0826 estimate D2E/DX2 ! ! A5 A(1,2,7) 121.4959 estimate D2E/DX2 ! ! A6 A(3,2,7) 119.4215 estimate D2E/DX2 ! ! A7 A(2,3,8) 123.9325 estimate D2E/DX2 ! ! A8 A(2,3,12) 119.2355 estimate D2E/DX2 ! ! A9 A(8,3,12) 116.832 estimate D2E/DX2 ! ! A10 A(5,4,10) 123.9293 estimate D2E/DX2 ! ! A11 A(5,4,12) 119.2363 estimate D2E/DX2 ! ! A12 A(10,4,12) 116.8345 estimate D2E/DX2 ! ! A13 A(1,5,4) 119.082 estimate D2E/DX2 ! ! A14 A(1,5,11) 121.4987 estimate D2E/DX2 ! ! A15 A(4,5,11) 119.4193 estimate D2E/DX2 ! ! A16 A(3,12,4) 123.3087 estimate D2E/DX2 ! ! A17 A(3,12,9) 118.345 estimate D2E/DX2 ! ! A18 A(4,12,9) 118.3463 estimate D2E/DX2 ! ! D1 D(5,1,2,3) 0.0008 estimate D2E/DX2 ! ! D2 D(5,1,2,7) 179.9999 estimate D2E/DX2 ! ! D3 D(6,1,2,3) -179.9988 estimate D2E/DX2 ! ! D4 D(6,1,2,7) 0.0003 estimate D2E/DX2 ! ! D5 D(2,1,5,4) 0.0011 estimate D2E/DX2 ! ! D6 D(2,1,5,11) -179.9996 estimate D2E/DX2 ! ! D7 D(6,1,5,4) -179.9994 estimate D2E/DX2 ! ! D8 D(6,1,5,11) 0.0 estimate D2E/DX2 ! ! D9 D(1,2,3,8) 179.9998 estimate D2E/DX2 ! ! D10 D(1,2,3,12) -0.002 estimate D2E/DX2 ! ! D11 D(7,2,3,8) 0.0006 estimate D2E/DX2 ! ! D12 D(7,2,3,12) 179.9989 estimate D2E/DX2 ! ! D13 D(2,3,12,4) 0.0014 estimate D2E/DX2 ! ! D14 D(2,3,12,9) -179.9989 estimate D2E/DX2 ! ! D15 D(8,3,12,4) 179.9998 estimate D2E/DX2 ! ! D16 D(8,3,12,9) -0.0005 estimate D2E/DX2 ! ! D17 D(10,4,5,1) -179.9993 estimate D2E/DX2 ! ! D18 D(10,4,5,11) 0.0014 estimate D2E/DX2 ! ! D19 D(12,4,5,1) -0.0017 estimate D2E/DX2 ! ! D20 D(12,4,5,11) 179.9989 estimate D2E/DX2 ! ! D21 D(5,4,12,3) 0.0005 estimate D2E/DX2 ! ! D22 D(5,4,12,9) -179.9992 estimate D2E/DX2 ! ! D23 D(10,4,12,3) 179.9982 estimate D2E/DX2 ! ! D24 D(10,4,12,9) -0.0015 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.415548 0.000141 -0.000002 2 6 0 0.716605 1.211786 -0.000008 3 6 0 -0.667065 1.190145 0.000013 4 6 0 -0.666822 -1.190270 -0.000011 5 6 0 0.716879 -1.211630 0.000008 6 1 0 2.500752 0.000285 0.000002 7 1 0 1.234038 2.163771 -0.000014 8 1 0 -1.285728 2.079338 0.000014 9 1 0 -2.325947 -0.000245 -0.000005 10 1 0 -1.285254 -2.079624 0.000006 11 1 0 1.234470 -2.163530 0.000019 12 7 0 -1.309028 -0.000146 -0.000003 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.398787 0.000000 3 C 2.398622 1.383839 0.000000 4 C 2.398613 2.771957 2.380415 0.000000 5 C 1.398759 2.423416 2.771971 1.383866 0.000000 6 H 1.085204 2.156598 3.383908 3.383925 2.156604 7 H 2.171230 1.083519 2.135917 3.855238 3.414789 8 H 3.408805 2.182197 1.083240 3.327669 3.852390 9 H 3.741495 3.275079 2.041793 2.041777 3.275094 10 H 3.408776 3.852378 3.327694 1.083240 2.182189 11 H 2.171235 3.414812 3.855252 2.135918 1.083519 12 N 2.724576 2.360502 1.352372 1.352340 2.360507 6 7 8 9 10 6 H 0.000000 7 H 2.507037 0.000000 8 H 4.319710 2.521180 0.000000 9 H 4.826699 4.166108 2.325236 0.000000 10 H 4.319706 4.934900 4.158962 2.325265 0.000000 11 H 2.507103 4.327301 4.934909 4.166098 2.521121 12 N 3.809780 3.339120 2.079615 1.016919 2.079614 11 12 11 H 0.000000 12 N 3.339104 0.000000 Stoichiometry C5H6N(1+) Framework group C1[X(C5H6N)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.415548 0.000131 -0.000002 2 6 0 0.716613 1.211781 -0.000008 3 6 0 -0.667057 1.190150 0.000013 4 6 0 -0.666831 -1.190265 -0.000011 5 6 0 0.716870 -1.211635 0.000008 6 1 0 2.500752 0.000267 0.000002 7 1 0 1.234053 2.163762 -0.000014 8 1 0 -1.285713 2.079347 0.000014 9 1 0 -2.325947 -0.000229 -0.000005 10 1 0 -1.285269 -2.079615 0.000006 11 1 0 1.234455 -2.163539 0.000019 12 7 0 -1.309028 -0.000137 -0.000003 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7831550 5.6655849 2.8618831 Standard basis: 6-31G(d,p) (6D, 7F) There are 120 symmetry adapted basis functions of A symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 215.9891971912 Hartrees. NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 120 RedAO= T NBF= 120 NBsUse= 120 1.00D-06 NBFU= 120 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=27462199. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -248.668073955 A.U. after 14 cycles Convg = 0.2680D-08 -V/T = 2.0101 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -14.63690 -10.45806 -10.45805 -10.41808 -10.40823 Alpha occ. eigenvalues -- -10.40821 -1.21402 -1.02630 -0.99321 -0.86406 Alpha occ. eigenvalues -- -0.85982 -0.79011 -0.70595 -0.69953 -0.66589 Alpha occ. eigenvalues -- -0.65084 -0.64064 -0.57741 -0.57432 -0.50847 Alpha occ. eigenvalues -- -0.47885 Alpha virt. eigenvalues -- -0.25840 -0.22034 -0.12817 -0.07317 -0.05981 Alpha virt. eigenvalues -- -0.04343 -0.03530 -0.00495 0.01202 0.06133 Alpha virt. eigenvalues -- 0.08176 0.09928 0.10519 0.22787 0.25359 Alpha virt. eigenvalues -- 0.31050 0.32158 0.34488 0.36223 0.38381 Alpha virt. eigenvalues -- 0.38783 0.39753 0.40259 0.41020 0.43118 Alpha virt. eigenvalues -- 0.45704 0.49004 0.59052 0.60566 0.61128 Alpha virt. eigenvalues -- 0.62264 0.63204 0.64882 0.70355 0.71890 Alpha virt. eigenvalues -- 0.76126 0.78772 0.86487 0.90184 0.94544 Alpha virt. eigenvalues -- 0.96118 1.01904 1.05306 1.05611 1.17129 Alpha virt. eigenvalues -- 1.17287 1.19577 1.19721 1.22931 1.27448 Alpha virt. eigenvalues -- 1.49187 1.52415 1.55292 1.67951 1.68150 Alpha virt. eigenvalues -- 1.74586 1.75805 1.76373 1.76526 1.77668 Alpha virt. eigenvalues -- 1.81694 1.87605 1.91155 2.06880 2.08228 Alpha virt. eigenvalues -- 2.13626 2.15861 2.16482 2.19605 2.20169 Alpha virt. eigenvalues -- 2.20806 2.22534 2.22918 2.26427 2.26484 Alpha virt. eigenvalues -- 2.27926 2.36167 2.39381 2.39826 2.45312 Alpha virt. eigenvalues -- 2.57583 2.60423 2.61724 2.83166 2.85817 Alpha virt. eigenvalues -- 2.90802 3.03108 3.03179 3.04327 3.17194 Alpha virt. eigenvalues -- 3.28349 3.32199 3.75443 3.86417 3.94838 Alpha virt. eigenvalues -- 3.98242 4.13670 4.22308 4.57602 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.757838 0.514052 -0.034409 -0.034410 0.514072 0.381155 2 C 0.514052 4.781384 0.544360 -0.035855 -0.018871 -0.034063 3 C -0.034409 0.544360 4.712270 -0.053546 -0.035856 0.004484 4 C -0.034410 -0.035855 -0.053546 4.712269 0.544337 0.004484 5 C 0.514072 -0.018871 -0.035856 0.544337 4.781386 -0.034062 6 H 0.381155 -0.034063 0.004484 0.004484 -0.034062 0.496697 7 H -0.026767 0.384673 -0.034469 0.000292 0.003882 -0.004563 8 H 0.003233 -0.024922 0.382043 0.003086 0.000146 -0.000107 9 H -0.000052 0.003910 -0.027775 -0.027777 0.003910 0.000013 10 H 0.003233 0.000146 0.003085 0.382042 -0.024924 -0.000107 11 H -0.026766 0.003882 0.000292 -0.034469 0.384673 -0.004562 12 N -0.042671 -0.013241 0.360874 0.360891 -0.013240 -0.000012 7 8 9 10 11 12 1 C -0.026767 0.003233 -0.000052 0.003233 -0.026766 -0.042671 2 C 0.384673 -0.024922 0.003910 0.000146 0.003882 -0.013241 3 C -0.034469 0.382043 -0.027775 0.003085 0.000292 0.360874 4 C 0.000292 0.003086 -0.027777 0.382042 -0.034469 0.360891 5 C 0.003882 0.000146 0.003910 -0.024924 0.384673 -0.013240 6 H -0.004563 -0.000107 0.000013 -0.000107 -0.004562 -0.000012 7 H 0.487336 -0.003081 -0.000105 0.000009 -0.000109 0.003386 8 H -0.003081 0.473718 -0.004808 -0.000135 0.000009 -0.040610 9 H -0.000105 -0.004808 0.358385 -0.004808 -0.000105 0.357162 10 H 0.000009 -0.000135 -0.004808 0.473717 -0.003081 -0.040609 11 H -0.000109 0.000009 -0.000105 -0.003081 0.487336 0.003386 12 N 0.003386 -0.040610 0.357162 -0.040609 0.003386 6.537151 Mulliken atomic charges: 1 1 C -0.008508 2 C -0.105455 3 C 0.178647 4 C 0.178657 5 C -0.105453 6 H 0.190643 7 H 0.189515 8 H 0.211428 9 H 0.342049 10 H 0.211430 11 H 0.189514 12 N -0.472468 Sum of Mulliken atomic charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.182135 2 C 0.084060 3 C 0.390075 4 C 0.390087 5 C 0.084061 12 N -0.130419 Sum of Mulliken charges with hydrogens summed into heavy atoms = 1.00000 Electronic spatial extent (au): = 433.1656 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= -1.8727 Y= -0.0002 Z= 0.0000 Tot= 1.8727 Quadrupole moment (field-independent basis, Debye-Ang): XX= -16.7625 YY= -20.5248 ZZ= -35.4045 XY= 0.0005 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 7.4681 YY= 3.7058 ZZ= -11.1739 XY= 0.0005 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -13.2129 YYY= -0.0016 ZZZ= 0.0000 XYY= -2.8394 XXY= -0.0002 XXZ= 0.0000 XZZ= -1.7584 YZZ= -0.0002 YYZ= 0.0001 XYZ= -0.0001 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -173.6006 YYYY= -204.3915 ZZZZ= -34.0055 XXXY= 0.0027 XXXZ= 0.0001 YYYX= 0.0014 YYYZ= -0.0004 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -64.6983 XXZZ= -51.4852 YYZZ= -53.7605 XXYZ= -0.0001 YYXZ= -0.0001 ZZXY= 0.0004 N-N= 2.159891971912D+02 E-N=-9.985016132816D+02 KE= 2.461911281249D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000025595 0.000012939 0.000000343 2 6 -0.000045664 -0.000028671 0.000001794 3 6 0.000063554 0.000009979 -0.000003634 4 6 0.000087502 -0.000027355 0.000003541 5 6 -0.000067927 0.000017378 -0.000001747 6 1 0.000027382 -0.000002180 -0.000000264 7 1 0.000053658 -0.000012178 0.000000176 8 1 -0.000016037 -0.000009345 0.000000462 9 1 0.000041491 -0.000000839 0.000000181 10 1 -0.000019761 0.000011607 -0.000001311 11 1 0.000056570 0.000014445 -0.000000082 12 7 -0.000155174 0.000014220 0.000000541 ------------------------------------------------------------------- Cartesian Forces: Max 0.000155174 RMS 0.000039189 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000064328 RMS 0.000023110 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02105 0.02146 0.02193 0.02211 0.02267 Eigenvalues --- 0.02310 0.02312 0.02317 0.02322 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.35373 0.35572 Eigenvalues --- 0.35573 0.35606 0.35606 0.42874 0.43379 Eigenvalues --- 0.44833 0.46626 0.48404 0.52236 0.53992 RFO step: Lambda=-1.28880441D-07 EMin= 2.10498550D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00015843 RMS(Int)= 0.00000003 Iteration 2 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64332 -0.00005 0.00000 -0.00011 -0.00011 2.64321 R2 2.64327 -0.00003 0.00000 -0.00009 -0.00009 2.64319 R3 2.05074 0.00003 0.00000 0.00008 0.00008 2.05082 R4 2.61508 0.00001 0.00000 0.00001 0.00001 2.61509 R5 2.04755 0.00001 0.00000 0.00004 0.00004 2.04760 R6 2.04703 0.00000 0.00000 0.00000 0.00000 2.04703 R7 2.55561 0.00004 0.00000 0.00008 0.00008 2.55569 R8 2.61513 -0.00001 0.00000 -0.00001 -0.00001 2.61511 R9 2.04703 0.00000 0.00000 0.00000 0.00000 2.04703 R10 2.55555 0.00005 0.00000 0.00010 0.00010 2.55566 R11 2.04755 0.00001 0.00000 0.00004 0.00004 2.04760 R12 1.92170 -0.00004 0.00000 -0.00009 -0.00009 1.92161 A1 2.09535 0.00001 0.00000 -0.00001 -0.00001 2.09534 A2 2.09389 0.00000 0.00000 0.00002 0.00002 2.09391 A3 2.09394 -0.00001 0.00000 -0.00001 -0.00001 2.09393 A4 2.07838 0.00001 0.00000 0.00003 0.00003 2.07842 A5 2.12050 -0.00006 0.00000 -0.00035 -0.00035 2.12015 A6 2.08430 0.00005 0.00000 0.00032 0.00032 2.08462 A7 2.16303 0.00001 0.00000 0.00009 0.00009 2.16312 A8 2.08105 0.00001 0.00000 0.00006 0.00006 2.08111 A9 2.03910 -0.00002 0.00000 -0.00015 -0.00015 2.03895 A10 2.16297 0.00002 0.00000 0.00012 0.00012 2.16309 A11 2.08107 0.00001 0.00000 0.00006 0.00006 2.08112 A12 2.03915 -0.00003 0.00000 -0.00017 -0.00017 2.03897 A13 2.07837 0.00001 0.00000 0.00004 0.00004 2.07841 A14 2.12055 -0.00006 0.00000 -0.00038 -0.00038 2.12017 A15 2.08426 0.00005 0.00000 0.00034 0.00034 2.08460 A16 2.15214 -0.00005 0.00000 -0.00017 -0.00017 2.15197 A17 2.06551 0.00002 0.00000 0.00009 0.00009 2.06560 A18 2.06553 0.00002 0.00000 0.00008 0.00008 2.06561 D1 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00001 D2 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D3 -3.14157 0.00000 0.00000 -0.00003 -0.00003 3.14158 D4 0.00001 0.00000 0.00000 -0.00001 -0.00001 0.00000 D5 0.00002 0.00000 0.00000 -0.00003 -0.00003 -0.00001 D6 -3.14159 0.00000 0.00000 -0.00001 -0.00001 3.14159 D7 -3.14158 0.00000 0.00000 -0.00002 -0.00002 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D10 -0.00004 0.00000 0.00000 0.00005 0.00005 0.00001 D11 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00001 D12 3.14157 0.00000 0.00000 0.00003 0.00003 -3.14159 D13 0.00002 0.00000 0.00000 -0.00003 -0.00003 -0.00001 D14 -3.14157 0.00000 0.00000 -0.00002 -0.00002 3.14159 D15 3.14159 0.00000 0.00000 0.00001 0.00001 -3.14159 D16 -0.00001 0.00000 0.00000 0.00002 0.00002 0.00001 D17 -3.14158 0.00000 0.00000 -0.00001 -0.00001 -3.14159 D18 0.00002 0.00000 0.00000 -0.00003 -0.00003 0.00000 D19 -0.00003 0.00000 0.00000 0.00004 0.00004 0.00001 D20 3.14157 0.00000 0.00000 0.00003 0.00003 -3.14159 D21 0.00001 0.00000 0.00000 -0.00001 -0.00001 0.00000 D22 -3.14158 0.00000 0.00000 -0.00002 -0.00002 3.14158 D23 3.14156 0.00000 0.00000 0.00004 0.00004 -3.14159 D24 -0.00003 0.00000 0.00000 0.00003 0.00003 0.00000 Item Value Threshold Converged? Maximum Force 0.000064 0.000450 YES RMS Force 0.000023 0.000300 YES Maximum Displacement 0.000625 0.001800 YES RMS Displacement 0.000158 0.001200 YES Predicted change in Energy=-6.444008D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3988 -DE/DX = 0.0 ! ! R2 R(1,5) 1.3988 -DE/DX = 0.0 ! ! R3 R(1,6) 1.0852 -DE/DX = 0.0 ! ! R4 R(2,3) 1.3838 -DE/DX = 0.0 ! ! R5 R(2,7) 1.0835 -DE/DX = 0.0 ! ! R6 R(3,8) 1.0832 -DE/DX = 0.0 ! ! R7 R(3,12) 1.3524 -DE/DX = 0.0 ! ! R8 R(4,5) 1.3839 -DE/DX = 0.0 ! ! R9 R(4,10) 1.0832 -DE/DX = 0.0 ! ! R10 R(4,12) 1.3523 -DE/DX = 0.0001 ! ! R11 R(5,11) 1.0835 -DE/DX = 0.0 ! ! R12 R(9,12) 1.0169 -DE/DX = 0.0 ! ! A1 A(2,1,5) 120.0549 -DE/DX = 0.0 ! ! A2 A(2,1,6) 119.9711 -DE/DX = 0.0 ! ! A3 A(5,1,6) 119.974 -DE/DX = 0.0 ! ! A4 A(1,2,3) 119.0826 -DE/DX = 0.0 ! ! A5 A(1,2,7) 121.4959 -DE/DX = -0.0001 ! ! A6 A(3,2,7) 119.4215 -DE/DX = 0.0 ! ! A7 A(2,3,8) 123.9325 -DE/DX = 0.0 ! ! A8 A(2,3,12) 119.2355 -DE/DX = 0.0 ! ! A9 A(8,3,12) 116.832 -DE/DX = 0.0 ! ! A10 A(5,4,10) 123.9293 -DE/DX = 0.0 ! ! A11 A(5,4,12) 119.2363 -DE/DX = 0.0 ! ! A12 A(10,4,12) 116.8345 -DE/DX = 0.0 ! ! A13 A(1,5,4) 119.082 -DE/DX = 0.0 ! ! A14 A(1,5,11) 121.4987 -DE/DX = -0.0001 ! ! A15 A(4,5,11) 119.4193 -DE/DX = 0.0001 ! ! A16 A(3,12,4) 123.3087 -DE/DX = 0.0 ! ! A17 A(3,12,9) 118.345 -DE/DX = 0.0 ! ! A18 A(4,12,9) 118.3463 -DE/DX = 0.0 ! ! D1 D(5,1,2,3) 0.0008 -DE/DX = 0.0 ! ! D2 D(5,1,2,7) -180.0001 -DE/DX = 0.0 ! ! D3 D(6,1,2,3) 180.0012 -DE/DX = 0.0 ! ! D4 D(6,1,2,7) 0.0003 -DE/DX = 0.0 ! ! D5 D(2,1,5,4) 0.0011 -DE/DX = 0.0 ! ! D6 D(2,1,5,11) 180.0004 -DE/DX = 0.0 ! ! D7 D(6,1,5,4) 180.0006 -DE/DX = 0.0 ! ! D8 D(6,1,5,11) 0.0 -DE/DX = 0.0 ! ! D9 D(1,2,3,8) -180.0002 -DE/DX = 0.0 ! ! D10 D(1,2,3,12) -0.002 -DE/DX = 0.0 ! ! D11 D(7,2,3,8) 0.0006 -DE/DX = 0.0 ! ! D12 D(7,2,3,12) -180.0011 -DE/DX = 0.0 ! ! D13 D(2,3,12,4) 0.0014 -DE/DX = 0.0 ! ! D14 D(2,3,12,9) 180.0011 -DE/DX = 0.0 ! ! D15 D(8,3,12,4) -180.0002 -DE/DX = 0.0 ! ! D16 D(8,3,12,9) -0.0005 -DE/DX = 0.0 ! ! D17 D(10,4,5,1) -179.9993 -DE/DX = 0.0 ! ! D18 D(10,4,5,11) 0.0014 -DE/DX = 0.0 ! ! D19 D(12,4,5,1) -0.0017 -DE/DX = 0.0 ! ! D20 D(12,4,5,11) -180.0011 -DE/DX = 0.0 ! ! D21 D(5,4,12,3) 0.0005 -DE/DX = 0.0 ! ! D22 D(5,4,12,9) 180.0008 -DE/DX = 0.0 ! ! D23 D(10,4,12,3) -180.0018 -DE/DX = 0.0 ! ! D24 D(10,4,12,9) -0.0015 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.415548 0.000141 -0.000002 2 6 0 0.716605 1.211786 -0.000008 3 6 0 -0.667065 1.190145 0.000013 4 6 0 -0.666822 -1.190270 -0.000011 5 6 0 0.716879 -1.211630 0.000008 6 1 0 2.500752 0.000285 0.000002 7 1 0 1.234038 2.163771 -0.000014 8 1 0 -1.285728 2.079338 0.000014 9 1 0 -2.325947 -0.000245 -0.000005 10 1 0 -1.285254 -2.079624 0.000006 11 1 0 1.234470 -2.163530 0.000019 12 7 0 -1.309028 -0.000146 -0.000003 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.398787 0.000000 3 C 2.398622 1.383839 0.000000 4 C 2.398613 2.771957 2.380415 0.000000 5 C 1.398759 2.423416 2.771971 1.383866 0.000000 6 H 1.085204 2.156598 3.383908 3.383925 2.156604 7 H 2.171230 1.083519 2.135917 3.855238 3.414789 8 H 3.408805 2.182197 1.083240 3.327669 3.852390 9 H 3.741495 3.275079 2.041793 2.041777 3.275094 10 H 3.408776 3.852378 3.327694 1.083240 2.182189 11 H 2.171235 3.414812 3.855252 2.135918 1.083519 12 N 2.724576 2.360502 1.352372 1.352340 2.360507 6 7 8 9 10 6 H 0.000000 7 H 2.507037 0.000000 8 H 4.319710 2.521180 0.000000 9 H 4.826699 4.166108 2.325236 0.000000 10 H 4.319706 4.934900 4.158962 2.325265 0.000000 11 H 2.507103 4.327301 4.934909 4.166098 2.521121 12 N 3.809780 3.339120 2.079615 1.016919 2.079614 11 12 11 H 0.000000 12 N 3.339104 0.000000 Stoichiometry C5H6N(1+) Framework group C1[X(C5H6N)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.415548 0.000131 -0.000002 2 6 0 0.716613 1.211781 -0.000008 3 6 0 -0.667057 1.190150 0.000013 4 6 0 -0.666831 -1.190265 -0.000011 5 6 0 0.716870 -1.211635 0.000008 6 1 0 2.500752 0.000267 0.000002 7 1 0 1.234053 2.163762 -0.000014 8 1 0 -1.285713 2.079347 0.000014 9 1 0 -2.325947 -0.000229 -0.000005 10 1 0 -1.285269 -2.079615 0.000006 11 1 0 1.234455 -2.163539 0.000019 12 7 0 -1.309028 -0.000137 -0.000003 --------------------------------------------------------------------- Rotational constants (GHZ): 5.7831550 5.6655849 2.8618831 1\1\GINC-CX1-15-36-1\FOpt\RB3LYP\6-31G(d,p)\C5H6N1(1+)\SCAN-USER-1\22- Nov-2012\0\\# opt b3lyp/6-31g(d,p) geom=connectivity\\Title Card Requi red\\1,1\C,1.415548,0.000141,-0.000002\C,0.716605,1.211786,-0.000008\C ,-0.667065,1.190145,0.000013\C,-0.666822,-1.19027,-0.000011\C,0.716879 ,-1.21163,0.000008\H,2.500752,0.000285,0.000002\H,1.234038,2.163771,-0 .000014\H,-1.285728,2.079338,0.000014\H,-2.325947,-0.000245,-0.000005\ H,-1.285254,-2.079624,0.000006\H,1.23447,-2.16353,0.000019\N,-1.309028 ,-0.000146,-0.000003\\Version=EM64L-G09RevC.01\State=1-A\HF=-248.66807 4\RMSD=2.680e-09\RMSF=3.919e-05\Dipole=-0.7367859,-0.0001004,0.0000055 \Quadrupole=5.5523433,2.7551688,-8.3075121,0.0003741,0.0000009,-0.0000 314\PG=C01 [X(C5H6N1)]\\@ THE WORLD OF CHEMICAL REACTIONS IS LIKE A STAGE, ON WHICH SCENE AFTER SCENE IS CEASELESSLY PLAYED. THE ACTORS ON IT ARE THE ELEMENTS. -- CLEMENS WINKLER BER. 30,13(1897) (DISCOVERER OF GERMANIUM, FEB 6, 1886) Job cpu time: 0 days 0 hours 0 minutes 59.4 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu Nov 22 13:14:02 2012.