Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/86305/Gau-14979.inp" -scrdir="/home/scan-user-1/run/86305/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 14980. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 25-Jan-2014 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.6341113.cx1b/rwf ----------------------------------- # opt b3lyp/3-21g geom=connectivity ----------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=5,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=5,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=3/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------- Al2Cl4Br2_1 ----------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Al -0.18846 1.50917 -0.009 Al 1.75674 1.6479 -0.00697 Cl -1.33973 3.30135 -0.009 Cl -1.33979 -0.28297 -0.00905 Cl 2.90807 3.44004 -0.00692 Cl 2.908 -0.14429 -0.00701 Br 0.87219 3.45726 -0.00001 Br 1.21332 -0.58137 0.03857 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,3) 2.1301 estimate D2E/DX2 ! ! R2 R(1,4) 2.1301 estimate D2E/DX2 ! ! R3 R(1,7) 2.2181 estimate D2E/DX2 ! ! R4 R(1,8) 2.5175 estimate D2E/DX2 ! ! R5 R(2,5) 2.1301 estimate D2E/DX2 ! ! R6 R(2,6) 2.1301 estimate D2E/DX2 ! ! R7 R(2,7) 2.014 estimate D2E/DX2 ! ! R8 R(2,8) 2.295 estimate D2E/DX2 ! ! A1 A(3,1,4) 114.5661 estimate D2E/DX2 ! ! A2 A(3,1,7) 61.2825 estimate D2E/DX2 ! ! A3 A(4,1,8) 66.5658 estimate D2E/DX2 ! ! A4 A(7,1,8) 117.5798 estimate D2E/DX2 ! ! A5 A(5,2,6) 114.5661 estimate D2E/DX2 ! ! A6 A(5,2,7) 58.771 estimate D2E/DX2 ! ! A7 A(5,2,8) 160.9487 estimate D2E/DX2 ! ! A8 A(6,2,8) 46.4262 estimate D2E/DX2 ! ! A9 A(7,2,8) 140.2276 estimate D2E/DX2 ! ! A10 A(1,7,2) 54.6187 estimate D2E/DX2 ! ! A11 A(1,8,2) 47.5333 estimate D2E/DX2 ! ! A12 L(3,1,8,7,-1) 178.8623 estimate D2E/DX2 ! ! A13 L(4,1,7,8,-1) 184.1456 estimate D2E/DX2 ! ! A14 L(6,2,7,5,-1) 173.3371 estimate D2E/DX2 ! ! A15 L(3,1,8,7,-2) 178.7843 estimate D2E/DX2 ! ! A16 L(4,1,7,8,-2) 180.3572 estimate D2E/DX2 ! ! A17 L(6,2,7,5,-2) 180.2303 estimate D2E/DX2 ! ! D1 D(3,1,7,2) -179.7948 estimate D2E/DX2 ! ! D2 D(8,1,7,2) 1.4209 estimate D2E/DX2 ! ! D3 D(4,1,8,2) 178.979 estimate D2E/DX2 ! ! D4 D(7,1,8,2) -1.3781 estimate D2E/DX2 ! ! D5 D(5,2,7,1) 179.7372 estimate D2E/DX2 ! ! D6 D(8,2,7,1) -2.1597 estimate D2E/DX2 ! ! D7 D(5,2,8,1) 177.1285 estimate D2E/DX2 ! ! D8 D(6,2,8,1) -178.4895 estimate D2E/DX2 ! ! D9 D(7,2,8,1) 2.1032 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 44 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.188463 1.509167 -0.009002 2 13 0 1.756738 1.647897 -0.006969 3 17 0 -1.339728 3.301349 -0.009002 4 17 0 -1.339792 -0.282974 -0.009045 5 17 0 2.908066 3.440038 -0.006919 6 17 0 2.908003 -0.144285 -0.007006 7 35 0 0.872187 3.457261 -0.000008 8 35 0 1.213323 -0.581375 0.038569 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 1.950143 0.000000 3 Cl 2.130100 3.510272 0.000000 4 Cl 2.130100 3.649214 3.584323 0.000000 5 Cl 3.649214 2.130100 4.250058 5.648462 0.000000 6 Cl 3.510272 2.130100 5.469517 4.250058 3.584323 7 Br 2.218137 2.014021 2.217422 4.345376 2.035964 8 Br 2.517465 2.295000 4.647136 2.570935 4.364170 6 7 8 6 Cl 0.000000 7 Br 4.137116 0.000000 8 Br 1.750732 4.053202 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.078285 1.080214 -0.010738 2 13 0 0.059314 -0.869836 -0.011455 3 17 0 1.957632 2.082829 0.001447 4 17 0 -1.614897 2.372651 -0.018784 5 17 0 1.752497 -2.162273 -0.003401 6 17 0 -1.820032 -1.872451 -0.023676 7 35 0 1.934187 -0.134461 0.007303 8 35 0 -2.118963 -0.148047 0.022513 --------------------------------------------------------------------- Rotational constants (GHZ): 0.7326645 0.4601204 0.2826538 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 2084.5428653187 Hartrees. Warning! Cl atom 3 may be hypervalent but has no d functions. Warning! Cl atom 5 may be hypervalent but has no d functions. Warning! Cl atom 6 may be hypervalent but has no d functions. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 2.64D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Problem detected with inexpensive integrals. Switching to full accuracy and repeating last cycle. SCF Done: E(RB3LYP) = -7437.00700131 A.U. after 26 cycles NFock= 26 Conv=0.88D-08 -V/T= 1.9983 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -479.66311-479.63000-100.91493-100.90049-100.87421 Alpha occ. eigenvalues -- -100.80133 -62.22429 -62.19229 -55.82962 -55.82322 Alpha occ. eigenvalues -- -55.82117 -55.79714 -55.79071 -55.78929 -55.66635 Alpha occ. eigenvalues -- -55.66534 -9.51078 -9.47957 -9.44840 -9.37074 Alpha occ. eigenvalues -- -8.75359 -8.72446 -7.28080 -7.26914 -7.26361 Alpha occ. eigenvalues -- -7.24913 -7.24134 -7.23625 -7.21686 -7.21164 Alpha occ. eigenvalues -- -7.20707 -7.13815 -7.13465 -7.13190 -6.55546 Alpha occ. eigenvalues -- -6.53403 -6.52750 -6.52316 -6.50099 -6.49465 Alpha occ. eigenvalues -- -4.16371 -4.15273 -2.72457 -2.71520 -2.70715 Alpha occ. eigenvalues -- -2.69929 -2.69672 -2.69097 -2.64807 -2.64319 Alpha occ. eigenvalues -- -2.63359 -2.62076 -2.61795 -2.61703 -2.61135 Alpha occ. eigenvalues -- -2.60597 -2.58588 -2.58542 -1.16586 -1.06884 Alpha occ. eigenvalues -- -0.95118 -0.83621 -0.82514 -0.77157 -0.61616 Alpha occ. eigenvalues -- -0.57397 -0.56085 -0.53646 -0.52480 -0.49221 Alpha occ. eigenvalues -- -0.47545 -0.42284 -0.40898 -0.40285 -0.36789 Alpha occ. eigenvalues -- -0.34395 -0.34170 -0.33993 -0.32019 -0.29973 Alpha occ. eigenvalues -- -0.21703 -0.15161 Alpha virt. eigenvalues -- -0.11993 -0.04798 -0.02791 0.00451 0.02259 Alpha virt. eigenvalues -- 0.06993 0.09373 0.12639 0.14077 0.16187 Alpha virt. eigenvalues -- 0.18136 0.19027 0.20855 0.24293 0.24684 Alpha virt. eigenvalues -- 0.37872 0.46255 0.50205 0.50366 0.51841 Alpha virt. eigenvalues -- 0.53297 0.55233 0.56267 0.57768 0.58119 Alpha virt. eigenvalues -- 0.60033 0.61676 0.63367 0.64825 0.65903 Alpha virt. eigenvalues -- 0.67667 0.70568 0.72747 0.78323 0.78938 Alpha virt. eigenvalues -- 0.82609 0.85091 0.89096 0.97337 0.98441 Alpha virt. eigenvalues -- 24.91157 25.66121 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Al 12.497659 1.023809 -0.009558 0.199173 -0.027086 0.024455 2 Al 1.023809 13.707821 -0.053089 -0.099224 -0.051986 -0.260012 3 Cl -0.009558 -0.053089 17.395244 -0.017406 0.020704 -0.000148 4 Cl 0.199173 -0.099224 -0.017406 17.332866 -0.000056 0.016448 5 Cl -0.027086 -0.051986 0.020704 -0.000056 17.508815 -0.019658 6 Cl 0.024455 -0.260012 -0.000148 0.016448 -0.019658 17.889104 7 Br -0.584850 -0.765687 -0.144916 0.008604 -0.331722 0.020380 8 Br -0.450456 -0.325391 0.003764 -0.052257 0.008333 -0.681316 7 8 1 Al -0.584850 -0.450456 2 Al -0.765687 -0.325391 3 Cl -0.144916 0.003764 4 Cl 0.008604 -0.052257 5 Cl -0.331722 0.008333 6 Cl 0.020380 -0.681316 7 Br 36.489947 0.034015 8 Br 0.034015 36.208812 Mulliken charges: 1 1 Al 0.326854 2 Al -0.176242 3 Cl -0.194594 4 Cl -0.388148 5 Cl -0.107343 6 Cl 0.010748 7 Br 0.274229 8 Br 0.254496 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Al 0.326854 2 Al -0.176242 3 Cl -0.194594 4 Cl -0.388148 5 Cl -0.107343 6 Cl 0.010748 7 Br 0.274229 8 Br 0.254496 Electronic spatial extent (au): = 3261.6501 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.0866 Y= -3.6599 Z= -0.0147 Tot= 3.8179 Quadrupole moment (field-independent basis, Debye-Ang): XX= -109.3740 YY= -118.9461 ZZ= -118.2543 XY= 6.0037 XZ= -0.0749 YZ= 0.1250 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 6.1508 YY= -3.4213 ZZ= -2.7295 XY= 6.0037 XZ= -0.0749 YZ= 0.1250 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -6.9421 YYY= -35.3035 ZZZ= 0.8592 XYY= 5.5971 XXY= -21.0151 XXZ= 0.5486 XZZ= -1.6627 YZZ= -2.7822 YYZ= 0.1518 XYZ= -0.1428 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1965.8298 YYYY= -1722.7318 ZZZZ= -184.3887 XXXY= 21.9586 XXXZ= -0.8241 YYYX= 39.9468 YYYZ= 0.7797 ZZZX= -0.8398 ZZZY= 0.1833 XXYY= -646.3592 XXZZ= -359.0825 YYZZ= -313.7541 XXYZ= 0.0448 YYXZ= -0.7037 ZZXY= 4.5316 N-N= 2.084542865319D+03 E-N=-2.194735543630D+04 KE= 7.450040168007D+03 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.156338892 -0.112890460 -0.001320428 2 13 0.160267663 -0.081924788 -0.001465808 3 17 -0.134451681 0.026726301 -0.000368970 4 17 -0.062793487 -0.027910348 0.000359988 5 17 0.237764831 0.040885287 -0.000746444 6 17 0.550647147 0.077707080 -0.012454921 7 35 -0.124618533 0.394949020 0.001064197 8 35 -0.470477048 -0.317542091 0.014932387 ------------------------------------------------------------------- Cartesian Forces: Max 0.550647147 RMS 0.199440001 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.955954856 RMS 0.288009885 Search for a local minimum. Step number 1 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01322 0.01439 0.01986 0.02659 0.03660 Eigenvalues --- 0.07992 0.11635 0.12984 0.13658 0.15844 Eigenvalues --- 0.18972 0.23125 0.23125 0.23125 0.23125 Eigenvalues --- 0.23286 0.24956 0.24997 RFO step: Lambda=-1.57146438D+00 EMin= 1.32189528D-02 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.321 Iteration 1 RMS(Cart)= 0.11454004 RMS(Int)= 0.00394797 Iteration 2 RMS(Cart)= 0.00377241 RMS(Int)= 0.00073831 Iteration 3 RMS(Cart)= 0.00001055 RMS(Int)= 0.00073829 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00073829 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.02531 0.09515 0.00000 0.01692 0.01692 4.04222 R2 4.02531 0.05743 0.00000 0.01021 0.01021 4.03552 R3 4.19167 0.22599 0.00000 0.04333 0.04201 4.23368 R4 4.75732 0.06592 0.00000 0.01372 0.01231 4.76963 R5 4.02531 0.16292 0.00000 0.02897 0.02897 4.05427 R6 4.02531 0.23223 0.00000 0.04129 0.04129 4.06660 R7 3.80595 0.40823 0.00000 0.07213 0.07360 3.87955 R8 4.33692 0.43715 0.00000 0.08249 0.08398 4.42090 A1 1.99956 -0.13733 0.00000 -0.02446 -0.02446 1.97510 A2 1.06958 0.17985 0.00000 0.03213 0.03302 1.10260 A3 1.16179 0.05714 0.00000 0.00901 0.00990 1.17170 A4 2.05215 -0.09976 0.00000 -0.01671 -0.01849 2.03367 A5 1.99956 -0.68801 0.00000 -0.12302 -0.12302 1.87653 A6 1.02575 0.29750 0.00000 0.05092 0.05024 1.07598 A7 2.80908 0.26781 0.00000 0.04766 0.04699 2.85607 A8 0.81029 0.95595 0.00000 0.17071 0.17002 0.98031 A9 2.44743 -0.56497 0.00000 -0.09853 -0.09715 2.35028 A10 0.95328 0.34419 0.00000 0.05972 0.05999 1.01327 A11 0.82961 0.32042 0.00000 0.05549 0.05563 0.88525 A12 3.12174 0.08009 0.00000 0.01542 0.01453 3.13627 A13 3.21395 -0.04262 0.00000 -0.00769 -0.00858 3.20536 A14 3.02530 -0.39051 0.00000 -0.07209 -0.07278 2.95252 A15 3.12037 -0.00385 0.00000 -0.00067 -0.00057 3.11981 A16 3.14783 0.00414 0.00000 0.00072 0.00062 3.14845 A17 3.14561 -0.01786 0.00000 -0.00338 -0.00325 3.14237 D1 -3.13801 0.00412 0.00000 0.00071 0.00061 -3.13740 D2 0.02480 0.00797 0.00000 0.00138 0.00118 0.02598 D3 3.12377 -0.00257 0.00000 -0.00042 -0.00032 3.12346 D4 -0.02405 -0.00671 0.00000 -0.00114 -0.00094 -0.02499 D5 3.13701 -0.01850 0.00000 -0.00320 -0.00307 3.13393 D6 -0.03769 0.01479 0.00000 0.00264 0.00243 -0.03526 D7 3.09148 -0.01044 0.00000 -0.00196 -0.00191 3.08957 D8 -3.11523 0.00310 0.00000 0.00069 0.00082 -3.11441 D9 0.03671 -0.01472 0.00000 -0.00260 -0.00240 0.03431 Item Value Threshold Converged? Maximum Force 0.955955 0.000450 NO RMS Force 0.288010 0.000300 NO Maximum Displacement 0.473325 0.001800 NO RMS Displacement 0.116278 0.001200 NO Predicted change in Energy=-4.935555D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.270532 1.505785 -0.008988 2 13 0 1.815851 1.623811 -0.004595 3 17 0 -1.431985 3.302051 -0.010734 4 17 0 -1.463105 -0.265696 -0.009518 5 17 0 3.011817 3.404968 -0.008529 6 17 0 3.158476 -0.057916 -0.011497 7 35 0 0.859356 3.440332 0.002136 8 35 0 1.110457 -0.606256 0.042343 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 2.089723 0.000000 3 Cl 2.139053 3.655813 0.000000 4 Cl 2.135504 3.784417 3.567883 0.000000 5 Cl 3.792190 2.145430 4.444994 5.787806 0.000000 6 Cl 3.768722 2.151952 5.688736 4.626249 3.465990 7 Br 2.240366 2.052968 2.295546 4.373626 2.152778 8 Br 2.523982 2.339440 4.662799 2.596515 4.439332 6 7 8 6 Cl 0.000000 7 Br 4.186153 0.000000 8 Br 2.120838 4.054570 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.076236 1.150440 -0.012036 2 13 0 0.040178 -0.938970 -0.009186 3 17 0 1.953177 2.176370 -0.001714 4 17 0 -1.602520 2.470310 -0.021943 5 17 0 1.728360 -2.262934 -0.003689 6 17 0 -1.735835 -2.154014 -0.027663 7 35 0 1.922165 -0.118938 0.009514 8 35 0 -2.132094 -0.071192 0.025088 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6467082 0.4663617 0.2709933 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 2015.3541266430 Hartrees. Warning! Cl atom 5 may be hypervalent but has no d functions. Warning! Cl atom 6 may be hypervalent but has no d functions. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 3.57D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 0.000456 0.000102 -0.001545 Ang= 0.18 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7437.34830125 A.U. after 36 cycles NFock= 36 Conv=0.58D-08 -V/T= 1.9985 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.131672288 -0.063957344 0.003864340 2 13 0.130298387 -0.067432366 -0.012023410 3 17 -0.171403199 0.019888049 -0.002247754 4 17 -0.067598751 -0.018509087 -0.003804858 5 17 0.253713744 0.029347987 0.000198182 6 17 0.228670565 0.021294459 -0.004223337 7 35 -0.098097457 0.282733145 0.005594072 8 35 -0.143911000 -0.203364843 0.012642765 ------------------------------------------------------------------- Cartesian Forces: Max 0.282733145 RMS 0.120352288 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.392154137 RMS 0.175080363 Search for a local minimum. Step number 2 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.41D-01 DEPred=-4.94D-01 R= 6.92D-01 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 8.9988D-01 Trust test= 6.92D-01 RLast= 3.00D-01 DXMaxT set to 5.05D-01 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01304 0.01439 0.01890 0.02694 0.03707 Eigenvalues --- 0.07965 0.11566 0.12725 0.13266 0.15208 Eigenvalues --- 0.17591 0.22563 0.23125 0.23125 0.23127 Eigenvalues --- 0.23423 0.24472 3.56483 RFO step: Lambda=-9.77312772D-01 EMin= 1.30397261D-02 Quartic linear search produced a step of 1.51854. Maximum step size ( 0.505) exceeded in Quadratic search. -- Step size scaled by 0.559 Iteration 1 RMS(Cart)= 0.27647564 RMS(Int)= 0.03074010 Iteration 2 RMS(Cart)= 0.06713198 RMS(Int)= 0.00481043 Iteration 3 RMS(Cart)= 0.00150915 RMS(Int)= 0.00456119 Iteration 4 RMS(Cart)= 0.00000243 RMS(Int)= 0.00456119 Iteration 5 RMS(Cart)= 0.00000001 RMS(Int)= 0.00456119 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.04222 0.10978 0.02569 0.06758 0.09327 4.13550 R2 4.03552 0.05309 0.01551 0.02821 0.04372 4.07923 R3 4.23368 0.22763 0.06379 0.14129 0.19770 4.43138 R4 4.76963 0.10750 0.01870 0.09052 0.10195 4.87159 R5 4.05427 0.16579 0.04399 0.09452 0.13851 4.19278 R6 4.06660 0.12605 0.06271 0.02939 0.09210 4.15870 R7 3.87955 0.31272 0.11176 0.13736 0.25658 4.13613 R8 4.42090 0.22251 0.12753 0.03991 0.17554 4.59644 A1 1.97510 -0.18075 -0.03714 -0.11906 -0.15619 1.81891 A2 1.10260 0.24658 0.05014 0.16704 0.22300 1.32560 A3 1.17170 0.07007 0.01504 0.03635 0.05720 1.22889 A4 2.03367 -0.13583 -0.02807 -0.08420 -0.12389 1.90977 A5 1.87653 -0.39215 -0.18681 -0.09744 -0.28423 1.59230 A6 1.07598 0.36448 0.07629 0.23552 0.30680 1.38278 A7 2.85607 -0.03141 0.07136 -0.13220 -0.06579 2.79029 A8 0.98031 0.36096 0.25818 -0.03454 0.21868 1.19899 A9 2.35028 -0.33323 -0.14753 -0.10365 -0.24124 2.10904 A10 1.01327 0.23686 0.09110 0.09135 0.18182 1.19509 A11 0.88525 0.23200 0.08448 0.09633 0.18313 1.06837 A12 3.13627 0.11075 0.02207 0.08284 0.09910 3.23538 A13 3.20536 -0.06576 -0.01303 -0.04786 -0.06670 3.13867 A14 2.95252 -0.02767 -0.11053 0.13808 0.02257 2.97508 A15 3.11981 0.00027 -0.00086 0.00180 0.00132 3.12113 A16 3.14845 -0.00453 0.00094 -0.00699 -0.00642 3.14203 A17 3.14237 -0.00293 -0.00493 0.00425 -0.00052 3.14184 D1 -3.13740 0.00551 0.00093 0.00477 0.00532 -3.13208 D2 0.02598 0.00525 0.00179 0.00297 0.00401 0.02998 D3 3.12346 -0.00929 -0.00048 -0.00996 -0.01007 3.11339 D4 -0.02499 -0.00475 -0.00142 -0.00297 -0.00365 -0.02864 D5 3.13393 -0.00022 -0.00467 0.00617 0.00239 3.13632 D6 -0.03526 0.00308 0.00370 -0.00225 0.00035 -0.03491 D7 3.08957 -0.00079 -0.00290 0.00351 0.00104 3.09061 D8 -3.11441 0.00144 0.00124 -0.00053 0.00098 -3.11343 D9 0.03431 -0.00337 -0.00364 0.00194 -0.00061 0.03370 Item Value Threshold Converged? Maximum Force 0.392154 0.000450 NO RMS Force 0.175080 0.000300 NO Maximum Displacement 1.123177 0.001800 NO RMS Displacement 0.334234 0.001200 NO Predicted change in Energy=-6.074509D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.516735 1.536827 -0.005140 2 13 0 2.034272 1.660613 -0.006535 3 17 0 -1.969429 3.173518 -0.013164 4 17 0 -1.729790 -0.248704 -0.014919 5 17 0 3.606176 3.226454 -0.008951 6 17 0 3.553460 0.068469 -0.019846 7 35 0 0.806682 3.472644 0.006618 8 35 0 1.005697 -0.542744 0.052552 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 2.554009 0.000000 3 Cl 2.188411 4.280017 0.000000 4 Cl 2.158638 4.220631 3.430603 0.000000 5 Cl 4.455699 2.218726 5.575858 6.367833 0.000000 6 Cl 4.326983 2.200689 6.335904 5.292765 3.158444 7 Br 2.344986 2.188746 2.792250 4.503620 2.810342 8 Br 2.577933 2.432332 4.760913 2.752073 4.579642 6 7 8 6 Cl 0.000000 7 Br 4.374231 0.000000 8 Br 2.621053 4.020579 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.382587 0.000586 -0.010350 2 13 0 -1.167034 -0.149060 -0.011877 3 17 0 2.851796 -1.621313 -0.007164 4 17 0 2.577489 1.798220 -0.031327 5 17 0 -2.722988 -1.730738 -0.004659 6 17 0 -2.702274 1.427481 -0.036131 7 35 0 0.078851 -1.948430 0.013546 8 35 0 -0.160867 2.064948 0.033217 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4965428 0.4502289 0.2361686 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1856.6830408927 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.28D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.735565 0.000309 -0.000366 0.677454 Ang= 85.29 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7437.87232851 A.U. after 22 cycles NFock= 22 Conv=0.76D-08 -V/T= 1.9990 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.083403013 -0.023988351 0.000663716 2 13 0.129004887 -0.040397455 0.000043539 3 17 -0.054918665 -0.001408109 -0.000427075 4 17 -0.071112104 -0.000984940 -0.002371250 5 17 0.044152829 0.008006629 -0.000194797 6 17 0.087624842 0.007427140 -0.003385163 7 35 -0.018767973 0.058307527 0.000941119 8 35 -0.032580804 -0.006962441 0.004729911 ------------------------------------------------------------------- Cartesian Forces: Max 0.129004887 RMS 0.044968280 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.171844708 RMS 0.075444322 Search for a local minimum. Step number 3 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -5.24D-01 DEPred=-6.07D-01 R= 8.63D-01 TightC=F SS= 1.41D+00 RLast= 8.02D-01 DXNew= 8.4853D-01 2.4075D+00 Trust test= 8.63D-01 RLast= 8.02D-01 DXMaxT set to 8.49D-01 ITU= 1 1 0 Use linear search instead of GDIIS. Linear search step of 1.605 exceeds DXMaxT= 0.849 but not scaled. Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.32576597 RMS(Int)= 0.15002959 Iteration 2 RMS(Cart)= 0.26291325 RMS(Int)= 0.05307281 Iteration 3 RMS(Cart)= 0.10810484 RMS(Int)= 0.01682934 Iteration 4 RMS(Cart)= 0.00415843 RMS(Int)= 0.01634114 Iteration 5 RMS(Cart)= 0.00001787 RMS(Int)= 0.01634114 Iteration 6 RMS(Cart)= 0.00000015 RMS(Int)= 0.01634114 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.13550 0.03540 0.18655 0.00000 0.18655 4.32204 R2 4.07923 0.04080 0.08744 0.00000 0.08744 4.16667 R3 4.43138 0.08290 0.39541 0.00000 0.37519 4.80657 R4 4.87159 0.05781 0.20391 0.00000 0.18648 5.05807 R5 4.19278 0.03694 0.27702 0.00000 0.27702 4.46981 R6 4.15870 0.05513 0.18420 0.00000 0.18420 4.34290 R7 4.13613 0.09957 0.51317 0.00000 0.53009 4.66622 R8 4.59644 0.06331 0.35108 0.00000 0.37248 4.96893 A1 1.81891 -0.10287 -0.31238 0.00000 -0.31238 1.50653 A2 1.32560 0.09320 0.44600 0.00000 0.46792 1.79352 A3 1.22889 0.12516 0.11439 0.00000 0.13632 1.36521 A4 1.90977 -0.11544 -0.24779 0.00000 -0.29164 1.61814 A5 1.59230 -0.09811 -0.56846 0.00000 -0.56827 1.02403 A6 1.38278 0.08283 0.61360 0.00000 0.59232 1.97510 A7 2.79029 0.07371 -0.13157 0.00000 -0.15242 2.63787 A8 1.19899 0.17184 0.43736 0.00000 0.41646 1.61545 A9 2.10904 -0.15643 -0.48248 0.00000 -0.44052 1.66852 A10 1.19509 0.14014 0.36364 0.00000 0.35529 1.55038 A11 1.06837 0.13171 0.36625 0.00000 0.37649 1.44487 A12 3.23538 -0.02224 0.19821 0.00000 0.17628 3.41166 A13 3.13867 0.00973 -0.13339 0.00000 -0.15532 2.98335 A14 2.97508 -0.01529 0.04513 0.00000 0.02405 2.99913 A15 3.12113 0.00005 0.00264 0.00000 0.00344 3.12457 A16 3.14203 -0.00241 -0.01284 0.00000 -0.01359 3.12844 A17 3.14184 -0.00415 -0.00104 0.00000 -0.00141 3.14043 D1 -3.13208 0.00012 0.01065 0.00000 0.00984 -3.12223 D2 0.02998 0.00007 0.00801 0.00000 0.00640 0.03638 D3 3.11339 -0.00229 -0.02013 0.00000 -0.01938 3.09401 D4 -0.02864 0.00012 -0.00729 0.00000 -0.00580 -0.03443 D5 3.13632 -0.00425 0.00478 0.00000 0.01040 -3.13646 D6 -0.03491 0.00182 0.00071 0.00000 -0.00227 -0.03717 D7 3.09061 -0.00313 0.00209 0.00000 0.00595 3.09656 D8 -3.11343 0.00332 0.00196 0.00000 0.00242 -3.11101 D9 0.03370 -0.00210 -0.00122 0.00000 0.00190 0.03560 Item Value Threshold Converged? Maximum Force 0.171845 0.000450 NO RMS Force 0.075444 0.000300 NO Maximum Displacement 2.018443 0.001800 NO RMS Displacement 0.666588 0.001200 NO Predicted change in Energy=-3.964069D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.020117 1.648307 0.003636 2 13 0 2.486409 1.767943 -0.013556 3 17 0 -2.989267 2.811480 -0.017067 4 17 0 -2.260835 -0.174174 -0.024561 5 17 0 4.674291 2.666736 -0.004542 6 17 0 4.337642 0.406369 -0.038093 7 35 0 0.725239 3.498486 0.013741 8 35 0 0.836973 -0.278069 0.071057 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.508609 0.000000 3 Cl 2.287127 5.574227 0.000000 4 Cl 2.204907 5.129159 3.073239 0.000000 5 Cl 5.784768 2.365319 7.664935 7.494474 0.000000 6 Cl 5.499976 2.298162 7.711588 6.623980 2.285545 7 Br 2.543528 2.469259 3.777629 4.733555 4.035734 8 Br 2.676613 2.629442 4.918658 3.101025 4.837623 6 7 8 6 Cl 0.000000 7 Br 4.755347 0.000000 8 Br 3.568621 3.778642 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.858109 -0.124676 -0.005295 2 13 0 -1.649771 -0.194710 -0.019658 3 17 0 3.810563 -1.315763 -0.018873 4 17 0 3.124511 1.679790 -0.047097 5 17 0 -3.850164 -1.062311 -0.003044 6 17 0 -3.481539 1.192763 -0.052790 7 35 0 0.086715 -1.949808 0.018898 8 35 0 0.028550 1.828262 0.049532 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6207839 0.2579718 0.1822956 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1673.4154586237 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.42D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999915 -0.000433 -0.000579 0.012991 Ang= -1.49 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7437.94679467 A.U. after 24 cycles NFock= 24 Conv=0.36D-08 -V/T= 1.9992 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.034976561 -0.008432140 0.000359770 2 13 0.049278594 -0.017429534 0.000611565 3 17 0.021564811 0.014127604 0.000476197 4 17 -0.008156889 -0.016513513 -0.000832428 5 17 -0.000293096 0.164249104 0.002400860 6 17 -0.030385797 -0.166793618 -0.002622638 7 35 -0.012505537 0.004878166 -0.000253902 8 35 0.015474475 0.025913931 -0.000139426 ------------------------------------------------------------------- Cartesian Forces: Max 0.166793618 RMS 0.050767886 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.334921186 RMS 0.084062804 Search for a local minimum. Step number 4 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 ITU= 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01214 0.01439 0.02255 0.02693 0.04008 Eigenvalues --- 0.07702 0.10458 0.13006 0.13497 0.14860 Eigenvalues --- 0.18585 0.22647 0.23079 0.23125 0.23141 Eigenvalues --- 0.24060 0.53110 0.89028 RFO step: Lambda=-1.94371041D-01 EMin= 1.21421664D-02 Quartic linear search produced a step of -0.44965. Iteration 1 RMS(Cart)= 0.19851820 RMS(Int)= 0.06805373 Iteration 2 RMS(Cart)= 0.12954689 RMS(Int)= 0.01308702 Iteration 3 RMS(Cart)= 0.01573181 RMS(Int)= 0.00399582 Iteration 4 RMS(Cart)= 0.00015057 RMS(Int)= 0.00399445 Iteration 5 RMS(Cart)= 0.00000031 RMS(Int)= 0.00399445 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.32204 -0.01139 -0.08388 0.02552 -0.05836 4.26368 R2 4.16667 0.01826 -0.03932 0.06832 0.02900 4.19567 R3 4.80657 0.00359 -0.16870 0.10149 -0.06245 4.74412 R4 5.05807 0.00584 -0.08385 0.08950 0.00933 5.06740 R5 4.46981 0.06215 -0.12456 0.11007 -0.01449 4.45532 R6 4.34290 0.07436 -0.08283 0.15001 0.06718 4.41008 R7 4.66622 0.01369 -0.23836 0.13719 -0.10478 4.56145 R8 4.96893 -0.01131 -0.16749 0.08062 -0.09196 4.87697 A1 1.50653 0.02764 0.14046 -0.06587 0.07460 1.58113 A2 1.79352 -0.02729 -0.21040 0.05243 -0.16302 1.63050 A3 1.36521 0.01732 -0.06130 0.19110 0.12476 1.48997 A4 1.61814 -0.01765 0.13114 -0.17752 -0.03629 1.58185 A5 1.02403 0.33492 0.25553 0.27929 0.53437 1.55839 A6 1.97510 -0.16311 -0.26634 -0.08461 -0.34584 1.62927 A7 2.63787 0.18016 0.06854 0.27831 0.35161 2.98947 A8 1.61545 -0.15475 -0.18726 -0.00021 -0.18329 1.43217 A9 1.66852 -0.01684 0.19808 -0.19371 -0.00488 1.66364 A10 1.55038 0.01604 -0.15976 0.18795 0.03100 1.58138 A11 1.44487 0.01854 -0.16929 0.18342 0.01051 1.45538 A12 3.41166 -0.04494 -0.07927 -0.12510 -0.19931 3.21235 A13 2.98335 -0.00032 0.06984 0.01358 0.08847 3.07182 A14 2.99913 0.17181 -0.01081 0.19468 0.18853 3.18766 A15 3.12457 0.00010 -0.00155 -0.00102 -0.00222 3.12234 A16 3.12844 -0.00176 0.00611 -0.00653 -0.00077 3.12767 A17 3.14043 0.00011 0.00064 -0.01457 -0.01531 3.12512 D1 -3.12223 -0.00131 -0.00443 -0.00284 -0.00761 -3.12985 D2 0.03638 -0.00141 -0.00288 -0.00182 -0.00539 0.03100 D3 3.09401 -0.00054 0.00871 -0.00459 0.00448 3.09849 D4 -0.03443 0.00122 0.00261 0.00194 0.00525 -0.02918 D5 -3.13646 -0.00957 -0.00468 -0.00962 -0.02183 3.12490 D6 -0.03717 0.00134 0.00102 0.00220 0.00483 -0.03234 D7 3.09656 -0.01260 -0.00268 -0.02384 -0.02774 3.06882 D8 -3.11101 0.00752 -0.00109 0.01978 0.01725 -3.09375 D9 0.03560 -0.00137 -0.00085 -0.00268 -0.00512 0.03048 Item Value Threshold Converged? Maximum Force 0.334921 0.000450 NO RMS Force 0.084063 0.000300 NO Maximum Displacement 1.182164 0.001800 NO RMS Displacement 0.322878 0.001200 NO Predicted change in Energy=-2.121250D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.943901 1.537955 0.002486 2 13 0 2.554261 1.679611 0.007343 3 17 0 -2.654917 3.008581 -0.015164 4 17 0 -2.373171 -0.160612 -0.037401 5 17 0 4.273872 3.292310 -0.018365 6 17 0 4.170975 -0.002720 -0.039742 7 35 0 0.803061 3.340844 0.017488 8 35 0 0.960155 -0.348891 0.073972 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.501032 0.000000 3 Cl 2.256242 5.376077 0.000000 4 Cl 2.220255 5.260039 3.181769 0.000000 5 Cl 5.504848 2.357652 6.934597 7.490408 0.000000 6 Cl 5.342042 2.333714 7.460653 6.546050 3.296706 7 Br 2.510480 2.413815 3.474058 4.727754 3.471336 8 Br 2.681553 2.580782 4.934501 3.340496 4.924184 6 7 8 6 Cl 0.000000 7 Br 4.746108 0.000000 8 Br 3.231428 3.693510 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.800906 -0.063985 -0.006136 2 13 0 -1.699964 -0.097252 -0.000706 3 17 0 3.465576 -1.586953 -0.014597 4 17 0 3.282068 1.589245 -0.056345 5 17 0 -3.468676 -1.656073 -0.016644 6 17 0 -3.263829 1.633999 -0.058272 7 35 0 -0.001026 -1.811805 0.019802 8 35 0 -0.043820 1.881302 0.053585 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5584900 0.2877933 0.1899963 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1685.6432785170 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.39D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999966 0.000032 0.000543 0.008194 Ang= 0.94 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.09495218 A.U. after 15 cycles NFock= 15 Conv=0.52D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.036621421 -0.011499529 0.000250606 2 13 0.073088755 -0.016495881 -0.000804706 3 17 0.013175060 0.005455403 0.000456448 4 17 0.002424315 -0.007030603 -0.000486621 5 17 -0.024279038 -0.009770229 0.000710007 6 17 -0.011288289 0.011163743 -0.000119171 7 35 -0.007860371 0.001681109 -0.000296089 8 35 -0.008639011 0.026495987 0.000289526 ------------------------------------------------------------------- Cartesian Forces: Max 0.073088755 RMS 0.019500223 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.028710851 RMS 0.013680804 Search for a local minimum. Step number 5 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 DE= -1.48D-01 DEPred=-2.12D-01 R= 6.98D-01 TightC=F SS= 1.41D+00 RLast= 8.54D-01 DXNew= 1.4270D+00 2.5631D+00 Trust test= 6.98D-01 RLast= 8.54D-01 DXMaxT set to 1.43D+00 ITU= 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01275 0.01439 0.01697 0.02700 0.03795 Eigenvalues --- 0.07752 0.09642 0.13007 0.13493 0.15262 Eigenvalues --- 0.18062 0.22334 0.23103 0.23139 0.23168 Eigenvalues --- 0.26114 0.54096 0.92917 RFO step: Lambda=-1.40441956D-01 EMin= 1.27483987D-02 Quartic linear search produced a step of 0.92096. Iteration 1 RMS(Cart)= 0.02332437 RMS(Int)= 0.19178500 Iteration 2 RMS(Cart)= 0.01264949 RMS(Int)= 0.18532058 Iteration 3 RMS(Cart)= 0.01192655 RMS(Int)= 0.17924643 Iteration 4 RMS(Cart)= 0.01129699 RMS(Int)= 0.17351057 Iteration 5 RMS(Cart)= 0.01073706 RMS(Int)= 0.16807418 Iteration 6 RMS(Cart)= 0.01024488 RMS(Int)= 0.16290050 Iteration 7 RMS(Cart)= 0.00980553 RMS(Int)= 0.15796084 Iteration 8 RMS(Cart)= 0.00940870 RMS(Int)= 0.15323216 Iteration 9 RMS(Cart)= 0.00904691 RMS(Int)= 0.14869548 Iteration 10 RMS(Cart)= 0.00867522 RMS(Int)= 0.14435980 Iteration 11 RMS(Cart)= 0.00830950 RMS(Int)= 0.14022388 Iteration 12 RMS(Cart)= 0.00788192 RMS(Int)= 0.13632636 Iteration 13 RMS(Cart)= 0.00747259 RMS(Int)= 0.13265332 Iteration 14 RMS(Cart)= 0.00710119 RMS(Int)= 0.12918236 Iteration 15 RMS(Cart)= 0.00676146 RMS(Int)= 0.12589475 Iteration 16 RMS(Cart)= 0.00644765 RMS(Int)= 0.12277500 Iteration 17 RMS(Cart)= 0.00615289 RMS(Int)= 0.11981080 Iteration 18 RMS(Cart)= 0.00586039 RMS(Int)= 0.54821901 Iteration 19 RMS(Cart)= 0.15838816 RMS(Int)= 0.53801918 Iteration 20 RMS(Cart)= 0.04150381 RMS(Int)= 0.52481941 Iteration 21 RMS(Cart)= 0.01056050 RMS(Int)= 0.49835545 Iteration 22 RMS(Cart)= 0.00779094 RMS(Int)= 0.46779995 Iteration 23 RMS(Cart)= 0.00786198 RMS(Int)= 0.43566727 Iteration 24 RMS(Cart)= 0.00874223 RMS(Int)= 0.40462519 Iteration 25 RMS(Cart)= 0.00965704 RMS(Int)= 0.37530976 Iteration 26 RMS(Cart)= 0.00927822 RMS(Int)= 0.35090195 Iteration 27 RMS(Cart)= 0.00521953 RMS(Int)= 0.34010880 Iteration 28 RMS(Cart)= 0.00200162 RMS(Int)= 0.33664719 Iteration 29 RMS(Cart)= 0.00163982 RMS(Int)= 0.33386440 Iteration 30 RMS(Cart)= 0.00152705 RMS(Int)= 0.33128328 Iteration 31 RMS(Cart)= 0.00148054 RMS(Int)= 0.32877717 Iteration 32 RMS(Cart)= 0.00146172 RMS(Int)= 0.32628924 Iteration 33 RMS(Cart)= 0.00145776 RMS(Int)= 0.32378248 Iteration 34 RMS(Cart)= 0.00146343 RMS(Int)= 0.32122254 Iteration 35 RMS(Cart)= 0.00147650 RMS(Int)= 0.31856486 Iteration 36 RMS(Cart)= 0.00149643 RMS(Int)= 0.31573201 Iteration 37 RMS(Cart)= 0.00152431 RMS(Int)= 0.31254028 Iteration 38 RMS(Cart)= 0.00156464 RMS(Int)= 0.30825862 Iteration 39 RMS(Cart)= 0.00163823 RMS(Int)= 0.16031174 Iteration 40 RMS(Cart)= 0.00640725 RMS(Int)= 0.39700615 Iteration 41 RMS(Cart)= 0.00559689 RMS(Int)= 0.37916006 Iteration 42 RMS(Cart)= 0.00296380 RMS(Int)= 0.34822091 Iteration 43 RMS(Cart)= 0.00097601 RMS(Int)= 0.34548348 Iteration 44 RMS(Cart)= 0.00094896 RMS(Int)= 0.34289652 Iteration 45 RMS(Cart)= 0.00095170 RMS(Int)= 0.34035007 Iteration 46 RMS(Cart)= 0.00096690 RMS(Int)= 0.33778917 Iteration 47 RMS(Cart)= 0.00098937 RMS(Int)= 0.33516695 Iteration 48 RMS(Cart)= 0.00101762 RMS(Int)= 0.33242008 Iteration 49 RMS(Cart)= 0.00105177 RMS(Int)= 0.32942327 Iteration 50 RMS(Cart)= 0.00109448 RMS(Int)= 0.32579457 Iteration 51 RMS(Cart)= 0.00115577 RMS(Int)= 0.31808525 Iteration 52 RMS(Cart)= 0.00133202 RMS(Int)= 0.23510358 Iteration 53 RMS(Cart)= 0.00480684 RMS(Int)= 0.31867509 Iteration 54 RMS(Cart)= 0.00142854 RMS(Int)= 0.31528421 Iteration 55 RMS(Cart)= 0.00147643 RMS(Int)= 0.30996282 Iteration 56 RMS(Cart)= 0.00158119 RMS(Int)= 0.24034228 Iteration 57 RMS(Cart)= 0.00466185 RMS(Int)= 0.31352649 Iteration 58 RMS(Cart)= 0.00157812 RMS(Int)= 0.31001633 Iteration 59 RMS(Cart)= 0.00162701 RMS(Int)= 0.30385441 Iteration 60 RMS(Cart)= 0.00175462 RMS(Int)= 0.24803050 Iteration 61 RMS(Cart)= 0.00446684 RMS(Int)= 0.30552049 Iteration 62 RMS(Cart)= 0.00179008 RMS(Int)= 0.30120722 Iteration 63 RMS(Cart)= 0.00186018 RMS(Int)= 0.19074617 Iteration 64 RMS(Cart)= 0.00581457 RMS(Int)= 0.36475961 Iteration 65 RMS(Cart)= 0.00117385 RMS(Int)= 0.35504391 Iteration 66 RMS(Cart)= 0.00054528 RMS(Int)= 0.35243358 Iteration 67 RMS(Cart)= 0.00057394 RMS(Int)= 0.34983803 Iteration 68 RMS(Cart)= 0.00060921 RMS(Int)= 0.34718229 Iteration 69 RMS(Cart)= 0.00064899 RMS(Int)= 0.34437982 Iteration 70 RMS(Cart)= 0.00069401 RMS(Int)= 0.34124850 Iteration 71 RMS(Cart)= 0.00074857 RMS(Int)= 0.33707735 Iteration 72 RMS(Cart)= 0.00083073 RMS(Int)= 0.15710992 Iteration 73 RMS(Cart)= 0.00645400 RMS(Int)= 0.40045417 Iteration 74 RMS(Cart)= 0.00632436 RMS(Int)= 0.38370352 Iteration 75 RMS(Cart)= 0.00280660 RMS(Int)= 0.35158913 Iteration 76 RMS(Cart)= 0.00121141 RMS(Int)= 0.34805995 Iteration 77 RMS(Cart)= 0.00100686 RMS(Int)= 0.34529163 Iteration 78 RMS(Cart)= 0.00097132 RMS(Int)= 0.34269589 Iteration 79 RMS(Cart)= 0.00097047 RMS(Int)= 0.34014988 Iteration 80 RMS(Cart)= 0.00098352 RMS(Int)= 0.33759614 Iteration 81 RMS(Cart)= 0.00100440 RMS(Int)= 0.33498888 Iteration 82 RMS(Cart)= 0.00103123 RMS(Int)= 0.33227004 Iteration 83 RMS(Cart)= 0.00106383 RMS(Int)= 0.32933155 Iteration 84 RMS(Cart)= 0.00110432 RMS(Int)= 0.32587265 Iteration 85 RMS(Cart)= 0.00116044 RMS(Int)= 0.31996783 Iteration 86 RMS(Cart)= 0.00128547 RMS(Int)= 0.23199654 Iteration 87 RMS(Cart)= 0.00487872 RMS(Int)= 0.32200318 Iteration 88 RMS(Cart)= 0.00134822 RMS(Int)= 0.31885244 Iteration 89 RMS(Cart)= 0.00138992 RMS(Int)= 0.31471281 Iteration 90 RMS(Cart)= 0.00146125 RMS(Int)= 0.25811838 Iteration 91 RMS(Cart)= 0.00310643 RMS(Int)= 0.29584873 Iteration 92 RMS(Cart)= 0.00317258 RMS(Int)= 0.20389721 Iteration 93 RMS(Cart)= 0.00469513 RMS(Int)= 0.35109898 Iteration 94 RMS(Cart)= 0.00160737 RMS(Int)= 0.34777672 Iteration 95 RMS(Cart)= 0.00165024 RMS(Int)= 0.34290485 Iteration 96 RMS(Cart)= 0.00173941 RMS(Int)= 0.20515655 Iteration 97 RMS(Cart)= 0.00466966 RMS(Int)= 0.34966082 Iteration 98 RMS(Cart)= 0.00163634 RMS(Int)= 0.34615570 Iteration 99 RMS(Cart)= 0.00168457 RMS(Int)= 0.34009870 Iteration100 RMS(Cart)= 0.00180817 RMS(Int)= 0.21236787 New curvilinear step not converged. ITry= 1 IFail=1 DXMaxC= 1.31D+00 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02318667 RMS(Int)= 0.18321364 Iteration 2 RMS(Cart)= 0.01218009 RMS(Int)= 0.17703520 Iteration 3 RMS(Cart)= 0.01146938 RMS(Int)= 0.17123520 Iteration 4 RMS(Cart)= 0.01087521 RMS(Int)= 0.16575146 Iteration 5 RMS(Cart)= 0.01036209 RMS(Int)= 0.16054061 Iteration 6 RMS(Cart)= 0.00990935 RMS(Int)= 0.15557031 Iteration 7 RMS(Cart)= 0.00945554 RMS(Int)= 0.15084591 Iteration 8 RMS(Cart)= 0.00903211 RMS(Int)= 0.14635164 Iteration 9 RMS(Cart)= 0.00861129 RMS(Int)= 0.14209109 Iteration 10 RMS(Cart)= 0.00814916 RMS(Int)= 0.13808510 Iteration 11 RMS(Cart)= 0.00772579 RMS(Int)= 0.13430982 Iteration 12 RMS(Cart)= 0.00734375 RMS(Int)= 0.13074122 Iteration 13 RMS(Cart)= 0.00699660 RMS(Int)= 0.12735910 Iteration 14 RMS(Cart)= 0.00667912 RMS(Int)= 0.12414634 Iteration 15 RMS(Cart)= 0.00638700 RMS(Int)= 0.12108836 Iteration 16 RMS(Cart)= 0.00611648 RMS(Int)= 0.11817270 Iteration 17 RMS(Cart)= 0.00586398 RMS(Int)= 0.11538889 Iteration 18 RMS(Cart)= 0.00562529 RMS(Int)= 0.11272841 Iteration 19 RMS(Cart)= 0.00539172 RMS(Int)= 0.11018203 Iteration 20 RMS(Cart)= 0.00503562 RMS(Int)= 0.54761151 Iteration 21 RMS(Cart)= 0.15270019 RMS(Int)= 0.53479261 Iteration 22 RMS(Cart)= 0.03060309 RMS(Int)= 0.52009118 Iteration 23 RMS(Cart)= 0.00943267 RMS(Int)= 0.49318279 Iteration 24 RMS(Cart)= 0.00710921 RMS(Int)= 0.46224798 Iteration 25 RMS(Cart)= 0.00738040 RMS(Int)= 0.43003560 Iteration 26 RMS(Cart)= 0.00838959 RMS(Int)= 0.39899229 Iteration 27 RMS(Cart)= 0.00915089 RMS(Int)= 0.37031679 Iteration 28 RMS(Cart)= 0.00792372 RMS(Int)= 0.34934310 Iteration 29 RMS(Cart)= 0.00314840 RMS(Int)= 0.34313498 Iteration 30 RMS(Cart)= 0.00174573 RMS(Int)= 0.33996696 Iteration 31 RMS(Cart)= 0.00151883 RMS(Int)= 0.33724610 Iteration 32 RMS(Cart)= 0.00143859 RMS(Int)= 0.33467620 Iteration 33 RMS(Cart)= 0.00140486 RMS(Int)= 0.33216162 Iteration 34 RMS(Cart)= 0.00139235 RMS(Int)= 0.32965385 Iteration 35 RMS(Cart)= 0.00139198 RMS(Int)= 0.32711746 Iteration 36 RMS(Cart)= 0.00139992 RMS(Int)= 0.32451546 Iteration 37 RMS(Cart)= 0.00141464 RMS(Int)= 0.32179446 Iteration 38 RMS(Cart)= 0.00143615 RMS(Int)= 0.31885112 Iteration 39 RMS(Cart)= 0.00146636 RMS(Int)= 0.31540027 Iteration 40 RMS(Cart)= 0.00151249 RMS(Int)= 0.30975108 Iteration 41 RMS(Cart)= 0.00162174 RMS(Int)= 0.24045615 Iteration 42 RMS(Cart)= 0.00462941 RMS(Int)= 0.31243178 Iteration 43 RMS(Cart)= 0.00164338 RMS(Int)= 0.30871399 Iteration 44 RMS(Cart)= 0.00169436 RMS(Int)= 0.30031622 Iteration 45 RMS(Cart)= 0.00188038 RMS(Int)= 0.25183605 Iteration 46 RMS(Cart)= 0.00434966 RMS(Int)= 0.30038570 Iteration 47 RMS(Cart)= 0.00195375 RMS(Int)= 0.29431290 Iteration 48 RMS(Cart)= 0.00206943 RMS(Int)= 0.25633827 Iteration 49 RMS(Cart)= 0.00422013 RMS(Int)= 0.29610331 Iteration 50 RMS(Cart)= 0.00208269 RMS(Int)= 0.28997145 Iteration 51 RMS(Cart)= 0.00219826 RMS(Int)= 0.26070316 Iteration 52 RMS(Cart)= 0.00410376 RMS(Int)= 0.29161747 Iteration 53 RMS(Cart)= 0.00220707 RMS(Int)= 0.28368070 Iteration 54 RMS(Cart)= 0.00237420 RMS(Int)= 0.26817689 Iteration 55 RMS(Cart)= 0.00391238 RMS(Int)= 0.28344566 Iteration 56 RMS(Cart)= 0.00242557 RMS(Int)= 0.18798837 Iteration 57 RMS(Cart)= 0.00580623 RMS(Int)= 0.36662339 Iteration 58 RMS(Cart)= 0.00088443 RMS(Int)= 0.36042022 Iteration 59 RMS(Cart)= 0.00052444 RMS(Int)= 0.35772188 Iteration 60 RMS(Cart)= 0.00054233 RMS(Int)= 0.35511846 Iteration 61 RMS(Cart)= 0.00057185 RMS(Int)= 0.35250387 Iteration 62 RMS(Cart)= 0.00060663 RMS(Int)= 0.34980663 Iteration 63 RMS(Cart)= 0.00064575 RMS(Int)= 0.34692429 Iteration 64 RMS(Cart)= 0.00069079 RMS(Int)= 0.34360241 Iteration 65 RMS(Cart)= 0.00074741 RMS(Int)= 0.33848448 Iteration 66 RMS(Cart)= 0.00084995 RMS(Int)= 0.21147493 Iteration 67 RMS(Cart)= 0.00530550 RMS(Int)= 0.34222176 Iteration 68 RMS(Cart)= 0.00091983 RMS(Int)= 0.33955625 Iteration 69 RMS(Cart)= 0.00094923 RMS(Int)= 0.33673588 Iteration 70 RMS(Cart)= 0.00098479 RMS(Int)= 0.33358589 Iteration 71 RMS(Cart)= 0.00103041 RMS(Int)= 0.32943694 Iteration 72 RMS(Cart)= 0.00110338 RMS(Int)= 0.21761549 Iteration 73 RMS(Cart)= 0.00427939 RMS(Int)= 0.33606519 Iteration 74 RMS(Cart)= 0.00205629 RMS(Int)= 0.33186704 Iteration 75 RMS(Cart)= 0.00211397 RMS(Int)= 0.28209850 Iteration 76 RMS(Cart)= 0.00348240 RMS(Int)= 0.27089363 Iteration 77 RMS(Cart)= 0.00282570 RMS(Int)= 0.25762821 Iteration 78 RMS(Cart)= 0.00314020 RMS(Int)= 0.29500251 Iteration 79 RMS(Cart)= 0.00318203 RMS(Int)= 0.24864354 Iteration 80 RMS(Cart)= 0.00340642 RMS(Int)= 0.30406986 Iteration 81 RMS(Cart)= 0.00292782 RMS(Int)= 0.19932282 Iteration 82 RMS(Cart)= 0.00477773 RMS(Int)= 0.35485052 Iteration 83 RMS(Cart)= 0.00155011 RMS(Int)= 0.35161400 Iteration 84 RMS(Cart)= 0.00158820 RMS(Int)= 0.34717717 Iteration 85 RMS(Cart)= 0.00166138 RMS(Int)= 0.18400115 Iteration 86 RMS(Cart)= 0.00516910 RMS(Int)= 0.37079010 Iteration 87 RMS(Cart)= 0.00114548 RMS(Int)= 0.36798902 Iteration 88 RMS(Cart)= 0.00117703 RMS(Int)= 0.36488774 Iteration 89 RMS(Cart)= 0.00121842 RMS(Int)= 0.36095442 Iteration 90 RMS(Cart)= 0.00128352 RMS(Int)= 0.34561417 Iteration 91 RMS(Cart)= 0.00166380 RMS(Int)= 0.20813837 Iteration 92 RMS(Cart)= 0.00458046 RMS(Int)= 0.34485527 Iteration 93 RMS(Cart)= 0.00177423 RMS(Int)= 0.33983409 Iteration 94 RMS(Cart)= 0.00186125 RMS(Int)= 0.20824622 Iteration 95 RMS(Cart)= 0.00455169 RMS(Int)= 0.34544641 Iteration 96 RMS(Cart)= 0.00178598 RMS(Int)= 0.34156689 Iteration 97 RMS(Cart)= 0.00183938 RMS(Int)= 0.32993509 Iteration 98 RMS(Cart)= 0.00211533 RMS(Int)= 0.22316969 Iteration 99 RMS(Cart)= 0.00417166 RMS(Int)= 0.32894563 Iteration100 RMS(Cart)= 0.00220278 RMS(Int)= 0.30955993 New curvilinear step not converged. ITry= 2 IFail=1 DXMaxC= 1.24D+00 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02295053 RMS(Int)= 0.17496905 Iteration 2 RMS(Cart)= 0.01168825 RMS(Int)= 0.16909011 Iteration 3 RMS(Cart)= 0.01103622 RMS(Int)= 0.16355585 Iteration 4 RMS(Cart)= 0.01044465 RMS(Int)= 0.15833960 Iteration 5 RMS(Cart)= 0.00990976 RMS(Int)= 0.15341291 Iteration 6 RMS(Cart)= 0.00944143 RMS(Int)= 0.14873896 Iteration 7 RMS(Cart)= 0.00895057 RMS(Int)= 0.14433916 Iteration 8 RMS(Cart)= 0.00845000 RMS(Int)= 0.14021196 Iteration 9 RMS(Cart)= 0.00800507 RMS(Int)= 0.13632536 Iteration 10 RMS(Cart)= 0.00760592 RMS(Int)= 0.13265311 Iteration 11 RMS(Cart)= 0.00724505 RMS(Int)= 0.12917337 Iteration 12 RMS(Cart)= 0.00691659 RMS(Int)= 0.12586772 Iteration 13 RMS(Cart)= 0.00661585 RMS(Int)= 0.12272048 Iteration 14 RMS(Cart)= 0.00633900 RMS(Int)= 0.11971818 Iteration 15 RMS(Cart)= 0.00608287 RMS(Int)= 0.11684918 Iteration 16 RMS(Cart)= 0.00584474 RMS(Int)= 0.11410338 Iteration 17 RMS(Cart)= 0.00558618 RMS(Int)= 0.11148594 Iteration 18 RMS(Cart)= 0.00532141 RMS(Int)= 0.10899684 Iteration 19 RMS(Cart)= 0.00507435 RMS(Int)= 0.10662698 Iteration 20 RMS(Cart)= 0.00484024 RMS(Int)= 0.10436897 Iteration 21 RMS(Cart)= 0.00460423 RMS(Int)= 0.54598628 Iteration 22 RMS(Cart)= 0.14617124 RMS(Int)= 0.53753379 Iteration 23 RMS(Cart)= 0.02712368 RMS(Int)= 0.52375433 Iteration 24 RMS(Cart)= 0.00889018 RMS(Int)= 0.49705178 Iteration 25 RMS(Cart)= 0.00662613 RMS(Int)= 0.46613213 Iteration 26 RMS(Cart)= 0.00681248 RMS(Int)= 0.43360802 Iteration 27 RMS(Cart)= 0.00778959 RMS(Int)= 0.40222774 Iteration 28 RMS(Cart)= 0.00855012 RMS(Int)= 0.37339720 Iteration 29 RMS(Cart)= 0.00726071 RMS(Int)= 0.35305379 Iteration 30 RMS(Cart)= 0.00270805 RMS(Int)= 0.34746396 Iteration 31 RMS(Cart)= 0.00162727 RMS(Int)= 0.34433126 Iteration 32 RMS(Cart)= 0.00143302 RMS(Int)= 0.34160710 Iteration 33 RMS(Cart)= 0.00136274 RMS(Int)= 0.33902475 Iteration 34 RMS(Cart)= 0.00133329 RMS(Int)= 0.33649421 Iteration 35 RMS(Cart)= 0.00132287 RMS(Int)= 0.33396833 Iteration 36 RMS(Cart)= 0.00132352 RMS(Int)= 0.33141139 Iteration 37 RMS(Cart)= 0.00133188 RMS(Int)= 0.32878462 Iteration 38 RMS(Cart)= 0.00134669 RMS(Int)= 0.32602986 Iteration 39 RMS(Cart)= 0.00136813 RMS(Int)= 0.32302948 Iteration 40 RMS(Cart)= 0.00139848 RMS(Int)= 0.31943461 Iteration 41 RMS(Cart)= 0.00144640 RMS(Int)= 0.31257893 Iteration 42 RMS(Cart)= 0.00158372 RMS(Int)= 0.23823578 Iteration 43 RMS(Cart)= 0.00464941 RMS(Int)= 0.31363905 Iteration 44 RMS(Cart)= 0.00165355 RMS(Int)= 0.30973533 Iteration 45 RMS(Cart)= 0.00170593 RMS(Int)= 0.29720700 Iteration 46 RMS(Cart)= 0.00199950 RMS(Int)= 0.25458743 Iteration 47 RMS(Cart)= 0.00425570 RMS(Int)= 0.29627733 Iteration 48 RMS(Cart)= 0.00209367 RMS(Int)= 0.28508769 Iteration 49 RMS(Cart)= 0.00234782 RMS(Int)= 0.26650568 Iteration 50 RMS(Cart)= 0.00394686 RMS(Int)= 0.28374744 Iteration 51 RMS(Cart)= 0.00243272 RMS(Int)= 0.25473630 Iteration 52 RMS(Cart)= 0.00421251 RMS(Int)= 0.29730032 Iteration 53 RMS(Cart)= 0.00210585 RMS(Int)= 0.29252107 Iteration 54 RMS(Cart)= 0.00217603 RMS(Int)= 0.25037243 Iteration 55 RMS(Cart)= 0.00432575 RMS(Int)= 0.30165562 Iteration 56 RMS(Cart)= 0.00198803 RMS(Int)= 0.29722937 Iteration 57 RMS(Cart)= 0.00204972 RMS(Int)= 0.22378965 Iteration 58 RMS(Cart)= 0.00496501 RMS(Int)= 0.32876116 Iteration 59 RMS(Cart)= 0.00130592 RMS(Int)= 0.32580200 Iteration 60 RMS(Cart)= 0.00133561 RMS(Int)= 0.32231855 Iteration 61 RMS(Cart)= 0.00138096 RMS(Int)= 0.31642274 Iteration 62 RMS(Cart)= 0.00149207 RMS(Int)= 0.23351933 Iteration 63 RMS(Cart)= 0.00475061 RMS(Int)= 0.31857656 Iteration 64 RMS(Cart)= 0.00154122 RMS(Int)= 0.31509259 Iteration 65 RMS(Cart)= 0.00158277 RMS(Int)= 0.30924665 Iteration 66 RMS(Cart)= 0.00169027 RMS(Int)= 0.24043431 Iteration 67 RMS(Cart)= 0.00458321 RMS(Int)= 0.31150479 Iteration 68 RMS(Cart)= 0.00172102 RMS(Int)= 0.30756833 Iteration 69 RMS(Cart)= 0.00177274 RMS(Int)= 0.29380399 Iteration 70 RMS(Cart)= 0.00210068 RMS(Int)= 0.25803784 Iteration 71 RMS(Cart)= 0.00416373 RMS(Int)= 0.29255808 Iteration 72 RMS(Cart)= 0.00219698 RMS(Int)= 0.26613763 Iteration 73 RMS(Cart)= 0.00288845 RMS(Int)= 0.28590181 Iteration 74 RMS(Cart)= 0.00343879 RMS(Int)= 0.25831617 Iteration 75 RMS(Cart)= 0.00312843 RMS(Int)= 0.29322221 Iteration 76 RMS(Cart)= 0.00322744 RMS(Int)= 0.25276985 Iteration 77 RMS(Cart)= 0.00329044 RMS(Int)= 0.29873739 Iteration 78 RMS(Cart)= 0.00307538 RMS(Int)= 0.24492986 Iteration 79 RMS(Cart)= 0.00350856 RMS(Int)= 0.30693188 Iteration 80 RMS(Cart)= 0.00285814 RMS(Int)= 0.14816547 Iteration 81 RMS(Cart)= 0.00642128 RMS(Int)= 0.40781337 Iteration 82 RMS(Cart)= 0.00510531 RMS(Int)= 0.38926361 Iteration 83 RMS(Cart)= 0.00279233 RMS(Int)= 0.35774381 Iteration 84 RMS(Cart)= 0.00096091 RMS(Int)= 0.35476693 Iteration 85 RMS(Cart)= 0.00089601 RMS(Int)= 0.35209095 Iteration 86 RMS(Cart)= 0.00088575 RMS(Int)= 0.34950571 Iteration 87 RMS(Cart)= 0.00089331 RMS(Int)= 0.34693606 Iteration 88 RMS(Cart)= 0.00090967 RMS(Int)= 0.34433368 Iteration 89 RMS(Cart)= 0.00093189 RMS(Int)= 0.34164732 Iteration 90 RMS(Cart)= 0.00095942 RMS(Int)= 0.33879424 Iteration 91 RMS(Cart)= 0.00099310 RMS(Int)= 0.33557947 Iteration 92 RMS(Cart)= 0.00103735 RMS(Int)= 0.33118978 Iteration 93 RMS(Cart)= 0.00111252 RMS(Int)= 0.20041466 Iteration 94 RMS(Cart)= 0.00547950 RMS(Int)= 0.35274863 Iteration 95 RMS(Cart)= 0.00076416 RMS(Int)= 0.35015749 Iteration 96 RMS(Cart)= 0.00078792 RMS(Int)= 0.34751120 Iteration 97 RMS(Cart)= 0.00081660 RMS(Int)= 0.34474235 Iteration 98 RMS(Cart)= 0.00085057 RMS(Int)= 0.34171851 Iteration 99 RMS(Cart)= 0.00089213 RMS(Int)= 0.33802551 Iteration100 RMS(Cart)= 0.00095127 RMS(Int)= 0.32929005 New curvilinear step not converged. ITry= 3 IFail=1 DXMaxC= 1.16D+00 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02269569 RMS(Int)= 0.16706300 Iteration 2 RMS(Cart)= 0.01113886 RMS(Int)= 0.16153084 Iteration 3 RMS(Cart)= 0.01047901 RMS(Int)= 0.15635104 Iteration 4 RMS(Cart)= 0.00990902 RMS(Int)= 0.15147872 Iteration 5 RMS(Cart)= 0.00934068 RMS(Int)= 0.14691912 Iteration 6 RMS(Cart)= 0.00879635 RMS(Int)= 0.14265290 Iteration 7 RMS(Cart)= 0.00831889 RMS(Int)= 0.13864243 Iteration 8 RMS(Cart)= 0.00789472 RMS(Int)= 0.13485774 Iteration 9 RMS(Cart)= 0.00751408 RMS(Int)= 0.13127442 Iteration 10 RMS(Cart)= 0.00716968 RMS(Int)= 0.12787220 Iteration 11 RMS(Cart)= 0.00685591 RMS(Int)= 0.12463402 Iteration 12 RMS(Cart)= 0.00656832 RMS(Int)= 0.12154533 Iteration 13 RMS(Cart)= 0.00630335 RMS(Int)= 0.11859363 Iteration 14 RMS(Cart)= 0.00601478 RMS(Int)= 0.11578445 Iteration 15 RMS(Cart)= 0.00572599 RMS(Int)= 0.11311480 Iteration 16 RMS(Cart)= 0.00546002 RMS(Int)= 0.11057335 Iteration 17 RMS(Cart)= 0.00521408 RMS(Int)= 0.10815015 Iteration 18 RMS(Cart)= 0.00498572 RMS(Int)= 0.10583649 Iteration 19 RMS(Cart)= 0.00477277 RMS(Int)= 0.10362473 Iteration 20 RMS(Cart)= 0.00457313 RMS(Int)= 0.10150823 Iteration 21 RMS(Cart)= 0.00438444 RMS(Int)= 0.09948138 Iteration 22 RMS(Cart)= 0.00420274 RMS(Int)= 0.09753952 Iteration 23 RMS(Cart)= 0.00400995 RMS(Int)= 0.54505891 Iteration 24 RMS(Cart)= 0.13898673 RMS(Int)= 0.53652029 Iteration 25 RMS(Cart)= 0.02348203 RMS(Int)= 0.52228355 Iteration 26 RMS(Cart)= 0.00802455 RMS(Int)= 0.49542784 Iteration 27 RMS(Cart)= 0.00601359 RMS(Int)= 0.46427581 Iteration 28 RMS(Cart)= 0.00628359 RMS(Int)= 0.43159740 Iteration 29 RMS(Cart)= 0.00731366 RMS(Int)= 0.40018759 Iteration 30 RMS(Cart)= 0.00789118 RMS(Int)= 0.37220145 Iteration 31 RMS(Cart)= 0.00586689 RMS(Int)= 0.35561355 Iteration 32 RMS(Cart)= 0.00194203 RMS(Int)= 0.35149012 Iteration 33 RMS(Cart)= 0.00144777 RMS(Int)= 0.34852514 Iteration 34 RMS(Cart)= 0.00132220 RMS(Int)= 0.34584277 Iteration 35 RMS(Cart)= 0.00127325 RMS(Int)= 0.34326574 Iteration 36 RMS(Cart)= 0.00125323 RMS(Int)= 0.34072366 Iteration 37 RMS(Cart)= 0.00124784 RMS(Int)= 0.33817464 Iteration 38 RMS(Cart)= 0.00125151 RMS(Int)= 0.33558258 Iteration 39 RMS(Cart)= 0.00126192 RMS(Int)= 0.33290307 Iteration 40 RMS(Cart)= 0.00127839 RMS(Int)= 0.33006131 Iteration 41 RMS(Cart)= 0.00130174 RMS(Int)= 0.32688456 Iteration 42 RMS(Cart)= 0.00133566 RMS(Int)= 0.32271695 Iteration 43 RMS(Cart)= 0.00139639 RMS(Int)= 0.26880542 Iteration 44 RMS(Cart)= 0.00281245 RMS(Int)= 0.28250056 Iteration 45 RMS(Cart)= 0.00353395 RMS(Int)= 0.26091402 Iteration 46 RMS(Cart)= 0.00305412 RMS(Int)= 0.28970914 Iteration 47 RMS(Cart)= 0.00332667 RMS(Int)= 0.25676351 Iteration 48 RMS(Cart)= 0.00317831 RMS(Int)= 0.29356082 Iteration 49 RMS(Cart)= 0.00321795 RMS(Int)= 0.25336969 Iteration 50 RMS(Cart)= 0.00327458 RMS(Int)= 0.29697736 Iteration 51 RMS(Cart)= 0.00312643 RMS(Int)= 0.24906016 Iteration 52 RMS(Cart)= 0.00339080 RMS(Int)= 0.30157681 Iteration 53 RMS(Cart)= 0.00300849 RMS(Int)= 0.23935526 Iteration 54 RMS(Cart)= 0.00364850 RMS(Int)= 0.31182197 Iteration 55 RMS(Cart)= 0.00274760 RMS(Int)= 0.29403104 Iteration 56 RMS(Cart)= 0.00315381 RMS(Int)= 0.25707243 Iteration 57 RMS(Cart)= 0.00322092 RMS(Int)= 0.28099341 Iteration 58 RMS(Cart)= 0.00350528 RMS(Int)= 0.27001668 Iteration 59 RMS(Cart)= 0.00286903 RMS(Int)= 0.23189411 Iteration 60 RMS(Cart)= 0.00384363 RMS(Int)= 0.31963896 Iteration 61 RMS(Cart)= 0.00254976 RMS(Int)= 0.31244670 Iteration 62 RMS(Cart)= 0.00267213 RMS(Int)= 0.23754660 Iteration 63 RMS(Cart)= 0.00372798 RMS(Int)= 0.31245976 Iteration 64 RMS(Cart)= 0.00270137 RMS(Int)= 0.22989385 Iteration 65 RMS(Cart)= 0.00390807 RMS(Int)= 0.32144478 Iteration 66 RMS(Cart)= 0.00249187 RMS(Int)= 0.31316686 Iteration 67 RMS(Cart)= 0.00264537 RMS(Int)= 0.23729772 Iteration 68 RMS(Cart)= 0.00374090 RMS(Int)= 0.31235415 Iteration 69 RMS(Cart)= 0.00269831 RMS(Int)= 0.23293602 Iteration 70 RMS(Cart)= 0.00383129 RMS(Int)= 0.31820555 Iteration 71 RMS(Cart)= 0.00257148 RMS(Int)= 0.30597385 Iteration 72 RMS(Cart)= 0.00283147 RMS(Int)= 0.24499693 Iteration 73 RMS(Cart)= 0.00354445 RMS(Int)= 0.30256192 Iteration 74 RMS(Cart)= 0.00294415 RMS(Int)= 0.24721296 Iteration 75 RMS(Cart)= 0.00346696 RMS(Int)= 0.30220866 Iteration 76 RMS(Cart)= 0.00296823 RMS(Int)= 0.24583559 Iteration 77 RMS(Cart)= 0.00349144 RMS(Int)= 0.30453693 Iteration 78 RMS(Cart)= 0.00291946 RMS(Int)= 0.23828036 Iteration 79 RMS(Cart)= 0.00368360 RMS(Int)= 0.31285786 Iteration 80 RMS(Cart)= 0.00271474 RMS(Int)= 0.29490796 Iteration 81 RMS(Cart)= 0.00312649 RMS(Int)= 0.25620405 Iteration 82 RMS(Cart)= 0.00324777 RMS(Int)= 0.28307467 Iteration 83 RMS(Cart)= 0.00344808 RMS(Int)= 0.26789706 Iteration 84 RMS(Cart)= 0.00292819 RMS(Int)= 0.08646504 Iteration 85 RMS(Cart)= 0.00681212 RMS(Int)= 0.47847952 Iteration 86 RMS(Cart)= 0.01045553 RMS(Int)= 0.46516616 Iteration 87 RMS(Cart)= 0.00393359 RMS(Int)= 0.43673254 Iteration 88 RMS(Cart)= 0.00505306 RMS(Int)= 0.40632322 Iteration 89 RMS(Cart)= 0.00365447 RMS(Int)= 0.39428809 Iteration 90 RMS(Cart)= 0.00126908 RMS(Int)= 0.39113581 Iteration 91 RMS(Cart)= 0.00113211 RMS(Int)= 0.38839550 Iteration 92 RMS(Cart)= 0.00109159 RMS(Int)= 0.38578776 Iteration 93 RMS(Cart)= 0.00108089 RMS(Int)= 0.38322279 Iteration 94 RMS(Cart)= 0.00108391 RMS(Int)= 0.38065202 Iteration 95 RMS(Cart)= 0.00109513 RMS(Int)= 0.37803491 Iteration 96 RMS(Cart)= 0.00111233 RMS(Int)= 0.37532094 Iteration 97 RMS(Cart)= 0.00113516 RMS(Int)= 0.37242128 Iteration 98 RMS(Cart)= 0.00116483 RMS(Int)= 0.36911368 Iteration 99 RMS(Cart)= 0.00120623 RMS(Int)= 0.36436880 Iteration100 RMS(Cart)= 0.00128505 RMS(Int)= 0.18015938 New curvilinear step not converged. ITry= 4 IFail=1 DXMaxC= 1.09D+00 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02241048 RMS(Int)= 0.15959494 Iteration 2 RMS(Cart)= 0.01053021 RMS(Int)= 0.15445700 Iteration 3 RMS(Cart)= 0.00982540 RMS(Int)= 0.14969819 Iteration 4 RMS(Cart)= 0.00920250 RMS(Int)= 0.14527026 Iteration 5 RMS(Cart)= 0.00867218 RMS(Int)= 0.14112279 Iteration 6 RMS(Cart)= 0.00821027 RMS(Int)= 0.13721838 Iteration 7 RMS(Cart)= 0.00780144 RMS(Int)= 0.13352799 Iteration 8 RMS(Cart)= 0.00743525 RMS(Int)= 0.13002828 Iteration 9 RMS(Cart)= 0.00710416 RMS(Int)= 0.12670007 Iteration 10 RMS(Cart)= 0.00680252 RMS(Int)= 0.12352730 Iteration 11 RMS(Cart)= 0.00647893 RMS(Int)= 0.12051377 Iteration 12 RMS(Cart)= 0.00615728 RMS(Int)= 0.11765487 Iteration 13 RMS(Cart)= 0.00586315 RMS(Int)= 0.11493704 Iteration 14 RMS(Cart)= 0.00559294 RMS(Int)= 0.11234849 Iteration 15 RMS(Cart)= 0.00534371 RMS(Int)= 0.10987891 Iteration 16 RMS(Cart)= 0.00511297 RMS(Int)= 0.10751925 Iteration 17 RMS(Cart)= 0.00489861 RMS(Int)= 0.10526149 Iteration 18 RMS(Cart)= 0.00469882 RMS(Int)= 0.10309852 Iteration 19 RMS(Cart)= 0.00451201 RMS(Int)= 0.10102401 Iteration 20 RMS(Cart)= 0.00433676 RMS(Int)= 0.09903234 Iteration 21 RMS(Cart)= 0.00417175 RMS(Int)= 0.09711849 Iteration 22 RMS(Cart)= 0.00401565 RMS(Int)= 0.09527810 Iteration 23 RMS(Cart)= 0.00382676 RMS(Int)= 0.09352513 Iteration 24 RMS(Cart)= 0.00364833 RMS(Int)= 0.09185386 Iteration 25 RMS(Cart)= 0.00345738 RMS(Int)= 0.54415269 Iteration 26 RMS(Cart)= 0.13044017 RMS(Int)= 0.53682571 Iteration 27 RMS(Cart)= 0.02190136 RMS(Int)= 0.52343710 Iteration 28 RMS(Cart)= 0.00736766 RMS(Int)= 0.49678263 Iteration 29 RMS(Cart)= 0.00544931 RMS(Int)= 0.46560591 Iteration 30 RMS(Cart)= 0.00569963 RMS(Int)= 0.43271293 Iteration 31 RMS(Cart)= 0.00673524 RMS(Int)= 0.40119016 Iteration 32 RMS(Cart)= 0.00718210 RMS(Int)= 0.37391517 Iteration 33 RMS(Cart)= 0.00472341 RMS(Int)= 0.36020314 Iteration 34 RMS(Cart)= 0.00162550 RMS(Int)= 0.35652321 Iteration 35 RMS(Cart)= 0.00131273 RMS(Int)= 0.35362984 Iteration 36 RMS(Cart)= 0.00122091 RMS(Int)= 0.35096165 Iteration 37 RMS(Cart)= 0.00118423 RMS(Int)= 0.34837943 Iteration 38 RMS(Cart)= 0.00117009 RMS(Int)= 0.34582209 Iteration 39 RMS(Cart)= 0.00116800 RMS(Int)= 0.34324980 Iteration 40 RMS(Cart)= 0.00117364 RMS(Int)= 0.34062479 Iteration 41 RMS(Cart)= 0.00118536 RMS(Int)= 0.33789613 Iteration 42 RMS(Cart)= 0.00120291 RMS(Int)= 0.33496999 Iteration 43 RMS(Cart)= 0.00122764 RMS(Int)= 0.33160229 Iteration 44 RMS(Cart)= 0.00126486 RMS(Int)= 0.32656012 Iteration 45 RMS(Cart)= 0.00134422 RMS(Int)= 0.21898833 Iteration 46 RMS(Cart)= 0.00498045 RMS(Int)= 0.33181435 Iteration 47 RMS(Cart)= 0.00134315 RMS(Int)= 0.32874870 Iteration 48 RMS(Cart)= 0.00136928 RMS(Int)= 0.32498746 Iteration 49 RMS(Cart)= 0.00141442 RMS(Int)= 0.31603084 Iteration 50 RMS(Cart)= 0.00159094 RMS(Int)= 0.23390869 Iteration 51 RMS(Cart)= 0.00467091 RMS(Int)= 0.31615692 Iteration 52 RMS(Cart)= 0.00168806 RMS(Int)= 0.31198389 Iteration 53 RMS(Cart)= 0.00173883 RMS(Int)= 0.27169568 Iteration 54 RMS(Cart)= 0.00275045 RMS(Int)= 0.27876118 Iteration 55 RMS(Cart)= 0.00361688 RMS(Int)= 0.26563104 Iteration 56 RMS(Cart)= 0.00294255 RMS(Int)= 0.28383240 Iteration 57 RMS(Cart)= 0.00346660 RMS(Int)= 0.26372933 Iteration 58 RMS(Cart)= 0.00300923 RMS(Int)= 0.28466538 Iteration 59 RMS(Cart)= 0.00343178 RMS(Int)= 0.26408569 Iteration 60 RMS(Cart)= 0.00301187 RMS(Int)= 0.28267319 Iteration 61 RMS(Cart)= 0.00347137 RMS(Int)= 0.26681148 Iteration 62 RMS(Cart)= 0.00295150 RMS(Int)= 0.27500202 Iteration 63 RMS(Cart)= 0.00365393 RMS(Int)= 0.27508317 Iteration 64 RMS(Cart)= 0.00274883 RMS(Int)= 0.25305716 Iteration 65 RMS(Cart)= 0.00326622 RMS(Int)= 0.29731121 Iteration 66 RMS(Cart)= 0.00314029 RMS(Int)= 0.21692431 Iteration 67 RMS(Cart)= 0.00421342 RMS(Int)= 0.33402246 Iteration 68 RMS(Cart)= 0.00220846 RMS(Int)= 0.32919294 Iteration 69 RMS(Cart)= 0.00226780 RMS(Int)= 0.21274253 Iteration 70 RMS(Cart)= 0.00432657 RMS(Int)= 0.33814908 Iteration 71 RMS(Cart)= 0.00209721 RMS(Int)= 0.33340918 Iteration 72 RMS(Cart)= 0.00215624 RMS(Int)= 0.20692253 Iteration 73 RMS(Cart)= 0.00446935 RMS(Int)= 0.34415461 Iteration 74 RMS(Cart)= 0.00195028 RMS(Int)= 0.34000754 Iteration 75 RMS(Cart)= 0.00199604 RMS(Int)= 0.31155651 Iteration 76 RMS(Cart)= 0.00268388 RMS(Int)= 0.23907617 Iteration 77 RMS(Cart)= 0.00370348 RMS(Int)= 0.30693653 Iteration 78 RMS(Cart)= 0.00283497 RMS(Int)= 0.24217219 Iteration 79 RMS(Cart)= 0.00359709 RMS(Int)= 0.30664488 Iteration 80 RMS(Cart)= 0.00286421 RMS(Int)= 0.23933342 Iteration 81 RMS(Cart)= 0.00365256 RMS(Int)= 0.31064685 Iteration 82 RMS(Cart)= 0.00278097 RMS(Int)= 0.12233903 Iteration 83 RMS(Cart)= 0.00620134 RMS(Int)= 0.43380773 Iteration 84 RMS(Cart)= 0.00134359 RMS(Int)= 0.40063720 Iteration 85 RMS(Cart)= 0.00070455 RMS(Int)= 0.39803049 Iteration 86 RMS(Cart)= 0.00072247 RMS(Int)= 0.39540494 Iteration 87 RMS(Cart)= 0.00074569 RMS(Int)= 0.39270576 Iteration 88 RMS(Cart)= 0.00077338 RMS(Int)= 0.38985148 Iteration 89 RMS(Cart)= 0.00080646 RMS(Int)= 0.38665748 Iteration 90 RMS(Cart)= 0.00084830 RMS(Int)= 0.38239102 Iteration 91 RMS(Cart)= 0.00091552 RMS(Int)= 0.11648979 Iteration 92 RMS(Cart)= 0.00631372 RMS(Int)= 0.44039619 Iteration 93 RMS(Cart)= 0.00143851 RMS(Int)= 0.41127517 Iteration 94 RMS(Cart)= 0.00081240 RMS(Int)= 0.40742606 Iteration 95 RMS(Cart)= 0.00065744 RMS(Int)= 0.40460510 Iteration 96 RMS(Cart)= 0.00064771 RMS(Int)= 0.40195492 Iteration 97 RMS(Cart)= 0.00065963 RMS(Int)= 0.39934400 Iteration 98 RMS(Cart)= 0.00067991 RMS(Int)= 0.39670914 Iteration 99 RMS(Cart)= 0.00070515 RMS(Int)= 0.39399178 Iteration100 RMS(Cart)= 0.00073472 RMS(Int)= 0.39110031 New curvilinear step not converged. ITry= 5 IFail=1 DXMaxC= 1.02D+00 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02213877 RMS(Int)= 0.15257423 Iteration 2 RMS(Cart)= 0.00972767 RMS(Int)= 0.14793719 Iteration 3 RMS(Cart)= 0.00908781 RMS(Int)= 0.14363184 Iteration 4 RMS(Cart)= 0.00855901 RMS(Int)= 0.13960011 Iteration 5 RMS(Cart)= 0.00810572 RMS(Int)= 0.13580219 Iteration 6 RMS(Cart)= 0.00770810 RMS(Int)= 0.13220858 Iteration 7 RMS(Cart)= 0.00735374 RMS(Int)= 0.12879631 Iteration 8 RMS(Cart)= 0.00698599 RMS(Int)= 0.12556434 Iteration 9 RMS(Cart)= 0.00662176 RMS(Int)= 0.12250635 Iteration 10 RMS(Cart)= 0.00629197 RMS(Int)= 0.11960548 Iteration 11 RMS(Cart)= 0.00599151 RMS(Int)= 0.11684742 Iteration 12 RMS(Cart)= 0.00571630 RMS(Int)= 0.11421987 Iteration 13 RMS(Cart)= 0.00546308 RMS(Int)= 0.11171214 Iteration 14 RMS(Cart)= 0.00522913 RMS(Int)= 0.10931490 Iteration 15 RMS(Cart)= 0.00501221 RMS(Int)= 0.10701990 Iteration 16 RMS(Cart)= 0.00481042 RMS(Int)= 0.10481984 Iteration 17 RMS(Cart)= 0.00462212 RMS(Int)= 0.10270822 Iteration 18 RMS(Cart)= 0.00444290 RMS(Int)= 0.10068053 Iteration 19 RMS(Cart)= 0.00423207 RMS(Int)= 0.09874994 Iteration 20 RMS(Cart)= 0.00403823 RMS(Int)= 0.09690858 Iteration 21 RMS(Cart)= 0.00385932 RMS(Int)= 0.09514955 Iteration 22 RMS(Cart)= 0.00369355 RMS(Int)= 0.09346679 Iteration 23 RMS(Cart)= 0.00353935 RMS(Int)= 0.09185495 Iteration 24 RMS(Cart)= 0.00339529 RMS(Int)= 0.09030931 Iteration 25 RMS(Cart)= 0.00325990 RMS(Int)= 0.08882582 Iteration 26 RMS(Cart)= 0.00312311 RMS(Int)= 0.08740400 Iteration 27 RMS(Cart)= 0.00298278 RMS(Int)= 0.08604096 Iteration 28 RMS(Cart)= 0.00279335 RMS(Int)= 0.54363941 Iteration 29 RMS(Cart)= 0.12123633 RMS(Int)= 0.53382916 Iteration 30 RMS(Cart)= 0.02007177 RMS(Int)= 0.52084694 Iteration 31 RMS(Cart)= 0.00657246 RMS(Int)= 0.49424369 Iteration 32 RMS(Cart)= 0.00480527 RMS(Int)= 0.46283797 Iteration 33 RMS(Cart)= 0.00515887 RMS(Int)= 0.42984559 Iteration 34 RMS(Cart)= 0.00622636 RMS(Int)= 0.39862680 Iteration 35 RMS(Cart)= 0.00624661 RMS(Int)= 0.37384777 Iteration 36 RMS(Cart)= 0.00296500 RMS(Int)= 0.36548185 Iteration 37 RMS(Cart)= 0.00136689 RMS(Int)= 0.36213711 Iteration 38 RMS(Cart)= 0.00117745 RMS(Int)= 0.35931353 Iteration 39 RMS(Cart)= 0.00111457 RMS(Int)= 0.35666115 Iteration 40 RMS(Cart)= 0.00108949 RMS(Int)= 0.35407397 Iteration 41 RMS(Cart)= 0.00108123 RMS(Int)= 0.35149944 Iteration 42 RMS(Cart)= 0.00108249 RMS(Int)= 0.34889903 Iteration 43 RMS(Cart)= 0.00109040 RMS(Int)= 0.34623142 Iteration 44 RMS(Cart)= 0.00110374 RMS(Int)= 0.34343421 Iteration 45 RMS(Cart)= 0.00112283 RMS(Int)= 0.34037808 Iteration 46 RMS(Cart)= 0.00114991 RMS(Int)= 0.33665853 Iteration 47 RMS(Cart)= 0.00119378 RMS(Int)= 0.32834425 Iteration 48 RMS(Cart)= 0.00134653 RMS(Int)= 0.22085606 Iteration 49 RMS(Cart)= 0.00490501 RMS(Int)= 0.32878596 Iteration 50 RMS(Cart)= 0.00145652 RMS(Int)= 0.32535660 Iteration 51 RMS(Cart)= 0.00148735 RMS(Int)= 0.32002006 Iteration 52 RMS(Cart)= 0.00156607 RMS(Int)= 0.22588937 Iteration 53 RMS(Cart)= 0.00478485 RMS(Int)= 0.32388521 Iteration 54 RMS(Cart)= 0.00158114 RMS(Int)= 0.32042197 Iteration 55 RMS(Cart)= 0.00161051 RMS(Int)= 0.31488458 Iteration 56 RMS(Cart)= 0.00169270 RMS(Int)= 0.23156853 Iteration 57 RMS(Cart)= 0.00466405 RMS(Int)= 0.31805569 Iteration 58 RMS(Cart)= 0.00171290 RMS(Int)= 0.31426205 Iteration 59 RMS(Cart)= 0.00174882 RMS(Int)= 0.30513486 Iteration 60 RMS(Cart)= 0.00191992 RMS(Int)= 0.24387993 Iteration 61 RMS(Cart)= 0.00440882 RMS(Int)= 0.30498538 Iteration 62 RMS(Cart)= 0.00200213 RMS(Int)= 0.29855698 Iteration 63 RMS(Cart)= 0.00210223 RMS(Int)= 0.24914766 Iteration 64 RMS(Cart)= 0.00427784 RMS(Int)= 0.29992851 Iteration 65 RMS(Cart)= 0.00213479 RMS(Int)= 0.29337161 Iteration 66 RMS(Cart)= 0.00223642 RMS(Int)= 0.25439939 Iteration 67 RMS(Cart)= 0.00415706 RMS(Int)= 0.29451903 Iteration 68 RMS(Cart)= 0.00226563 RMS(Int)= 0.28545279 Iteration 69 RMS(Cart)= 0.00243103 RMS(Int)= 0.26337847 Iteration 70 RMS(Cart)= 0.00395755 RMS(Int)= 0.28468355 Iteration 71 RMS(Cart)= 0.00249642 RMS(Int)= 0.24521001 Iteration 72 RMS(Cart)= 0.00434385 RMS(Int)= 0.30448100 Iteration 73 RMS(Cart)= 0.00204968 RMS(Int)= 0.30011253 Iteration 74 RMS(Cart)= 0.00209504 RMS(Int)= 0.16926924 Iteration 75 RMS(Cart)= 0.00583388 RMS(Int)= 0.38231789 Iteration 76 RMS(Cart)= 0.00067087 RMS(Int)= 0.37833678 Iteration 77 RMS(Cart)= 0.00053561 RMS(Int)= 0.37552172 Iteration 78 RMS(Cart)= 0.00053394 RMS(Int)= 0.37286868 Iteration 79 RMS(Cart)= 0.00054902 RMS(Int)= 0.37024607 Iteration 80 RMS(Cart)= 0.00057064 RMS(Int)= 0.36758821 Iteration 81 RMS(Cart)= 0.00059638 RMS(Int)= 0.36482818 Iteration 82 RMS(Cart)= 0.00062608 RMS(Int)= 0.36184859 Iteration 83 RMS(Cart)= 0.00066161 RMS(Int)= 0.35831615 Iteration 84 RMS(Cart)= 0.00070931 RMS(Int)= 0.35177317 Iteration 85 RMS(Cart)= 0.00082160 RMS(Int)= 0.19731842 Iteration 86 RMS(Cart)= 0.00535679 RMS(Int)= 0.35311731 Iteration 87 RMS(Cart)= 0.00096237 RMS(Int)= 0.35039406 Iteration 88 RMS(Cart)= 0.00098138 RMS(Int)= 0.34749181 Iteration 89 RMS(Cart)= 0.00100653 RMS(Int)= 0.34419307 Iteration 90 RMS(Cart)= 0.00104214 RMS(Int)= 0.33950527 Iteration 91 RMS(Cart)= 0.00111037 RMS(Int)= 0.20168183 Iteration 92 RMS(Cart)= 0.00526448 RMS(Int)= 0.34873987 Iteration 93 RMS(Cart)= 0.00105970 RMS(Int)= 0.34598146 Iteration 94 RMS(Cart)= 0.00107788 RMS(Int)= 0.34300594 Iteration 95 RMS(Cart)= 0.00110316 RMS(Int)= 0.33951750 Iteration 96 RMS(Cart)= 0.00114173 RMS(Int)= 0.33368062 Iteration 97 RMS(Cart)= 0.00123578 RMS(Int)= 0.21397998 Iteration 98 RMS(Cart)= 0.00503149 RMS(Int)= 0.33600516 Iteration 99 RMS(Cart)= 0.00131450 RMS(Int)= 0.33293431 Iteration100 RMS(Cart)= 0.00133764 RMS(Int)= 0.32917044 New curvilinear step not converged. ITry= 6 IFail=1 DXMaxC= 9.55D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02178017 RMS(Int)= 0.14610760 Iteration 2 RMS(Cart)= 0.00900854 RMS(Int)= 0.14191055 Iteration 3 RMS(Cart)= 0.00845790 RMS(Int)= 0.13799120 Iteration 4 RMS(Cart)= 0.00800220 RMS(Int)= 0.13430160 Iteration 5 RMS(Cart)= 0.00756082 RMS(Int)= 0.13082693 Iteration 6 RMS(Cart)= 0.00713330 RMS(Int)= 0.12755466 Iteration 7 RMS(Cart)= 0.00675408 RMS(Int)= 0.12446153 Iteration 8 RMS(Cart)= 0.00641380 RMS(Int)= 0.12152878 Iteration 9 RMS(Cart)= 0.00610576 RMS(Int)= 0.11874089 Iteration 10 RMS(Cart)= 0.00582496 RMS(Int)= 0.11608477 Iteration 11 RMS(Cart)= 0.00556752 RMS(Int)= 0.11354925 Iteration 12 RMS(Cart)= 0.00533033 RMS(Int)= 0.11112460 Iteration 13 RMS(Cart)= 0.00511089 RMS(Int)= 0.10880236 Iteration 14 RMS(Cart)= 0.00490142 RMS(Int)= 0.10657747 Iteration 15 RMS(Cart)= 0.00466024 RMS(Int)= 0.10446267 Iteration 16 RMS(Cart)= 0.00444001 RMS(Int)= 0.10244835 Iteration 17 RMS(Cart)= 0.00423808 RMS(Int)= 0.10052614 Iteration 18 RMS(Cart)= 0.00405220 RMS(Int)= 0.09868869 Iteration 19 RMS(Cart)= 0.00388049 RMS(Int)= 0.09692955 Iteration 20 RMS(Cart)= 0.00372133 RMS(Int)= 0.09524297 Iteration 21 RMS(Cart)= 0.00357336 RMS(Int)= 0.09362385 Iteration 22 RMS(Cart)= 0.00343537 RMS(Int)= 0.09206764 Iteration 23 RMS(Cart)= 0.00330634 RMS(Int)= 0.09057025 Iteration 24 RMS(Cart)= 0.00318533 RMS(Int)= 0.08912804 Iteration 25 RMS(Cart)= 0.00307153 RMS(Int)= 0.08773771 Iteration 26 RMS(Cart)= 0.00296417 RMS(Int)= 0.08639632 Iteration 27 RMS(Cart)= 0.00285769 RMS(Int)= 0.08510299 Iteration 28 RMS(Cart)= 0.00274667 RMS(Int)= 0.08385886 Iteration 29 RMS(Cart)= 0.00264080 RMS(Int)= 0.08266146 Iteration 30 RMS(Cart)= 0.00253674 RMS(Int)= 0.08150462 Iteration 31 RMS(Cart)= 0.00236089 RMS(Int)= 0.54312696 Iteration 32 RMS(Cart)= 0.11432043 RMS(Int)= 0.53268587 Iteration 33 RMS(Cart)= 0.01880689 RMS(Int)= 0.52101994 Iteration 34 RMS(Cart)= 0.00588669 RMS(Int)= 0.49472555 Iteration 35 RMS(Cart)= 0.00420325 RMS(Int)= 0.46327974 Iteration 36 RMS(Cart)= 0.00456781 RMS(Int)= 0.43014176 Iteration 37 RMS(Cart)= 0.00561626 RMS(Int)= 0.39923309 Iteration 38 RMS(Cart)= 0.00524650 RMS(Int)= 0.37719387 Iteration 39 RMS(Cart)= 0.00188308 RMS(Int)= 0.37176985 Iteration 40 RMS(Cart)= 0.00118344 RMS(Int)= 0.36860263 Iteration 41 RMS(Cart)= 0.00105781 RMS(Int)= 0.36581984 Iteration 42 RMS(Cart)= 0.00101338 RMS(Int)= 0.36317371 Iteration 43 RMS(Cart)= 0.00099634 RMS(Int)= 0.36057772 Iteration 44 RMS(Cart)= 0.00099226 RMS(Int)= 0.35798431 Iteration 45 RMS(Cart)= 0.00099600 RMS(Int)= 0.35535471 Iteration 46 RMS(Cart)= 0.00100552 RMS(Int)= 0.35264256 Iteration 47 RMS(Cart)= 0.00102003 RMS(Int)= 0.34977042 Iteration 48 RMS(Cart)= 0.00104035 RMS(Int)= 0.34655788 Iteration 49 RMS(Cart)= 0.00106977 RMS(Int)= 0.34229849 Iteration 50 RMS(Cart)= 0.00112326 RMS(Int)= 0.05634554 Iteration 51 RMS(Cart)= 0.00405345 RMS(Int)= 0.52121745 Iteration 52 RMS(Cart)= 0.01123707 RMS(Int)= 0.51209179 Iteration 53 RMS(Cart)= 0.00502436 RMS(Int)= 0.48604842 Iteration 54 RMS(Cart)= 0.00365229 RMS(Int)= 0.45276581 Iteration 55 RMS(Cart)= 0.00511862 RMS(Int)= 0.42344961 Iteration 56 RMS(Cart)= 0.00343012 RMS(Int)= 0.41069203 Iteration 57 RMS(Cart)= 0.00118798 RMS(Int)= 0.40732725 Iteration 58 RMS(Cart)= 0.00102828 RMS(Int)= 0.40449160 Iteration 59 RMS(Cart)= 0.00097963 RMS(Int)= 0.40182358 Iteration 60 RMS(Cart)= 0.00096294 RMS(Int)= 0.39921694 Iteration 61 RMS(Cart)= 0.00096037 RMS(Int)= 0.39661850 Iteration 62 RMS(Cart)= 0.00096585 RMS(Int)= 0.39398771 Iteration 63 RMS(Cart)= 0.00097711 RMS(Int)= 0.39127828 Iteration 64 RMS(Cart)= 0.00099327 RMS(Int)= 0.38841509 Iteration 65 RMS(Cart)= 0.00101504 RMS(Int)= 0.38522721 Iteration 66 RMS(Cart)= 0.00104549 RMS(Int)= 0.38107287 Iteration 67 RMS(Cart)= 0.00109818 RMS(Int)= 0.33834328 Iteration 68 RMS(Cart)= 0.00205516 RMS(Int)= 0.21123177 Iteration 69 RMS(Cart)= 0.00434629 RMS(Int)= 0.33646251 Iteration 70 RMS(Cart)= 0.00216762 RMS(Int)= 0.30828835 Iteration 71 RMS(Cart)= 0.00279836 RMS(Int)= 0.24073241 Iteration 72 RMS(Cart)= 0.00364776 RMS(Int)= 0.30275334 Iteration 73 RMS(Cart)= 0.00296038 RMS(Int)= 0.24516468 Iteration 74 RMS(Cart)= 0.00351707 RMS(Int)= 0.30122559 Iteration 75 RMS(Cart)= 0.00301448 RMS(Int)= 0.24539158 Iteration 76 RMS(Cart)= 0.00349694 RMS(Int)= 0.30216650 Iteration 77 RMS(Cart)= 0.00300533 RMS(Int)= 0.24202760 Iteration 78 RMS(Cart)= 0.00356692 RMS(Int)= 0.30629977 Iteration 79 RMS(Cart)= 0.00291951 RMS(Int)= 0.22295635 Iteration 80 RMS(Cart)= 0.00401708 RMS(Int)= 0.32619978 Iteration 81 RMS(Cart)= 0.00246115 RMS(Int)= 0.31969776 Iteration 82 RMS(Cart)= 0.00254806 RMS(Int)= 0.22741815 Iteration 83 RMS(Cart)= 0.00393726 RMS(Int)= 0.32079243 Iteration 84 RMS(Cart)= 0.00256220 RMS(Int)= 0.25895677 Iteration 85 RMS(Cart)= 0.00399135 RMS(Int)= 0.28997309 Iteration 86 RMS(Cart)= 0.00244608 RMS(Int)= 0.28407853 Iteration 87 RMS(Cart)= 0.00251911 RMS(Int)= 0.26190553 Iteration 88 RMS(Cart)= 0.00395148 RMS(Int)= 0.28625879 Iteration 89 RMS(Cart)= 0.00250736 RMS(Int)= 0.26955947 Iteration 90 RMS(Cart)= 0.00285458 RMS(Int)= 0.27909682 Iteration 91 RMS(Cart)= 0.00358329 RMS(Int)= 0.26490978 Iteration 92 RMS(Cart)= 0.00299361 RMS(Int)= 0.28277644 Iteration 93 RMS(Cart)= 0.00347738 RMS(Int)= 0.26357783 Iteration 94 RMS(Cart)= 0.00304128 RMS(Int)= 0.28296758 Iteration 95 RMS(Cart)= 0.00346016 RMS(Int)= 0.26442148 Iteration 96 RMS(Cart)= 0.00303193 RMS(Int)= 0.28017115 Iteration 97 RMS(Cart)= 0.00351581 RMS(Int)= 0.26790540 Iteration 98 RMS(Cart)= 0.00295766 RMS(Int)= 0.26901228 Iteration 99 RMS(Cart)= 0.00376725 RMS(Int)= 0.27965092 Iteration100 RMS(Cart)= 0.00268502 RMS(Int)= 0.26795477 New curvilinear step not converged. ITry= 7 IFail=1 DXMaxC= 8.86D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02142286 RMS(Int)= 0.14016501 Iteration 2 RMS(Cart)= 0.00835135 RMS(Int)= 0.13635805 Iteration 3 RMS(Cart)= 0.00777344 RMS(Int)= 0.13282111 Iteration 4 RMS(Cart)= 0.00729798 RMS(Int)= 0.12950608 Iteration 5 RMS(Cart)= 0.00689030 RMS(Int)= 0.12638105 Iteration 6 RMS(Cart)= 0.00653209 RMS(Int)= 0.12342266 Iteration 7 RMS(Cart)= 0.00621228 RMS(Int)= 0.12061279 Iteration 8 RMS(Cart)= 0.00592349 RMS(Int)= 0.11793678 Iteration 9 RMS(Cart)= 0.00566048 RMS(Int)= 0.11538249 Iteration 10 RMS(Cart)= 0.00540805 RMS(Int)= 0.11294429 Iteration 11 RMS(Cart)= 0.00512830 RMS(Int)= 0.11063250 Iteration 12 RMS(Cart)= 0.00487513 RMS(Int)= 0.10843505 Iteration 13 RMS(Cart)= 0.00464477 RMS(Int)= 0.10634159 Iteration 14 RMS(Cart)= 0.00443415 RMS(Int)= 0.10434319 Iteration 15 RMS(Cart)= 0.00424076 RMS(Int)= 0.10243206 Iteration 16 RMS(Cart)= 0.00406250 RMS(Int)= 0.10060137 Iteration 17 RMS(Cart)= 0.00389759 RMS(Int)= 0.09884508 Iteration 18 RMS(Cart)= 0.00374453 RMS(Int)= 0.09715787 Iteration 19 RMS(Cart)= 0.00360206 RMS(Int)= 0.09553494 Iteration 20 RMS(Cart)= 0.00346907 RMS(Int)= 0.09397204 Iteration 21 RMS(Cart)= 0.00334463 RMS(Int)= 0.09246532 Iteration 22 RMS(Cart)= 0.00322786 RMS(Int)= 0.09101132 Iteration 23 RMS(Cart)= 0.00311807 RMS(Int)= 0.08960692 Iteration 24 RMS(Cart)= 0.00301461 RMS(Int)= 0.08824926 Iteration 25 RMS(Cart)= 0.00291690 RMS(Int)= 0.08693575 Iteration 26 RMS(Cart)= 0.00282443 RMS(Int)= 0.08566405 Iteration 27 RMS(Cart)= 0.00273673 RMS(Int)= 0.08443200 Iteration 28 RMS(Cart)= 0.00265277 RMS(Int)= 0.08323788 Iteration 29 RMS(Cart)= 0.00255945 RMS(Int)= 0.08208480 Iteration 30 RMS(Cart)= 0.00247098 RMS(Int)= 0.08097065 Iteration 31 RMS(Cart)= 0.00238677 RMS(Int)= 0.07989357 Iteration 32 RMS(Cart)= 0.00230542 RMS(Int)= 0.07885221 Iteration 33 RMS(Cart)= 0.00221885 RMS(Int)= 0.07784798 Iteration 34 RMS(Cart)= 0.00212281 RMS(Int)= 0.54241234 Iteration 35 RMS(Cart)= 0.10932549 RMS(Int)= 0.53454916 Iteration 36 RMS(Cart)= 0.01762063 RMS(Int)= 0.52293063 Iteration 37 RMS(Cart)= 0.00507226 RMS(Int)= 0.49667954 Iteration 38 RMS(Cart)= 0.00361322 RMS(Int)= 0.46516925 Iteration 39 RMS(Cart)= 0.00397198 RMS(Int)= 0.43189441 Iteration 40 RMS(Cart)= 0.00496371 RMS(Int)= 0.40145739 Iteration 41 RMS(Cart)= 0.00418054 RMS(Int)= 0.38283073 Iteration 42 RMS(Cart)= 0.00130554 RMS(Int)= 0.37879528 Iteration 43 RMS(Cart)= 0.00101026 RMS(Int)= 0.37579641 Iteration 44 RMS(Cart)= 0.00093535 RMS(Int)= 0.37305997 Iteration 45 RMS(Cart)= 0.00090776 RMS(Int)= 0.37042268 Iteration 46 RMS(Cart)= 0.00089851 RMS(Int)= 0.36781680 Iteration 47 RMS(Cart)= 0.00089880 RMS(Int)= 0.36519924 Iteration 48 RMS(Cart)= 0.00090524 RMS(Int)= 0.36252904 Iteration 49 RMS(Cart)= 0.00091665 RMS(Int)= 0.35974958 Iteration 50 RMS(Cart)= 0.00093279 RMS(Int)= 0.35675210 Iteration 51 RMS(Cart)= 0.00093494 RMS(Int)= 0.35327563 Iteration 52 RMS(Cart)= 0.00093997 RMS(Int)= 0.34785412 Iteration 53 RMS(Cart)= 0.00098680 RMS(Int)= 0.19732820 Iteration 54 RMS(Cart)= 0.00513869 RMS(Int)= 0.35151602 Iteration 55 RMS(Cart)= 0.00114376 RMS(Int)= 0.34864677 Iteration 56 RMS(Cart)= 0.00115772 RMS(Int)= 0.34545045 Iteration 57 RMS(Cart)= 0.00115967 RMS(Int)= 0.34135372 Iteration 58 RMS(Cart)= 0.00116766 RMS(Int)= 0.32219212 Iteration 59 RMS(Cart)= 0.00150676 RMS(Int)= 0.22616458 Iteration 60 RMS(Cart)= 0.00465457 RMS(Int)= 0.32145703 Iteration 61 RMS(Cart)= 0.00172431 RMS(Int)= 0.31687298 Iteration 62 RMS(Cart)= 0.00172167 RMS(Int)= 0.20948115 Iteration 63 RMS(Cart)= 0.00490257 RMS(Int)= 0.33919034 Iteration 64 RMS(Cart)= 0.00139257 RMS(Int)= 0.33611201 Iteration 65 RMS(Cart)= 0.00140753 RMS(Int)= 0.33236039 Iteration 66 RMS(Cart)= 0.00140198 RMS(Int)= 0.32455878 Iteration 67 RMS(Cart)= 0.00148216 RMS(Int)= 0.22278541 Iteration 68 RMS(Cart)= 0.00469478 RMS(Int)= 0.32522839 Iteration 69 RMS(Cart)= 0.00165715 RMS(Int)= 0.32132889 Iteration 70 RMS(Cart)= 0.00165595 RMS(Int)= 0.31096420 Iteration 71 RMS(Cart)= 0.00178573 RMS(Int)= 0.23676861 Iteration 72 RMS(Cart)= 0.00443398 RMS(Int)= 0.31067869 Iteration 73 RMS(Cart)= 0.00196337 RMS(Int)= 0.30467060 Iteration 74 RMS(Cart)= 0.00197731 RMS(Int)= 0.24079775 Iteration 75 RMS(Cart)= 0.00431776 RMS(Int)= 0.30702151 Iteration 76 RMS(Cart)= 0.00206070 RMS(Int)= 0.30161947 Iteration 77 RMS(Cart)= 0.00206749 RMS(Int)= 0.24205648 Iteration 78 RMS(Cart)= 0.00427898 RMS(Int)= 0.30588710 Iteration 79 RMS(Cart)= 0.00209209 RMS(Int)= 0.30069166 Iteration 80 RMS(Cart)= 0.00209723 RMS(Int)= 0.24178359 Iteration 81 RMS(Cart)= 0.00427921 RMS(Int)= 0.30622352 Iteration 82 RMS(Cart)= 0.00208727 RMS(Int)= 0.30121255 Iteration 83 RMS(Cart)= 0.00209105 RMS(Int)= 0.23956668 Iteration 84 RMS(Cart)= 0.00431975 RMS(Int)= 0.30852662 Iteration 85 RMS(Cart)= 0.00203854 RMS(Int)= 0.30387676 Iteration 86 RMS(Cart)= 0.00204033 RMS(Int)= 0.22722202 Iteration 87 RMS(Cart)= 0.00456005 RMS(Int)= 0.32114157 Iteration 88 RMS(Cart)= 0.00176815 RMS(Int)= 0.31746106 Iteration 89 RMS(Cart)= 0.00177444 RMS(Int)= 0.31035049 Iteration 90 RMS(Cart)= 0.00182329 RMS(Int)= 0.23641551 Iteration 91 RMS(Cart)= 0.00442132 RMS(Int)= 0.31131436 Iteration 92 RMS(Cart)= 0.00195941 RMS(Int)= 0.30612416 Iteration 93 RMS(Cart)= 0.00196314 RMS(Int)= 0.23640416 Iteration 94 RMS(Cart)= 0.00439015 RMS(Int)= 0.31168217 Iteration 95 RMS(Cart)= 0.00196632 RMS(Int)= 0.30722327 Iteration 96 RMS(Cart)= 0.00196710 RMS(Int)= 0.18933311 Iteration 97 RMS(Cart)= 0.00525699 RMS(Int)= 0.35981886 Iteration 98 RMS(Cart)= 0.00100413 RMS(Int)= 0.35709592 Iteration 99 RMS(Cart)= 0.00101559 RMS(Int)= 0.35421004 Iteration100 RMS(Cart)= 0.00103257 RMS(Int)= 0.35097563 New curvilinear step not converged. ITry= 8 IFail=1 DXMaxC= 8.21D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02099202 RMS(Int)= 0.13482453 Iteration 2 RMS(Cart)= 0.00755582 RMS(Int)= 0.13142819 Iteration 3 RMS(Cart)= 0.00706853 RMS(Int)= 0.12825537 Iteration 4 RMS(Cart)= 0.00666767 RMS(Int)= 0.12526632 Iteration 5 RMS(Cart)= 0.00632295 RMS(Int)= 0.12243513 Iteration 6 RMS(Cart)= 0.00599293 RMS(Int)= 0.11975360 Iteration 7 RMS(Cart)= 0.00565662 RMS(Int)= 0.11722245 Iteration 8 RMS(Cart)= 0.00535778 RMS(Int)= 0.11482487 Iteration 9 RMS(Cart)= 0.00508969 RMS(Int)= 0.11254702 Iteration 10 RMS(Cart)= 0.00484737 RMS(Int)= 0.11037738 Iteration 11 RMS(Cart)= 0.00462693 RMS(Int)= 0.10830615 Iteration 12 RMS(Cart)= 0.00442532 RMS(Int)= 0.10632490 Iteration 13 RMS(Cart)= 0.00424007 RMS(Int)= 0.10442632 Iteration 14 RMS(Cart)= 0.00406914 RMS(Int)= 0.10260404 Iteration 15 RMS(Cart)= 0.00391084 RMS(Int)= 0.10085242 Iteration 16 RMS(Cart)= 0.00376374 RMS(Int)= 0.09916647 Iteration 17 RMS(Cart)= 0.00362663 RMS(Int)= 0.09754175 Iteration 18 RMS(Cart)= 0.00349850 RMS(Int)= 0.09597426 Iteration 19 RMS(Cart)= 0.00337842 RMS(Int)= 0.09446043 Iteration 20 RMS(Cart)= 0.00326564 RMS(Int)= 0.09299700 Iteration 21 RMS(Cart)= 0.00315948 RMS(Int)= 0.09158106 Iteration 22 RMS(Cart)= 0.00305932 RMS(Int)= 0.09020992 Iteration 23 RMS(Cart)= 0.00296466 RMS(Int)= 0.08888116 Iteration 24 RMS(Cart)= 0.00287503 RMS(Int)= 0.08759253 Iteration 25 RMS(Cart)= 0.00279000 RMS(Int)= 0.08634200 Iteration 26 RMS(Cart)= 0.00270922 RMS(Int)= 0.08512768 Iteration 27 RMS(Cart)= 0.00263232 RMS(Int)= 0.08394785 Iteration 28 RMS(Cart)= 0.00255902 RMS(Int)= 0.08280092 Iteration 29 RMS(Cart)= 0.00248904 RMS(Int)= 0.08168540 Iteration 30 RMS(Cart)= 0.00241150 RMS(Int)= 0.08060392 Iteration 31 RMS(Cart)= 0.00233491 RMS(Int)= 0.07955591 Iteration 32 RMS(Cart)= 0.00226201 RMS(Int)= 0.07853977 Iteration 33 RMS(Cart)= 0.00218684 RMS(Int)= 0.07755660 Iteration 34 RMS(Cart)= 0.00211334 RMS(Int)= 0.07660570 Iteration 35 RMS(Cart)= 0.00204321 RMS(Int)= 0.07568557 Iteration 36 RMS(Cart)= 0.00197558 RMS(Int)= 0.07479496 Iteration 37 RMS(Cart)= 0.00190801 RMS(Int)= 0.07391377 Iteration 38 RMS(Cart)= 0.00147261 RMS(Int)= 0.54335125 Iteration 39 RMS(Cart)= 0.10498984 RMS(Int)= 0.53504238 Iteration 40 RMS(Cart)= 0.01634159 RMS(Int)= 0.52226936 Iteration 41 RMS(Cart)= 0.00373941 RMS(Int)= 0.49422453 Iteration 42 RMS(Cart)= 0.00300049 RMS(Int)= 0.46163956 Iteration 43 RMS(Cart)= 0.00358752 RMS(Int)= 0.42858701 Iteration 44 RMS(Cart)= 0.00430635 RMS(Int)= 0.40063534 Iteration 45 RMS(Cart)= 0.00241730 RMS(Int)= 0.39031840 Iteration 46 RMS(Cart)= 0.00097254 RMS(Int)= 0.38695097 Iteration 47 RMS(Cart)= 0.00084779 RMS(Int)= 0.38409125 Iteration 48 RMS(Cart)= 0.00080875 RMS(Int)= 0.38139770 Iteration 49 RMS(Cart)= 0.00078571 RMS(Int)= 0.37876205 Iteration 50 RMS(Cart)= 0.00076226 RMS(Int)= 0.37614006 Iteration 51 RMS(Cart)= 0.00074538 RMS(Int)= 0.37350402 Iteration 52 RMS(Cart)= 0.00073359 RMS(Int)= 0.37082267 Iteration 53 RMS(Cart)= 0.00072620 RMS(Int)= 0.36805071 Iteration 54 RMS(Cart)= 0.00072316 RMS(Int)= 0.36510410 Iteration 55 RMS(Cart)= 0.00072568 RMS(Int)= 0.36177076 Iteration 56 RMS(Cart)= 0.00073677 RMS(Int)= 0.35709636 Iteration 57 RMS(Cart)= 0.00077415 RMS(Int)= 0.18079472 Iteration 58 RMS(Cart)= 0.00521705 RMS(Int)= 0.36778642 Iteration 59 RMS(Cart)= 0.00088831 RMS(Int)= 0.36510477 Iteration 60 RMS(Cart)= 0.00087182 RMS(Int)= 0.36232879 Iteration 61 RMS(Cart)= 0.00086055 RMS(Int)= 0.35937509 Iteration 62 RMS(Cart)= 0.00085541 RMS(Int)= 0.35603253 Iteration 63 RMS(Cart)= 0.00085987 RMS(Int)= 0.35135501 Iteration 64 RMS(Cart)= 0.00089178 RMS(Int)= 0.18559388 Iteration 65 RMS(Cart)= 0.00514242 RMS(Int)= 0.36284907 Iteration 66 RMS(Cart)= 0.00096908 RMS(Int)= 0.36011956 Iteration 67 RMS(Cart)= 0.00095025 RMS(Int)= 0.35725369 Iteration 68 RMS(Cart)= 0.00093751 RMS(Int)= 0.35411555 Iteration 69 RMS(Cart)= 0.00093282 RMS(Int)= 0.35025805 Iteration 70 RMS(Cart)= 0.00094437 RMS(Int)= 0.34040991 Iteration 71 RMS(Cart)= 0.00107762 RMS(Int)= 0.20701130 Iteration 72 RMS(Cart)= 0.00481824 RMS(Int)= 0.34061548 Iteration 73 RMS(Cart)= 0.00132300 RMS(Int)= 0.33736344 Iteration 74 RMS(Cart)= 0.00130032 RMS(Int)= 0.33313594 Iteration 75 RMS(Cart)= 0.00130160 RMS(Int)= 0.29768061 Iteration 76 RMS(Cart)= 0.00199704 RMS(Int)= 0.24987353 Iteration 77 RMS(Cart)= 0.00404460 RMS(Int)= 0.29573096 Iteration 78 RMS(Cart)= 0.00217621 RMS(Int)= 0.15966663 Iteration 79 RMS(Cart)= 0.00552170 RMS(Int)= 0.38967757 Iteration 80 RMS(Cart)= 0.00059543 RMS(Int)= 0.38694761 Iteration 81 RMS(Cart)= 0.00057758 RMS(Int)= 0.38428953 Iteration 82 RMS(Cart)= 0.00056866 RMS(Int)= 0.38165365 Iteration 83 RMS(Cart)= 0.00056515 RMS(Int)= 0.37900264 Iteration 84 RMS(Cart)= 0.00056554 RMS(Int)= 0.37629671 Iteration 85 RMS(Cart)= 0.00056934 RMS(Int)= 0.37347681 Iteration 86 RMS(Cart)= 0.00057684 RMS(Int)= 0.37042333 Iteration 87 RMS(Cart)= 0.00058987 RMS(Int)= 0.36677513 Iteration 88 RMS(Cart)= 0.00061423 RMS(Int)= 0.35954505 Iteration 89 RMS(Cart)= 0.00070498 RMS(Int)= 0.18770351 Iteration 90 RMS(Cart)= 0.00512512 RMS(Int)= 0.36056121 Iteration 91 RMS(Cart)= 0.00098900 RMS(Int)= 0.35778034 Iteration 92 RMS(Cart)= 0.00097111 RMS(Int)= 0.35481637 Iteration 93 RMS(Cart)= 0.00096004 RMS(Int)= 0.35145208 Iteration 94 RMS(Cart)= 0.00095942 RMS(Int)= 0.34669299 Iteration 95 RMS(Cart)= 0.00098838 RMS(Int)= 0.19174257 Iteration 96 RMS(Cart)= 0.00504132 RMS(Int)= 0.35652990 Iteration 97 RMS(Cart)= 0.00107517 RMS(Int)= 0.35371961 Iteration 98 RMS(Cart)= 0.00105344 RMS(Int)= 0.35069689 Iteration 99 RMS(Cart)= 0.00103942 RMS(Int)= 0.34718468 Iteration100 RMS(Cart)= 0.00103797 RMS(Int)= 0.34159160 New curvilinear step not converged. ITry= 9 IFail=1 DXMaxC= 7.54D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.02035543 RMS(Int)= 0.13018029 Iteration 2 RMS(Cart)= 0.00685094 RMS(Int)= 0.12713687 Iteration 3 RMS(Cart)= 0.00635932 RMS(Int)= 0.12431140 Iteration 4 RMS(Cart)= 0.00596008 RMS(Int)= 0.12166277 Iteration 5 RMS(Cart)= 0.00562098 RMS(Int)= 0.11916423 Iteration 6 RMS(Cart)= 0.00532533 RMS(Int)= 0.11679648 Iteration 7 RMS(Cart)= 0.00506312 RMS(Int)= 0.11454467 Iteration 8 RMS(Cart)= 0.00482775 RMS(Int)= 0.11239690 Iteration 9 RMS(Cart)= 0.00461455 RMS(Int)= 0.11034336 Iteration 10 RMS(Cart)= 0.00442003 RMS(Int)= 0.10837577 Iteration 11 RMS(Cart)= 0.00424151 RMS(Int)= 0.10648708 Iteration 12 RMS(Cart)= 0.00407688 RMS(Int)= 0.10467115 Iteration 13 RMS(Cart)= 0.00392440 RMS(Int)= 0.10292263 Iteration 14 RMS(Cart)= 0.00378264 RMS(Int)= 0.10123678 Iteration 15 RMS(Cart)= 0.00365043 RMS(Int)= 0.09960942 Iteration 16 RMS(Cart)= 0.00352675 RMS(Int)= 0.09803679 Iteration 17 RMS(Cart)= 0.00341074 RMS(Int)= 0.09651552 Iteration 18 RMS(Cart)= 0.00330165 RMS(Int)= 0.09504256 Iteration 19 RMS(Cart)= 0.00319885 RMS(Int)= 0.09361516 Iteration 20 RMS(Cart)= 0.00310177 RMS(Int)= 0.09223081 Iteration 21 RMS(Cart)= 0.00300990 RMS(Int)= 0.09088722 Iteration 22 RMS(Cart)= 0.00292282 RMS(Int)= 0.08958229 Iteration 23 RMS(Cart)= 0.00284013 RMS(Int)= 0.08831410 Iteration 24 RMS(Cart)= 0.00276148 RMS(Int)= 0.08708086 Iteration 25 RMS(Cart)= 0.00268658 RMS(Int)= 0.08588095 Iteration 26 RMS(Cart)= 0.00261511 RMS(Int)= 0.08471286 Iteration 27 RMS(Cart)= 0.00254686 RMS(Int)= 0.08357517 Iteration 28 RMS(Cart)= 0.00248157 RMS(Int)= 0.08246658 Iteration 29 RMS(Cart)= 0.00241905 RMS(Int)= 0.08138589 Iteration 30 RMS(Cart)= 0.00235909 RMS(Int)= 0.08033197 Iteration 31 RMS(Cart)= 0.00229260 RMS(Int)= 0.07930714 Iteration 32 RMS(Cart)= 0.00222488 RMS(Int)= 0.07831172 Iteration 33 RMS(Cart)= 0.00215530 RMS(Int)= 0.07734665 Iteration 34 RMS(Cart)= 0.00208639 RMS(Int)= 0.07641170 Iteration 35 RMS(Cart)= 0.00202093 RMS(Int)= 0.07550539 Iteration 36 RMS(Cart)= 0.00195861 RMS(Int)= 0.07462637 Iteration 37 RMS(Cart)= 0.00189917 RMS(Int)= 0.07377338 Iteration 38 RMS(Cart)= 0.00184229 RMS(Int)= 0.07294532 Iteration 39 RMS(Cart)= 0.00178756 RMS(Int)= 0.07214120 Iteration 40 RMS(Cart)= 0.00173422 RMS(Int)= 0.07136018 Iteration 41 RMS(Cart)= 0.00167919 RMS(Int)= 0.54159393 Iteration 42 RMS(Cart)= 0.10223460 RMS(Int)= 0.53790983 Iteration 43 RMS(Cart)= 0.01573276 RMS(Int)= 0.52488463 Iteration 44 RMS(Cart)= 0.00253503 RMS(Int)= 0.49335545 Iteration 45 RMS(Cart)= 0.00256652 RMS(Int)= 0.45943681 Iteration 46 RMS(Cart)= 0.00325724 RMS(Int)= 0.42708677 Iteration 47 RMS(Cart)= 0.00338924 RMS(Int)= 0.40416813 Iteration 48 RMS(Cart)= 0.00146000 RMS(Int)= 0.39691399 Iteration 49 RMS(Cart)= 0.00079449 RMS(Int)= 0.39324796 Iteration 50 RMS(Cart)= 0.00066086 RMS(Int)= 0.39022581 Iteration 51 RMS(Cart)= 0.00060967 RMS(Int)= 0.38743517 Iteration 52 RMS(Cart)= 0.00058444 RMS(Int)= 0.38474744 Iteration 53 RMS(Cart)= 0.00057091 RMS(Int)= 0.38210199 Iteration 54 RMS(Cart)= 0.00056396 RMS(Int)= 0.37945926 Iteration 55 RMS(Cart)= 0.00056143 RMS(Int)= 0.37678329 Iteration 56 RMS(Cart)= 0.00056273 RMS(Int)= 0.37402820 Iteration 57 RMS(Cart)= 0.00056688 RMS(Int)= 0.37111560 Iteration 58 RMS(Cart)= 0.00057560 RMS(Int)= 0.36785709 Iteration 59 RMS(Cart)= 0.00059121 RMS(Int)= 0.36348221 Iteration 60 RMS(Cart)= 0.00062702 RMS(Int)= 0.15237038 Iteration 61 RMS(Cart)= 0.00541806 RMS(Int)= 0.39644606 Iteration 62 RMS(Cart)= 0.00056708 RMS(Int)= 0.39313310 Iteration 63 RMS(Cart)= 0.00050318 RMS(Int)= 0.39026992 Iteration 64 RMS(Cart)= 0.00048274 RMS(Int)= 0.38755884 Iteration 65 RMS(Cart)= 0.00047604 RMS(Int)= 0.38490463 Iteration 66 RMS(Cart)= 0.00047568 RMS(Int)= 0.38225597 Iteration 67 RMS(Cart)= 0.00047919 RMS(Int)= 0.37957042 Iteration 68 RMS(Cart)= 0.00048571 RMS(Int)= 0.37679502 Iteration 69 RMS(Cart)= 0.00049526 RMS(Int)= 0.37383497 Iteration 70 RMS(Cart)= 0.00050911 RMS(Int)= 0.37044309 Iteration 71 RMS(Cart)= 0.00053077 RMS(Int)= 0.36533340 Iteration 72 RMS(Cart)= 0.00058210 RMS(Int)= 0.17809178 Iteration 73 RMS(Cart)= 0.00507271 RMS(Int)= 0.36976903 Iteration 74 RMS(Cart)= 0.00082117 RMS(Int)= 0.36709666 Iteration 75 RMS(Cart)= 0.00080627 RMS(Int)= 0.36434386 Iteration 76 RMS(Cart)= 0.00079641 RMS(Int)= 0.36143991 Iteration 77 RMS(Cart)= 0.00079178 RMS(Int)= 0.35821984 Iteration 78 RMS(Cart)= 0.00079500 RMS(Int)= 0.35406937 Iteration 79 RMS(Cart)= 0.00081694 RMS(Int)= 0.32453058 Iteration 80 RMS(Cart)= 0.00134179 RMS(Int)= 0.22257161 Iteration 81 RMS(Cart)= 0.00439469 RMS(Int)= 0.32366455 Iteration 82 RMS(Cart)= 0.00156198 RMS(Int)= 0.31928387 Iteration 83 RMS(Cart)= 0.00155060 RMS(Int)= 0.10127689 Iteration 84 RMS(Cart)= 0.00568201 RMS(Int)= 0.45130798 Iteration 85 RMS(Cart)= 0.00165270 RMS(Int)= 0.42678407 Iteration 86 RMS(Cart)= 0.00047528 RMS(Int)= 0.42408874 Iteration 87 RMS(Cart)= 0.00047131 RMS(Int)= 0.42143680 Iteration 88 RMS(Cart)= 0.00047291 RMS(Int)= 0.41877974 Iteration 89 RMS(Cart)= 0.00047804 RMS(Int)= 0.41607338 Iteration 90 RMS(Cart)= 0.00048610 RMS(Int)= 0.41325709 Iteration 91 RMS(Cart)= 0.00049734 RMS(Int)= 0.41021170 Iteration 92 RMS(Cart)= 0.00051348 RMS(Int)= 0.40658178 Iteration 93 RMS(Cart)= 0.00054004 RMS(Int)= 0.39948476 Iteration 94 RMS(Cart)= 0.00062800 RMS(Int)= 0.14831759 Iteration 95 RMS(Cart)= 0.00505813 RMS(Int)= 0.40055678 Iteration 96 RMS(Cart)= 0.00091389 RMS(Int)= 0.39781296 Iteration 97 RMS(Cart)= 0.00089776 RMS(Int)= 0.39492778 Iteration 98 RMS(Cart)= 0.00088741 RMS(Int)= 0.39175610 Iteration 99 RMS(Cart)= 0.00088494 RMS(Int)= 0.38780149 Iteration100 RMS(Cart)= 0.00089921 RMS(Int)= 0.37549292 New curvilinear step not converged. ITry=10 IFail=1 DXMaxC= 7.08D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F RedQX1 iteration 1 Try 1 RMS(Cart)= 0.08411381 RMS(Int)= 0.16372325 XScale= 5.05565802 RedQX1 iteration 1 Try 2 RMS(Cart)= 0.08416157 RMS(Int)= 0.50176365 XScale= 0.40912645 RedQX1 iteration 2 Try 1 RMS(Cart)= 0.06732926 RMS(Int)= 0.14172497 XScale= 2.25241825 RedQX1 iteration 2 Try 2 RMS(Cart)= 0.06764263 RMS(Int)= 0.53365064 XScale= 0.38842941 RedQX1 iteration 3 Try 1 RMS(Cart)= 0.05411411 RMS(Int)= 0.53537776 XScale= 0.38841424 RedQX1 iteration 4 Try 1 RMS(Cart)= 0.01082282 RMS(Int)= 0.51604978 XScale= 0.39810252 RedQX1 iteration 5 Try 1 RMS(Cart)= 0.00216456 RMS(Int)= 0.14507233 XScale= 2.07007508 RedQX1 iteration 5 Try 2 RMS(Cart)= 0.00216730 RMS(Int)= 0.15442088 XScale= 1.77582795 RedQX1 iteration 5 Try 3 RMS(Cart)= 0.00217425 RMS(Int)= 0.20439501 XScale= 1.13089497 RedQX1 iteration 5 Try 4 RMS(Cart)= 0.00221844 RMS(Int)= 0.54424014 XScale= 0.38614476 RedQX1 iteration 6 Try 1 RMS(Cart)= 0.00216520 RMS(Int)= 0.54698057 XScale= 0.38411752 RedQX1 iteration 7 Try 1 RMS(Cart)= 0.00043304 RMS(Int)= 0.23932270 XScale= 0.92437316 RedQX1 iteration 8 Try 1 RMS(Cart)= 0.00008661 RMS(Int)= 0.20923463 XScale= 1.09604925 RedQX1 iteration 8 Try 2 RMS(Cart)= 0.00008680 RMS(Int)= 0.21480511 XScale= 1.05889640 RedQX1 iteration 8 Try 3 RMS(Cart)= 0.00008703 RMS(Int)= 0.22129078 XScale= 1.01911807 RedQX1 iteration 8 Try 4 RMS(Cart)= 0.00008731 RMS(Int)= 0.22894357 XScale= 0.97633120 RedQX1 iteration 9 Try 1 RMS(Cart)= 0.00008723 RMS(Int)= 0.22893548 XScale= 0.97637426 RedQX1 iteration 10 Try 1 RMS(Cart)= 0.00001745 RMS(Int)= 0.22270448 XScale= 1.01089474 RedQX1 iteration 10 Try 2 RMS(Cart)= 0.00001746 RMS(Int)= 0.22416658 XScale= 1.00254709 RedQX1 iteration 10 Try 3 RMS(Cart)= 0.00001747 RMS(Int)= 0.22567970 XScale= 0.99407135 RedQX1 iteration 11 Try 1 RMS(Cart)= 0.00001747 RMS(Int)= 0.22567950 XScale= 0.99407245 RedQX1 iteration 12 Try 1 RMS(Cart)= 0.00000349 RMS(Int)= 0.22446447 XScale= 1.00086551 RedQX1 iteration 12 Try 2 RMS(Cart)= 0.00000349 RMS(Int)= 0.22476441 XScale= 0.99917877 RedQX1 iteration 12 Try 3 RMS(Cart)= 0.00000349 RMS(Int)= 0.22506644 XScale= 0.99748684 RedQX1 iteration 13 Try 1 RMS(Cart)= 0.00000349 RMS(Int)= 0.22506643 XScale= 0.99748688 RedQX1 iteration 14 Try 1 RMS(Cart)= 0.00000070 RMS(Int)= 0.22482463 XScale= 0.99884093 RedQX1 iteration 15 Try 1 RMS(Cart)= 0.00000014 RMS(Int)= 0.22477645 XScale= 0.99911122 RedQX1 iteration 15 Try 2 RMS(Cart)= 0.00000014 RMS(Int)= 0.22478849 XScale= 0.99904367 RedQX1 iteration 15 Try 3 RMS(Cart)= 0.00000014 RMS(Int)= 0.22480053 XScale= 0.99897611 RedQX1 iteration 16 Try 1 RMS(Cart)= 0.00000014 RMS(Int)= 0.22480053 XScale= 0.99897611 RedQX1 iteration 17 Try 1 RMS(Cart)= 0.00000003 RMS(Int)= 0.22479089 XScale= 0.99903016 TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.26368 -0.00644 -0.05375 -0.06944 -0.00238 4.26130 R2 4.19567 0.00383 0.02671 0.01046 0.02248 4.21816 R3 4.74412 0.00800 -0.05751 -0.03799 -0.03555 4.70857 R4 5.06740 -0.00484 0.00860 -0.00344 0.00641 5.07381 R5 4.45532 -0.02440 -0.01334 -0.27433 -0.05650 4.39882 R6 4.41008 -0.01587 0.06187 -0.19576 -0.04861 4.36147 R7 4.56145 0.01759 -0.09649 -0.10806 -0.07473 4.48672 R8 4.87697 0.00094 -0.08469 -0.21687 -0.11329 4.76368 A1 1.58113 0.02026 0.06870 0.15156 0.08369 1.66481 A2 1.63050 -0.00650 -0.15014 -0.21636 -0.13836 1.49214 A3 1.48997 0.00727 0.11490 0.17821 0.10986 1.59984 A4 1.58185 -0.02100 -0.03342 -0.11314 -0.05506 1.52679 A5 1.55839 0.01082 0.49213 -0.00017 0.18737 1.74577 A6 1.62927 -0.00219 -0.31850 -0.01733 -0.12811 1.50116 A7 2.98947 0.02871 0.32381 0.07312 0.15118 3.14065 A8 1.43217 0.01771 -0.16880 0.07337 -0.03665 1.39552 A9 1.66364 -0.02638 -0.00449 -0.05546 -0.02287 1.64077 A10 1.58138 0.02223 0.02855 0.08412 0.04301 1.62438 A11 1.45538 0.02519 0.00968 0.08499 0.03523 1.49061 A12 3.21235 -0.02750 -0.18356 -0.32950 -0.19342 3.01893 A13 3.07182 -0.01373 0.08148 0.06508 0.05480 3.12662 A14 3.18766 0.00864 0.17363 -0.01750 0.05926 3.24693 A15 3.12234 -0.00030 -0.00205 -0.01022 -0.00464 3.11770 A16 3.12767 -0.00132 -0.00071 -0.00799 -0.00337 3.12431 A17 3.12512 -0.00117 -0.01410 -0.02967 -0.01887 3.10625 D1 -3.12985 -0.00087 -0.00701 -0.01930 -0.01042 -3.14027 D2 0.03100 -0.00057 -0.00496 -0.00908 -0.00578 0.02521 D3 3.09849 -0.00079 0.00413 0.00026 0.00203 3.10052 D4 -0.02918 0.00052 0.00483 0.00826 0.00539 -0.02379 D5 3.12490 -0.00217 -0.02010 0.00121 -0.00932 3.11558 D6 -0.03234 0.00071 0.00445 0.00818 0.00545 -0.02689 D7 3.06882 -0.00102 -0.02555 -0.01161 -1.10609 1.96273 D8 -3.09375 0.00046 0.01589 0.02091 0.01260 -3.08115 D9 0.03048 -0.00068 -0.00471 -0.00826 -0.00548 0.02500 Item Value Threshold Converged? Maximum Force 0.028711 0.000450 NO RMS Force 0.013681 0.000300 NO Maximum Displacement 0.490419 0.001800 NO RMS Displacement 0.158198 0.001200 NO Predicted change in Energy=-1.942409D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.936093 1.447124 0.000801 2 13 0 2.591290 1.637713 0.023442 3 17 0 -2.407742 3.155654 -0.010715 4 17 0 -2.482537 -0.161811 -0.047608 5 17 0 4.014353 3.479125 -0.026938 6 17 0 4.142068 -0.070413 -0.041484 7 35 0 0.818109 3.216598 0.012908 8 35 0 1.050886 -0.356912 0.080210 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.532601 0.000000 3 Cl 2.254985 5.224522 0.000000 4 Cl 2.232152 5.383963 3.318513 0.000000 5 Cl 5.351329 2.327755 6.430257 7.447578 0.000000 6 Cl 5.300229 2.307991 7.301265 6.625239 3.551864 7 Br 2.491668 2.374270 3.226513 4.723512 3.207255 8 Br 2.684946 2.520832 4.930364 3.541113 4.848587 6 7 8 6 Cl 0.000000 7 Br 4.675051 0.000000 8 Br 3.106815 3.581716 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.806011 0.022209 -0.006973 2 13 0 -1.725265 -0.072192 0.014325 3 17 0 3.230641 -1.725755 -0.004551 4 17 0 3.395680 1.588078 -0.066204 5 17 0 -3.197866 -1.874541 -0.023394 6 17 0 -3.228962 1.676948 -0.064595 7 35 0 0.004313 -1.698756 0.016996 8 35 0 -0.131201 1.880167 0.057377 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5487145 0.3043230 0.1958473 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1709.0398514411 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.38D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999996 0.000282 0.000456 -0.002816 Ang= 0.33 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.10227143 A.U. after 14 cycles NFock= 14 Conv=0.64D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.034527924 -0.009108703 0.000273222 2 13 0.065763145 -0.009688695 -0.002187916 3 17 0.002928323 -0.002764399 0.000366848 4 17 0.008679318 -0.000259863 -0.000213270 5 17 -0.007544636 -0.018073229 0.001091078 6 17 -0.000665241 0.017310300 0.000096068 7 35 -0.011050277 0.006080253 -0.000174929 8 35 -0.023582709 0.016504336 0.000748899 ------------------------------------------------------------------- Cartesian Forces: Max 0.065763145 RMS 0.017634629 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.028046862 RMS 0.013960650 Search for a local minimum. Step number 6 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 5 6 DE= -7.32D-03 DEPred=-1.94D-02 R= 3.77D-01 Trust test= 3.77D-01 RLast= 1.19D+00 DXMaxT set to 1.43D+00 ITU= 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00714 0.01305 0.01439 0.02753 0.03834 Eigenvalues --- 0.07888 0.11551 0.13364 0.13976 0.14496 Eigenvalues --- 0.18247 0.19285 0.22729 0.23126 0.23693 Eigenvalues --- 0.24020 0.33938 0.83951 RFO step: Lambda=-2.54903039D-02 EMin= 7.14003092D-03 Quartic linear search produced a step of -0.23191. Iteration 1 RMS(Cart)= 0.01339236 RMS(Int)= 0.50816439 Iteration 2 RMS(Cart)= 0.09427025 RMS(Int)= 0.46055795 Iteration 3 RMS(Cart)= 0.02736460 RMS(Int)= 0.44183240 Iteration 4 RMS(Cart)= 0.00122369 RMS(Int)= 0.41174935 Iteration 5 RMS(Cart)= 0.00128453 RMS(Int)= 0.38077837 Iteration 6 RMS(Cart)= 0.00128643 RMS(Int)= 0.34699430 Iteration 7 RMS(Cart)= 0.00127053 RMS(Int)= 0.31289511 Iteration 8 RMS(Cart)= 0.00128375 RMS(Int)= 0.27958216 Iteration 9 RMS(Cart)= 0.00128254 RMS(Int)= 0.24820340 Iteration 10 RMS(Cart)= 0.00117062 RMS(Int)= 0.22156685 Iteration 11 RMS(Cart)= 0.00081852 RMS(Int)= 0.20512281 Iteration 12 RMS(Cart)= 0.00037177 RMS(Int)= 0.19878159 Iteration 13 RMS(Cart)= 0.00023110 RMS(Int)= 0.19500653 Iteration 14 RMS(Cart)= 0.00019291 RMS(Int)= 0.19186416 Iteration 15 RMS(Cart)= 0.00017652 RMS(Int)= 0.18897350 Iteration 16 RMS(Cart)= 0.00016765 RMS(Int)= 0.18620427 Iteration 17 RMS(Cart)= 0.00016224 RMS(Int)= 0.18349432 Iteration 18 RMS(Cart)= 0.00015877 RMS(Int)= 0.18080480 Iteration 19 RMS(Cart)= 0.00015655 RMS(Int)= 0.17810372 Iteration 20 RMS(Cart)= 0.00015525 RMS(Int)= 0.17535558 Iteration 21 RMS(Cart)= 0.00015476 RMS(Int)= 0.17250799 Iteration 22 RMS(Cart)= 0.00015511 RMS(Int)= 0.16945877 Iteration 23 RMS(Cart)= 0.00015660 RMS(Int)= 0.16592514 Iteration 24 RMS(Cart)= 0.00016122 RMS(Int)= 0.16017028 Iteration 25 RMS(Cart)= 0.00017292 RMS(Int)= 0.37613278 Iteration 26 RMS(Cart)= 0.00064595 RMS(Int)= 0.16284539 Iteration 27 RMS(Cart)= 0.00019464 RMS(Int)= 0.15949793 Iteration 28 RMS(Cart)= 0.00019509 RMS(Int)= 0.15496387 Iteration 29 RMS(Cart)= 0.00020085 RMS(Int)= 0.36137008 Iteration 30 RMS(Cart)= 0.00070160 RMS(Int)= 0.17780647 Iteration 31 RMS(Cart)= 0.00014203 RMS(Int)= 0.17497501 Iteration 32 RMS(Cart)= 0.00014311 RMS(Int)= 0.17195377 Iteration 33 RMS(Cart)= 0.00014527 RMS(Int)= 0.16848423 Iteration 34 RMS(Cart)= 0.00014927 RMS(Int)= 0.16317647 Iteration 35 RMS(Cart)= 0.00016101 RMS(Int)= 0.37194100 Iteration 36 RMS(Cart)= 0.00066206 RMS(Int)= 0.16710900 Iteration 37 RMS(Cart)= 0.00017943 RMS(Int)= 0.16396080 Iteration 38 RMS(Cart)= 0.00017985 RMS(Int)= 0.16015770 Iteration 39 RMS(Cart)= 0.00018329 RMS(Int)= 0.15173593 Iteration 40 RMS(Cart)= 0.00020648 RMS(Int)= 0.38655016 Iteration 41 RMS(Cart)= 0.00060876 RMS(Int)= 0.15206612 Iteration 42 RMS(Cart)= 0.00023261 RMS(Int)= 0.14768936 Iteration 43 RMS(Cart)= 0.00023544 RMS(Int)= 0.17668490 Iteration 44 RMS(Cart)= 0.00125894 RMS(Int)= 0.36248335 Iteration 45 RMS(Cart)= 0.00478439 RMS(Int)= 0.35516748 Iteration 46 RMS(Cart)= 0.00124609 RMS(Int)= 0.32091264 Iteration 47 RMS(Cart)= 0.00127439 RMS(Int)= 0.28732268 Iteration 48 RMS(Cart)= 0.00128706 RMS(Int)= 0.25531652 Iteration 49 RMS(Cart)= 0.00121371 RMS(Int)= 0.22715103 Iteration 50 RMS(Cart)= 0.00092624 RMS(Int)= 0.20782629 Iteration 51 RMS(Cart)= 0.00045202 RMS(Int)= 0.19988891 Iteration 52 RMS(Cart)= 0.00024826 RMS(Int)= 0.19581598 Iteration 53 RMS(Cart)= 0.00019889 RMS(Int)= 0.19257657 Iteration 54 RMS(Cart)= 0.00017941 RMS(Int)= 0.18964263 Iteration 55 RMS(Cart)= 0.00016930 RMS(Int)= 0.18685181 Iteration 56 RMS(Cart)= 0.00016327 RMS(Int)= 0.18413189 Iteration 57 RMS(Cart)= 0.00015943 RMS(Int)= 0.18144052 Iteration 58 RMS(Cart)= 0.00015696 RMS(Int)= 0.17874505 Iteration 59 RMS(Cart)= 0.00015546 RMS(Int)= 0.17601177 Iteration 60 RMS(Cart)= 0.00015479 RMS(Int)= 0.17319401 Iteration 61 RMS(Cart)= 0.00015494 RMS(Int)= 0.17020668 Iteration 62 RMS(Cart)= 0.00015618 RMS(Int)= 0.16683594 Iteration 63 RMS(Cart)= 0.00015881 RMS(Int)= 0.16212590 Iteration 64 RMS(Cart)= 0.00016759 RMS(Int)= 0.36654620 Iteration 65 RMS(Cart)= 0.00068175 RMS(Int)= 0.17259875 Iteration 66 RMS(Cart)= 0.00016050 RMS(Int)= 0.16964402 Iteration 67 RMS(Cart)= 0.00016106 RMS(Int)= 0.16635809 Iteration 68 RMS(Cart)= 0.00016337 RMS(Int)= 0.16203179 Iteration 69 RMS(Cart)= 0.00017009 RMS(Int)= 0.19296920 Iteration 70 RMS(Cart)= 0.00024606 RMS(Int)= 0.34621189 Iteration 71 RMS(Cart)= 0.00566583 RMS(Int)= 0.34375499 Iteration 72 RMS(Cart)= 0.00119420 RMS(Int)= 0.30950382 Iteration 73 RMS(Cart)= 0.00127065 RMS(Int)= 0.27625271 Iteration 74 RMS(Cart)= 0.00127524 RMS(Int)= 0.24516099 Iteration 75 RMS(Cart)= 0.00114652 RMS(Int)= 0.21928061 Iteration 76 RMS(Cart)= 0.00076738 RMS(Int)= 0.20413524 Iteration 77 RMS(Cart)= 0.00034403 RMS(Int)= 0.19832066 Iteration 78 RMS(Cart)= 0.00022481 RMS(Int)= 0.19465028 Iteration 79 RMS(Cart)= 0.00019048 RMS(Int)= 0.19154557 Iteration 80 RMS(Cart)= 0.00017527 RMS(Int)= 0.18867237 Iteration 81 RMS(Cart)= 0.00016690 RMS(Int)= 0.18591190 Iteration 82 RMS(Cart)= 0.00016176 RMS(Int)= 0.18320580 Iteration 83 RMS(Cart)= 0.00015845 RMS(Int)= 0.18051656 Iteration 84 RMS(Cart)= 0.00015634 RMS(Int)= 0.17781226 Iteration 85 RMS(Cart)= 0.00015513 RMS(Int)= 0.17505639 Iteration 86 RMS(Cart)= 0.00015473 RMS(Int)= 0.17219338 Iteration 87 RMS(Cart)= 0.00015517 RMS(Int)= 0.16911142 Iteration 88 RMS(Cart)= 0.00015681 RMS(Int)= 0.16548514 Iteration 89 RMS(Cart)= 0.00016086 RMS(Int)= 0.15902997 Iteration 90 RMS(Cart)= 0.00017559 RMS(Int)= 0.37828418 Iteration 91 RMS(Cart)= 0.00063886 RMS(Int)= 0.16060744 Iteration 92 RMS(Cart)= 0.00020256 RMS(Int)= 0.15710127 Iteration 93 RMS(Cart)= 0.00020280 RMS(Int)= 0.15175914 Iteration 94 RMS(Cart)= 0.00021164 RMS(Int)= 0.38312180 Iteration 95 RMS(Cart)= 0.00061779 RMS(Int)= 0.15587006 Iteration 96 RMS(Cart)= 0.00022207 RMS(Int)= 0.15216545 Iteration 97 RMS(Cart)= 0.00022249 RMS(Int)= 0.14526649 Iteration 98 RMS(Cart)= 0.00023707 RMS(Int)= 0.39233213 Iteration 99 RMS(Cart)= 0.00058449 RMS(Int)= 0.14631514 Iteration100 RMS(Cart)= 0.00025627 RMS(Int)= 0.14124094 New curvilinear step not converged. ITry= 1 IFail=1 DXMaxC= 4.62D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.01223436 RMS(Int)= 0.50577833 Iteration 2 RMS(Cart)= 0.09855926 RMS(Int)= 0.46255676 Iteration 3 RMS(Cart)= 0.01279429 RMS(Int)= 0.44356187 Iteration 4 RMS(Cart)= 0.00125292 RMS(Int)= 0.41382951 Iteration 5 RMS(Cart)= 0.00140567 RMS(Int)= 0.38354390 Iteration 6 RMS(Cart)= 0.00139913 RMS(Int)= 0.35076042 Iteration 7 RMS(Cart)= 0.00139506 RMS(Int)= 0.31650672 Iteration 8 RMS(Cart)= 0.00137169 RMS(Int)= 0.28257587 Iteration 9 RMS(Cart)= 0.00136677 RMS(Int)= 0.24943199 Iteration 10 RMS(Cart)= 0.00134160 RMS(Int)= 0.21800114 Iteration 11 RMS(Cart)= 0.00122548 RMS(Int)= 0.19061235 Iteration 12 RMS(Cart)= 0.00090189 RMS(Int)= 0.17225895 Iteration 13 RMS(Cart)= 0.00043040 RMS(Int)= 0.16479384 Iteration 14 RMS(Cart)= 0.00024408 RMS(Int)= 0.16079688 Iteration 15 RMS(Cart)= 0.00019731 RMS(Int)= 0.15758191 Iteration 16 RMS(Cart)= 0.00017842 RMS(Int)= 0.15465901 Iteration 17 RMS(Cart)= 0.00016845 RMS(Int)= 0.15187415 Iteration 18 RMS(Cart)= 0.00016243 RMS(Int)= 0.14915764 Iteration 19 RMS(Cart)= 0.00015853 RMS(Int)= 0.14646803 Iteration 20 RMS(Cart)= 0.00015598 RMS(Int)= 0.14377292 Iteration 21 RMS(Cart)= 0.00015440 RMS(Int)= 0.14103834 Iteration 22 RMS(Cart)= 0.00015363 RMS(Int)= 0.13821669 Iteration 23 RMS(Cart)= 0.00015368 RMS(Int)= 0.13521999 Iteration 24 RMS(Cart)= 0.00015491 RMS(Int)= 0.13182260 Iteration 25 RMS(Cart)= 0.00015759 RMS(Int)= 0.12696292 Iteration 26 RMS(Cart)= 0.00016655 RMS(Int)= 0.40458037 Iteration 27 RMS(Cart)= 0.00049279 RMS(Int)= 0.13445221 Iteration 28 RMS(Cart)= 0.00015876 RMS(Int)= 0.13106745 Iteration 29 RMS(Cart)= 0.00016134 RMS(Int)= 0.12627994 Iteration 30 RMS(Cart)= 0.00016965 RMS(Int)= 0.40396847 Iteration 31 RMS(Cart)= 0.00049251 RMS(Int)= 0.13508141 Iteration 32 RMS(Cart)= 0.00015646 RMS(Int)= 0.13173427 Iteration 33 RMS(Cart)= 0.00015902 RMS(Int)= 0.12712573 Iteration 34 RMS(Cart)= 0.00016680 RMS(Int)= 0.39790333 Iteration 35 RMS(Cart)= 0.00051693 RMS(Int)= 0.14119293 Iteration 36 RMS(Cart)= 0.00013479 RMS(Int)= 0.13814150 Iteration 37 RMS(Cart)= 0.00013746 RMS(Int)= 0.13457688 Iteration 38 RMS(Cart)= 0.00013690 RMS(Int)= 0.12889386 Iteration 39 RMS(Cart)= 0.00015560 RMS(Int)= 0.40762811 Iteration 40 RMS(Cart)= 0.00048356 RMS(Int)= 0.13122135 Iteration 41 RMS(Cart)= 0.00016885 RMS(Int)= 0.12750332 Iteration 42 RMS(Cart)= 0.00017215 RMS(Int)= 0.12015625 Iteration 43 RMS(Cart)= 0.00019063 RMS(Int)= 0.41773111 Iteration 44 RMS(Cart)= 0.00044811 RMS(Int)= 0.12073677 Iteration 45 RMS(Cart)= 0.00020581 RMS(Int)= 0.11494510 Iteration 46 RMS(Cart)= 0.00021589 RMS(Int)= 0.42131008 Iteration 47 RMS(Cart)= 0.00043250 RMS(Int)= 0.11736310 Iteration 48 RMS(Cart)= 0.00022058 RMS(Int)= 0.11119950 Iteration 49 RMS(Cart)= 0.00023141 RMS(Int)= 0.42566635 Iteration 50 RMS(Cart)= 0.00041694 RMS(Int)= 0.11281849 Iteration 51 RMS(Cart)= 0.00023724 RMS(Int)= 0.10322634 Iteration 52 RMS(Cart)= 0.00026193 RMS(Int)= 0.43527988 Iteration 53 RMS(Cart)= 0.00038497 RMS(Int)= 0.10185543 Iteration 54 RMS(Cart)= 0.00027619 RMS(Int)= 0.43238260 Iteration 55 RMS(Cart)= 0.00038891 RMS(Int)= 0.10631357 Iteration 56 RMS(Cart)= 0.00026474 RMS(Int)= 0.09017710 Iteration 57 RMS(Cart)= 0.00031680 RMS(Int)= 0.44885483 Iteration 58 RMS(Cart)= 0.00033697 RMS(Int)= 0.08080489 Iteration 59 RMS(Cart)= 0.00035978 RMS(Int)= 0.45815898 Iteration 60 RMS(Cart)= 0.00030135 RMS(Int)= 0.06378495 Iteration 61 RMS(Cart)= 0.00096505 RMS(Int)= 0.47569867 Iteration 62 RMS(Cart)= 0.00323900 RMS(Int)= 0.46773173 Iteration 63 RMS(Cart)= 0.00097941 RMS(Int)= 0.43649893 Iteration 64 RMS(Cart)= 0.00147810 RMS(Int)= 0.40887601 Iteration 65 RMS(Cart)= 0.00138688 RMS(Int)= 0.37785821 Iteration 66 RMS(Cart)= 0.00140227 RMS(Int)= 0.34467511 Iteration 67 RMS(Cart)= 0.00138812 RMS(Int)= 0.31045099 Iteration 68 RMS(Cart)= 0.00136999 RMS(Int)= 0.27661867 Iteration 69 RMS(Cart)= 0.00136506 RMS(Int)= 0.24368737 Iteration 70 RMS(Cart)= 0.00133176 RMS(Int)= 0.21274317 Iteration 71 RMS(Cart)= 0.00118619 RMS(Int)= 0.18650936 Iteration 72 RMS(Cart)= 0.00081792 RMS(Int)= 0.17030140 Iteration 73 RMS(Cart)= 0.00037248 RMS(Int)= 0.16396784 Iteration 74 RMS(Cart)= 0.00023146 RMS(Int)= 0.16018785 Iteration 75 RMS(Cart)= 0.00019285 RMS(Int)= 0.15704431 Iteration 76 RMS(Cart)= 0.00017623 RMS(Int)= 0.15415352 Iteration 77 RMS(Cart)= 0.00016718 RMS(Int)= 0.15138472 Iteration 78 RMS(Cart)= 0.00016162 RMS(Int)= 0.14867560 Iteration 79 RMS(Cart)= 0.00015800 RMS(Int)= 0.14598730 Iteration 80 RMS(Cart)= 0.00015564 RMS(Int)= 0.14328785 Iteration 81 RMS(Cart)= 0.00015420 RMS(Int)= 0.14054195 Iteration 82 RMS(Cart)= 0.00015356 RMS(Int)= 0.13769760 Iteration 83 RMS(Cart)= 0.00015375 RMS(Int)= 0.13465376 Iteration 84 RMS(Cart)= 0.00015501 RMS(Int)= 0.13113265 Iteration 85 RMS(Cart)= 0.00016126 RMS(Int)= 0.12534781 Iteration 86 RMS(Cart)= 0.00017101 RMS(Int)= 0.41092058 Iteration 87 RMS(Cart)= 0.00047106 RMS(Int)= 0.12790714 Iteration 88 RMS(Cart)= 0.00018125 RMS(Int)= 0.12388093 Iteration 89 RMS(Cart)= 0.00018516 RMS(Int)= 0.10935661 Iteration 90 RMS(Cart)= 0.00023348 RMS(Int)= 0.42956275 Iteration 91 RMS(Cart)= 0.00040791 RMS(Int)= 0.10761487 Iteration 92 RMS(Cart)= 0.00025259 RMS(Int)= 0.42156435 Iteration 93 RMS(Cart)= 0.00042838 RMS(Int)= 0.11743303 Iteration 94 RMS(Cart)= 0.00022321 RMS(Int)= 0.11220161 Iteration 95 RMS(Cart)= 0.00022991 RMS(Int)= 0.42200210 Iteration 96 RMS(Cart)= 0.00042832 RMS(Int)= 0.11683200 Iteration 97 RMS(Cart)= 0.00022478 RMS(Int)= 0.11099184 Iteration 98 RMS(Cart)= 0.00023323 RMS(Int)= 0.42529950 Iteration 99 RMS(Cart)= 0.00041754 RMS(Int)= 0.11329226 Iteration100 RMS(Cart)= 0.00023610 RMS(Int)= 0.10491299 New curvilinear step not converged. ITry= 2 IFail=1 DXMaxC= 4.22D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.01108326 RMS(Int)= 0.50288598 Iteration 2 RMS(Cart)= 0.10041483 RMS(Int)= 0.46703623 Iteration 3 RMS(Cart)= 0.00330094 RMS(Int)= 0.44538598 Iteration 4 RMS(Cart)= 0.00136537 RMS(Int)= 0.41662742 Iteration 5 RMS(Cart)= 0.00151742 RMS(Int)= 0.38688472 Iteration 6 RMS(Cart)= 0.00152737 RMS(Int)= 0.35495154 Iteration 7 RMS(Cart)= 0.00154599 RMS(Int)= 0.32098211 Iteration 8 RMS(Cart)= 0.00150468 RMS(Int)= 0.28679543 Iteration 9 RMS(Cart)= 0.00147151 RMS(Int)= 0.25293587 Iteration 10 RMS(Cart)= 0.00145019 RMS(Int)= 0.21972577 Iteration 11 RMS(Cart)= 0.00141350 RMS(Int)= 0.18781423 Iteration 12 RMS(Cart)= 0.00131396 RMS(Int)= 0.15887817 Iteration 13 RMS(Cart)= 0.00105111 RMS(Int)= 0.13703176 Iteration 14 RMS(Cart)= 0.00057265 RMS(Int)= 0.12671004 Iteration 15 RMS(Cart)= 0.00027644 RMS(Int)= 0.12218048 Iteration 16 RMS(Cart)= 0.00020786 RMS(Int)= 0.11881241 Iteration 17 RMS(Cart)= 0.00018347 RMS(Int)= 0.11582636 Iteration 18 RMS(Cart)= 0.00017134 RMS(Int)= 0.11301174 Iteration 19 RMS(Cart)= 0.00016422 RMS(Int)= 0.11028246 Iteration 20 RMS(Cart)= 0.00015966 RMS(Int)= 0.10759121 Iteration 21 RMS(Cart)= 0.00015662 RMS(Int)= 0.10490408 Iteration 22 RMS(Cart)= 0.00015464 RMS(Int)= 0.10218862 Iteration 23 RMS(Cart)= 0.00015350 RMS(Int)= 0.09940308 Iteration 24 RMS(Cart)= 0.00015314 RMS(Int)= 0.09647652 Iteration 25 RMS(Cart)= 0.00015370 RMS(Int)= 0.09324655 Iteration 26 RMS(Cart)= 0.00015565 RMS(Int)= 0.08911672 Iteration 27 RMS(Cart)= 0.00016118 RMS(Int)= 0.06365764 Iteration 28 RMS(Cart)= 0.00025624 RMS(Int)= 0.47559678 Iteration 29 RMS(Cart)= 0.00021300 RMS(Int)= 0.45622038 Iteration 30 RMS(Cart)= 0.00027189 RMS(Int)= 0.08280472 Iteration 31 RMS(Cart)= 0.00019180 RMS(Int)= 0.07277652 Iteration 32 RMS(Cart)= 0.00021947 RMS(Int)= 0.46585225 Iteration 33 RMS(Cart)= 0.00024515 RMS(Int)= 0.06889953 Iteration 34 RMS(Cart)= 0.00023744 RMS(Int)= 0.46936426 Iteration 35 RMS(Cart)= 0.00023126 RMS(Int)= 0.06528364 Iteration 36 RMS(Cart)= 0.00025213 RMS(Int)= 0.47320443 Iteration 37 RMS(Cart)= 0.00021801 RMS(Int)= 0.05631529 Iteration 38 RMS(Cart)= 0.00028767 RMS(Int)= 0.48280183 Iteration 39 RMS(Cart)= 0.00018590 RMS(Int)= 0.47404152 Iteration 40 RMS(Cart)= 0.00020684 RMS(Int)= 0.06440111 Iteration 41 RMS(Cart)= 0.00026065 RMS(Int)= 0.47226472 Iteration 42 RMS(Cart)= 0.00021732 RMS(Int)= 0.06462149 Iteration 43 RMS(Cart)= 0.00025678 RMS(Int)= 0.47333823 Iteration 44 RMS(Cart)= 0.00021591 RMS(Int)= 0.06050103 Iteration 45 RMS(Cart)= 0.00027135 RMS(Int)= 0.47829001 Iteration 46 RMS(Cart)= 0.00020072 RMS(Int)= 0.43149784 New curvilinear step failed, DQL= 3.14D+00 SP=-9.97D-01. ITry= 3 IFail=1 DXMaxC= 3.82D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00994127 RMS(Int)= 0.49804979 Iteration 2 RMS(Cart)= 0.08984067 RMS(Int)= 0.47375822 Iteration 3 RMS(Cart)= 0.00261215 RMS(Int)= 0.44886741 Iteration 4 RMS(Cart)= 0.00151422 RMS(Int)= 0.42152266 Iteration 5 RMS(Cart)= 0.00161332 RMS(Int)= 0.39230161 Iteration 6 RMS(Cart)= 0.00166066 RMS(Int)= 0.36120276 Iteration 7 RMS(Cart)= 0.00168492 RMS(Int)= 0.32831009 Iteration 8 RMS(Cart)= 0.00168500 RMS(Int)= 0.29403190 Iteration 9 RMS(Cart)= 0.00162810 RMS(Int)= 0.25987333 Iteration 10 RMS(Cart)= 0.00158455 RMS(Int)= 0.22597098 Iteration 11 RMS(Cart)= 0.00154935 RMS(Int)= 0.19250539 Iteration 12 RMS(Cart)= 0.00150852 RMS(Int)= 0.15986685 Iteration 13 RMS(Cart)= 0.00143553 RMS(Int)= 0.12902509 Iteration 14 RMS(Cart)= 0.00125951 RMS(Int)= 0.10265705 Iteration 15 RMS(Cart)= 0.00086355 RMS(Int)= 0.08606321 Iteration 16 RMS(Cart)= 0.00038771 RMS(Int)= 0.07962739 Iteration 17 RMS(Cart)= 0.00023669 RMS(Int)= 0.07584708 Iteration 18 RMS(Cart)= 0.00019625 RMS(Int)= 0.07271360 Iteration 19 RMS(Cart)= 0.00017889 RMS(Int)= 0.06983441 Iteration 20 RMS(Cart)= 0.00016938 RMS(Int)= 0.06707789 Iteration 21 RMS(Cart)= 0.00016344 RMS(Int)= 0.06438175 Iteration 22 RMS(Cart)= 0.00015949 RMS(Int)= 0.06170738 Iteration 23 RMS(Cart)= 0.00015682 RMS(Int)= 0.05902312 Iteration 24 RMS(Cart)= 0.00015508 RMS(Int)= 0.05629415 Iteration 25 RMS(Cart)= 0.00015413 RMS(Int)= 0.05346919 Iteration 26 RMS(Cart)= 0.00015399 RMS(Int)= 0.05044863 Iteration 27 RMS(Cart)= 0.00015490 RMS(Int)= 0.04695847 Iteration 28 RMS(Cart)= 0.00016074 RMS(Int)= 0.04123022 Iteration 29 RMS(Cart)= 0.00016984 RMS(Int)= 0.49533557 Iteration 30 RMS(Cart)= 0.00011475 RMS(Int)= 0.04046629 Iteration 31 RMS(Cart)= 0.00016918 RMS(Int)= 0.49831173 Iteration 32 RMS(Cart)= 0.00010736 RMS(Int)= 0.48349324 Iteration 33 RMS(Cart)= 0.00012971 RMS(Int)= 0.05546774 Iteration 34 RMS(Cart)= 0.00011447 RMS(Int)= 0.39790439 Iteration 35 RMS(Cart)= 0.00000081 RMS(Int)= 0.36864362 ITry= 4 IFail=0 DXMaxC= 3.41D-01 DCOld= 1.00D+10 DXMaxT= 1.43D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.26130 -0.00401 0.00055 -0.00658 -0.00405 4.25725 R2 4.21816 -0.00582 -0.00521 -0.00485 -0.00861 4.20954 R3 4.70857 0.01522 0.00824 0.10013 0.07589 4.78446 R4 5.07381 -0.00675 -0.00149 -0.05098 -0.03933 5.03449 R5 4.39882 -0.01893 0.01310 -0.03689 -0.01271 4.38611 R6 4.36147 -0.01326 0.01127 -0.02459 -0.00594 4.35553 R7 4.48672 0.02798 0.01733 0.12984 0.11042 4.59714 R8 4.76368 0.01173 0.02627 0.05450 0.06700 4.83069 A1 1.66481 0.00723 -0.01941 0.07087 0.03023 1.69504 A2 1.49214 0.01193 0.03209 0.03358 0.05780 1.54994 A3 1.59984 -0.00074 -0.02548 -0.01213 -0.03176 1.56808 A4 1.52679 -0.01839 0.01277 -0.09166 -0.05579 1.47099 A5 1.74577 -0.02463 -0.04345 -0.00998 -0.03831 1.70746 A6 1.50116 0.02659 0.02971 0.11264 0.09287 1.59403 A7 3.14065 0.00407 -0.03506 0.06360 0.00093 3.14159 A8 1.39552 0.02595 0.00850 0.03075 0.03862 1.43413 A9 1.64077 -0.02805 0.00530 -0.13551 -0.09321 1.54756 A10 1.62438 0.02061 -0.00997 0.09684 0.06114 1.68552 A11 1.49061 0.02587 -0.00817 0.13098 0.08797 1.57858 A12 3.01893 -0.00646 0.04486 -0.05808 0.00201 3.02094 A13 3.12662 -0.01914 -0.01271 -0.10380 -0.08755 3.03907 A14 3.24693 0.00196 -0.01374 0.10266 0.05457 3.30149 A15 3.11770 -0.00031 0.00108 -0.00608 -0.00597 3.11174 A16 3.12431 -0.00137 0.00078 -0.02693 -0.01543 3.10888 A17 3.10625 -0.00054 0.00438 -0.01238 0.00064 3.10688 D1 -3.14027 -0.00100 0.00242 -0.01866 -0.00786 3.13505 D2 0.02521 -0.00070 0.00134 -0.01258 -0.00189 0.02332 D3 3.10052 -0.00073 -0.00047 -0.01510 -0.01369 3.08683 D4 -0.02379 0.00064 -0.00125 0.01183 0.00174 -0.02205 D5 3.11558 -0.00289 0.00216 -0.04514 0.00183 3.11740 D6 -0.02689 0.00092 -0.00126 0.01436 0.00271 -0.02419 D7 1.96273 -0.00003 0.25651 -0.07120 -1.94244 0.02029 D8 -3.08115 -0.00070 -0.00292 -0.00698 -0.00290 -3.08405 D9 0.02500 -0.00082 0.00127 -0.01296 -0.00217 0.02284 Item Value Threshold Converged? Maximum Force 0.028047 0.000450 NO RMS Force 0.013961 0.000300 NO Maximum Displacement 0.341418 0.001800 NO RMS Displacement 0.099642 0.001200 NO Predicted change in Energy=-8.843060D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.030005 1.470615 0.004786 2 13 0 2.671304 1.666344 0.021773 3 17 0 -2.552748 3.130900 0.005994 4 17 0 -2.471692 -0.226170 -0.063281 5 17 0 4.195024 3.416309 -0.033617 6 17 0 4.185526 -0.070391 -0.034800 7 35 0 0.799797 3.220462 0.006983 8 35 0 0.993129 -0.260992 0.082778 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.706519 0.000000 3 Cl 2.252841 5.425485 0.000000 4 Cl 2.227594 5.480808 3.358764 0.000000 5 Cl 5.575672 2.321027 6.753921 7.596949 0.000000 6 Cl 5.438569 2.304847 7.460179 6.659102 3.486714 7 Br 2.531826 2.432702 3.353740 4.752562 3.401113 8 Br 2.664135 2.556289 4.907552 3.468073 4.877317 6 7 8 6 Cl 0.000000 7 Br 4.721718 0.000000 8 Br 3.200243 3.487641 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.891483 -0.010174 -0.003315 2 13 0 -1.814460 -0.073148 0.013985 3 17 0 3.353809 -1.723862 0.009678 4 17 0 3.392996 1.633405 -0.082593 5 17 0 -3.399853 -1.767780 -0.029850 6 17 0 -3.265533 1.716255 -0.054893 7 35 0 0.000208 -1.693335 0.010350 8 35 0 -0.068362 1.793245 0.062263 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5675819 0.2872388 0.1908206 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1692.4615886178 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.40D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999989 -0.000771 -0.000295 0.004717 Ang= -0.55 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.11701641 A.U. after 12 cycles NFock= 12 Conv=0.55D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.024666601 -0.007266993 0.000026947 2 13 0.052587312 -0.008498761 -0.002128448 3 17 0.008142930 -0.003849430 0.000595063 4 17 0.005928318 0.001168371 -0.000301022 5 17 -0.016095154 -0.015597674 0.001210903 6 17 -0.005743992 0.015008752 0.000275721 7 35 -0.005516041 0.006037490 -0.000471269 8 35 -0.014636775 0.012998245 0.000792106 ------------------------------------------------------------------- Cartesian Forces: Max 0.052587312 RMS 0.014192975 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.022352673 RMS 0.009024380 Search for a local minimum. Step number 7 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 6 7 DE= -1.47D-02 DEPred=-8.84D-03 R= 1.67D+00 TightC=F SS= 1.41D+00 RLast= 1.96D+00 DXNew= 2.4000D+00 5.8854D+00 Trust test= 1.67D+00 RLast= 1.96D+00 DXMaxT set to 2.40D+00 ITU= 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00104 0.01306 0.01439 0.02759 0.03820 Eigenvalues --- 0.07856 0.11923 0.13185 0.13647 0.17426 Eigenvalues --- 0.19926 0.22078 0.23110 0.23363 0.23937 Eigenvalues --- 0.28710 0.38411 0.72390 RFO step: Lambda=-1.46413978D-02 EMin= 1.04268745D-03 Quartic linear search produced a step of 1.23010. Iteration 1 RMS(Cart)= 0.10816720 RMS(Int)= 0.43684082 Iteration 2 RMS(Cart)= 0.01104791 RMS(Int)= 0.40394498 Iteration 3 RMS(Cart)= 0.00975823 RMS(Int)= 0.37029210 Iteration 4 RMS(Cart)= 0.00981427 RMS(Int)= 0.33700138 Iteration 5 RMS(Cart)= 0.00985449 RMS(Int)= 0.30411207 Iteration 6 RMS(Cart)= 0.00984885 RMS(Int)= 0.27164563 Iteration 7 RMS(Cart)= 0.00976807 RMS(Int)= 0.23961092 Iteration 8 RMS(Cart)= 0.00958652 RMS(Int)= 0.20801457 Iteration 9 RMS(Cart)= 0.00926767 RMS(Int)= 0.17690898 Iteration 10 RMS(Cart)= 0.00874689 RMS(Int)= 0.14649782 Iteration 11 RMS(Cart)= 0.00794667 RMS(Int)= 0.11729880 Iteration 12 RMS(Cart)= 0.00683233 RMS(Int)= 0.09032797 Iteration 13 RMS(Cart)= 0.00545852 RMS(Int)= 0.06720876 Iteration 14 RMS(Cart)= 0.00396650 RMS(Int)= 0.04987869 Iteration 15 RMS(Cart)= 0.00256719 RMS(Int)= 0.03925939 Iteration 16 RMS(Cart)= 0.00138089 RMS(Int)= 0.03508383 Iteration 17 RMS(Cart)= 0.00075347 RMS(Int)= 0.03342413 Iteration 18 RMS(Cart)= 0.00049691 RMS(Int)= 0.03248951 Iteration 19 RMS(Cart)= 0.00036662 RMS(Int)= 0.03186685 Iteration 20 RMS(Cart)= 0.00029254 RMS(Int)= 0.03140592 Iteration 21 RMS(Cart)= 0.00024613 RMS(Int)= 0.03104077 Iteration 22 RMS(Cart)= 0.00021454 RMS(Int)= 0.03073840 Iteration 23 RMS(Cart)= 0.00019153 RMS(Int)= 0.03048046 Iteration 24 RMS(Cart)= 0.00017386 RMS(Int)= 0.03025577 Iteration 25 RMS(Cart)= 0.00015975 RMS(Int)= 0.03005706 Iteration 26 RMS(Cart)= 0.00014811 RMS(Int)= 0.02987930 Iteration 27 RMS(Cart)= 0.00013828 RMS(Int)= 0.02971886 Iteration 28 RMS(Cart)= 0.00012981 RMS(Int)= 0.02957302 Iteration 29 RMS(Cart)= 0.00012241 RMS(Int)= 0.02943967 Iteration 30 RMS(Cart)= 0.00011585 RMS(Int)= 0.02931713 Iteration 31 RMS(Cart)= 0.00010999 RMS(Int)= 0.02920407 Iteration 32 RMS(Cart)= 0.00010470 RMS(Int)= 0.02909937 Iteration 33 RMS(Cart)= 0.00009990 RMS(Int)= 0.02900210 Iteration 34 RMS(Cart)= 0.00009551 RMS(Int)= 0.02891148 Iteration 35 RMS(Cart)= 0.00009148 RMS(Int)= 0.02882685 Iteration 36 RMS(Cart)= 0.00008775 RMS(Int)= 0.02874763 Iteration 37 RMS(Cart)= 0.00008430 RMS(Int)= 0.02867332 Iteration 38 RMS(Cart)= 0.00008109 RMS(Int)= 0.02860348 Iteration 39 RMS(Cart)= 0.00007810 RMS(Int)= 0.02853773 Iteration 40 RMS(Cart)= 0.00007530 RMS(Int)= 0.02847574 Iteration 41 RMS(Cart)= 0.00007267 RMS(Int)= 0.02841719 Iteration 42 RMS(Cart)= 0.00007020 RMS(Int)= 0.02836182 Iteration 43 RMS(Cart)= 0.00006788 RMS(Int)= 0.02830938 Iteration 44 RMS(Cart)= 0.00006568 RMS(Int)= 0.02825967 Iteration 45 RMS(Cart)= 0.00006361 RMS(Int)= 0.02821248 Iteration 46 RMS(Cart)= 0.00006164 RMS(Int)= 0.02816764 Iteration 47 RMS(Cart)= 0.00005978 RMS(Int)= 0.02812498 Iteration 48 RMS(Cart)= 0.00005801 RMS(Int)= 0.02808436 Iteration 49 RMS(Cart)= 0.00005633 RMS(Int)= 0.02804565 Iteration 50 RMS(Cart)= 0.00005473 RMS(Int)= 0.02800872 Iteration 51 RMS(Cart)= 0.00005320 RMS(Int)= 0.02797345 Iteration 52 RMS(Cart)= 0.00005174 RMS(Int)= 0.02793976 Iteration 53 RMS(Cart)= 0.00005035 RMS(Int)= 0.02790753 Iteration 54 RMS(Cart)= 0.00004902 RMS(Int)= 0.02787669 Iteration 55 RMS(Cart)= 0.00004774 RMS(Int)= 0.02784715 Iteration 56 RMS(Cart)= 0.00004652 RMS(Int)= 0.02781884 Iteration 57 RMS(Cart)= 0.00004535 RMS(Int)= 0.02779168 Iteration 58 RMS(Cart)= 0.00004423 RMS(Int)= 0.02776562 Iteration 59 RMS(Cart)= 0.00004315 RMS(Int)= 0.02774060 Iteration 60 RMS(Cart)= 0.00004212 RMS(Int)= 0.02771655 Iteration 61 RMS(Cart)= 0.00004112 RMS(Int)= 0.02769343 Iteration 62 RMS(Cart)= 0.00004016 RMS(Int)= 0.02767118 Iteration 63 RMS(Cart)= 0.00003924 RMS(Int)= 0.02764978 Iteration 64 RMS(Cart)= 0.00003835 RMS(Int)= 0.02762916 Iteration 65 RMS(Cart)= 0.00003750 RMS(Int)= 0.02760929 Iteration 66 RMS(Cart)= 0.00003667 RMS(Int)= 0.02759014 Iteration 67 RMS(Cart)= 0.00003587 RMS(Int)= 0.02757167 Iteration 68 RMS(Cart)= 0.00003510 RMS(Int)= 0.02755384 Iteration 69 RMS(Cart)= 0.00003436 RMS(Int)= 0.02753663 Iteration 70 RMS(Cart)= 0.00003364 RMS(Int)= 0.02752001 Iteration 71 RMS(Cart)= 0.00003295 RMS(Int)= 0.02750395 Iteration 72 RMS(Cart)= 0.00003227 RMS(Int)= 0.02748843 Iteration 73 RMS(Cart)= 0.00003162 RMS(Int)= 0.02747341 Iteration 74 RMS(Cart)= 0.00003099 RMS(Int)= 0.02745889 Iteration 75 RMS(Cart)= 0.00003038 RMS(Int)= 0.02744483 Iteration 76 RMS(Cart)= 0.00002979 RMS(Int)= 0.02743122 Iteration 77 RMS(Cart)= 0.00002922 RMS(Int)= 0.02741804 Iteration 78 RMS(Cart)= 0.00002866 RMS(Int)= 0.02740526 Iteration 79 RMS(Cart)= 0.00002812 RMS(Int)= 0.02739288 Iteration 80 RMS(Cart)= 0.00002760 RMS(Int)= 0.02738088 Iteration 81 RMS(Cart)= 0.00002709 RMS(Int)= 0.02736924 Iteration 82 RMS(Cart)= 0.00002660 RMS(Int)= 0.02735794 Iteration 83 RMS(Cart)= 0.00002613 RMS(Int)= 0.02734698 Iteration 84 RMS(Cart)= 0.00002565 RMS(Int)= 0.02733633 Iteration 85 RMS(Cart)= 0.00002520 RMS(Int)= 0.02732599 Iteration 86 RMS(Cart)= 0.00002476 RMS(Int)= 0.02731595 Iteration 87 RMS(Cart)= 0.00002433 RMS(Int)= 0.02730619 Iteration 88 RMS(Cart)= 0.00002392 RMS(Int)= 0.02729670 Iteration 89 RMS(Cart)= 0.00002351 RMS(Int)= 0.02728748 Iteration 90 RMS(Cart)= 0.00002312 RMS(Int)= 0.02727850 Iteration 91 RMS(Cart)= 0.00002273 RMS(Int)= 0.02726978 Iteration 92 RMS(Cart)= 0.00002236 RMS(Int)= 0.02726128 Iteration 93 RMS(Cart)= 0.00002199 RMS(Int)= 0.02725301 Iteration 94 RMS(Cart)= 0.00002164 RMS(Int)= 0.02724496 Iteration 95 RMS(Cart)= 0.00002129 RMS(Int)= 0.02723712 Iteration 96 RMS(Cart)= 0.00002095 RMS(Int)= 0.02722948 Iteration 97 RMS(Cart)= 0.00002062 RMS(Int)= 0.02722204 Iteration 98 RMS(Cart)= 0.00002030 RMS(Int)= 0.02721479 Iteration 99 RMS(Cart)= 0.00001999 RMS(Int)= 0.02720771 Iteration100 RMS(Cart)= 0.00001968 RMS(Int)= 0.02720082 New curvilinear step not converged. ITry= 1 IFail=1 DXMaxC= 3.48D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.10689687 RMS(Int)= 0.43397664 Iteration 2 RMS(Cart)= 0.01150221 RMS(Int)= 0.40198197 Iteration 3 RMS(Cart)= 0.00882219 RMS(Int)= 0.36822946 Iteration 4 RMS(Cart)= 0.00889597 RMS(Int)= 0.33474281 Iteration 5 RMS(Cart)= 0.00894880 RMS(Int)= 0.30158542 Iteration 6 RMS(Cart)= 0.00895828 RMS(Int)= 0.26878051 Iteration 7 RMS(Cart)= 0.00889407 RMS(Int)= 0.23634769 Iteration 8 RMS(Cart)= 0.00872813 RMS(Int)= 0.20431815 Iteration 9 RMS(Cart)= 0.00842285 RMS(Int)= 0.17278521 Iteration 10 RMS(Cart)= 0.00791875 RMS(Int)= 0.14200627 Iteration 11 RMS(Cart)= 0.00715203 RMS(Int)= 0.11255297 Iteration 12 RMS(Cart)= 0.00610498 RMS(Int)= 0.08547692 Iteration 13 RMS(Cart)= 0.00484050 RMS(Int)= 0.06240746 Iteration 14 RMS(Cart)= 0.00349152 RMS(Int)= 0.04526177 Iteration 15 RMS(Cart)= 0.00224596 RMS(Int)= 0.03490842 Iteration 16 RMS(Cart)= 0.00113853 RMS(Int)= 0.03155982 Iteration 17 RMS(Cart)= 0.00067191 RMS(Int)= 0.03005345 Iteration 18 RMS(Cart)= 0.00045012 RMS(Int)= 0.02918848 Iteration 19 RMS(Cart)= 0.00032873 RMS(Int)= 0.02861862 Iteration 20 RMS(Cart)= 0.00025738 RMS(Int)= 0.02820494 Iteration 21 RMS(Cart)= 0.00021260 RMS(Int)= 0.02788302 Iteration 22 RMS(Cart)= 0.00018260 RMS(Int)= 0.02761997 Iteration 23 RMS(Cart)= 0.00016126 RMS(Int)= 0.02739755 Iteration 24 RMS(Cart)= 0.00014526 RMS(Int)= 0.02720486 Iteration 25 RMS(Cart)= 0.00013275 RMS(Int)= 0.02703495 Iteration 26 RMS(Cart)= 0.00012264 RMS(Int)= 0.02688313 Iteration 27 RMS(Cart)= 0.00011422 RMS(Int)= 0.02674608 Iteration 28 RMS(Cart)= 0.00010707 RMS(Int)= 0.02662138 Iteration 29 RMS(Cart)= 0.00010089 RMS(Int)= 0.02650717 Iteration 30 RMS(Cart)= 0.00009546 RMS(Int)= 0.02640200 Iteration 31 RMS(Cart)= 0.00009064 RMS(Int)= 0.02630473 Iteration 32 RMS(Cart)= 0.00008632 RMS(Int)= 0.02621441 Iteration 33 RMS(Cart)= 0.00008241 RMS(Int)= 0.02613028 Iteration 34 RMS(Cart)= 0.00007884 RMS(Int)= 0.02605167 Iteration 35 RMS(Cart)= 0.00007558 RMS(Int)= 0.02597804 Iteration 36 RMS(Cart)= 0.00007258 RMS(Int)= 0.02590891 Iteration 37 RMS(Cart)= 0.00006979 RMS(Int)= 0.02584387 Iteration 38 RMS(Cart)= 0.00006721 RMS(Int)= 0.02578256 Iteration 39 RMS(Cart)= 0.00006480 RMS(Int)= 0.02572468 Iteration 40 RMS(Cart)= 0.00006255 RMS(Int)= 0.02566994 Iteration 41 RMS(Cart)= 0.00006044 RMS(Int)= 0.02561810 Iteration 42 RMS(Cart)= 0.00005846 RMS(Int)= 0.02556893 Iteration 43 RMS(Cart)= 0.00005659 RMS(Int)= 0.02552224 Iteration 44 RMS(Cart)= 0.00005482 RMS(Int)= 0.02547785 Iteration 45 RMS(Cart)= 0.00005316 RMS(Int)= 0.02543561 Iteration 46 RMS(Cart)= 0.00005157 RMS(Int)= 0.02539536 Iteration 47 RMS(Cart)= 0.00005007 RMS(Int)= 0.02535697 Iteration 48 RMS(Cart)= 0.00004865 RMS(Int)= 0.02532033 Iteration 49 RMS(Cart)= 0.00004729 RMS(Int)= 0.02528531 Iteration 50 RMS(Cart)= 0.00004600 RMS(Int)= 0.02525183 Iteration 51 RMS(Cart)= 0.00004476 RMS(Int)= 0.02521979 Iteration 52 RMS(Cart)= 0.00004358 RMS(Int)= 0.02518909 Iteration 53 RMS(Cart)= 0.00004246 RMS(Int)= 0.02515968 Iteration 54 RMS(Cart)= 0.00004138 RMS(Int)= 0.02513146 Iteration 55 RMS(Cart)= 0.00004034 RMS(Int)= 0.02510437 Iteration 56 RMS(Cart)= 0.00003935 RMS(Int)= 0.02507836 Iteration 57 RMS(Cart)= 0.00003840 RMS(Int)= 0.02505336 Iteration 58 RMS(Cart)= 0.00003749 RMS(Int)= 0.02502932 Iteration 59 RMS(Cart)= 0.00003661 RMS(Int)= 0.02500619 Iteration 60 RMS(Cart)= 0.00003577 RMS(Int)= 0.02498391 Iteration 61 RMS(Cart)= 0.00003495 RMS(Int)= 0.02496246 Iteration 62 RMS(Cart)= 0.00003417 RMS(Int)= 0.02494178 Iteration 63 RMS(Cart)= 0.00003341 RMS(Int)= 0.02492184 Iteration 64 RMS(Cart)= 0.00003269 RMS(Int)= 0.02490261 Iteration 65 RMS(Cart)= 0.00003199 RMS(Int)= 0.02488404 Iteration 66 RMS(Cart)= 0.00003131 RMS(Int)= 0.02486611 Iteration 67 RMS(Cart)= 0.00003065 RMS(Int)= 0.02484879 Iteration 68 RMS(Cart)= 0.00003002 RMS(Int)= 0.02483205 Iteration 69 RMS(Cart)= 0.00002941 RMS(Int)= 0.02481586 Iteration 70 RMS(Cart)= 0.00002882 RMS(Int)= 0.02480020 Iteration 71 RMS(Cart)= 0.00002824 RMS(Int)= 0.02478505 Iteration 72 RMS(Cart)= 0.00002769 RMS(Int)= 0.02477038 Iteration 73 RMS(Cart)= 0.00002715 RMS(Int)= 0.02475617 Iteration 74 RMS(Cart)= 0.00002663 RMS(Int)= 0.02474240 Iteration 75 RMS(Cart)= 0.00002613 RMS(Int)= 0.02472906 Iteration 76 RMS(Cart)= 0.00002564 RMS(Int)= 0.02471613 Iteration 77 RMS(Cart)= 0.00002516 RMS(Int)= 0.02470358 Iteration 78 RMS(Cart)= 0.00002470 RMS(Int)= 0.02469141 Iteration 79 RMS(Cart)= 0.00002425 RMS(Int)= 0.02467960 Iteration 80 RMS(Cart)= 0.00002382 RMS(Int)= 0.02466813 Iteration 81 RMS(Cart)= 0.00002339 RMS(Int)= 0.02465699 Iteration 82 RMS(Cart)= 0.00002298 RMS(Int)= 0.02464618 Iteration 83 RMS(Cart)= 0.00002258 RMS(Int)= 0.02463566 Iteration 84 RMS(Cart)= 0.00002220 RMS(Int)= 0.02462545 Iteration 85 RMS(Cart)= 0.00002182 RMS(Int)= 0.02461551 Iteration 86 RMS(Cart)= 0.00002145 RMS(Int)= 0.02460585 Iteration 87 RMS(Cart)= 0.00002109 RMS(Int)= 0.02459645 Iteration 88 RMS(Cart)= 0.00002074 RMS(Int)= 0.02458731 Iteration 89 RMS(Cart)= 0.00002040 RMS(Int)= 0.02457840 Iteration 90 RMS(Cart)= 0.00002007 RMS(Int)= 0.02456974 Iteration 91 RMS(Cart)= 0.00001975 RMS(Int)= 0.02456130 Iteration 92 RMS(Cart)= 0.00001944 RMS(Int)= 0.02455308 Iteration 93 RMS(Cart)= 0.00001913 RMS(Int)= 0.02454506 Iteration 94 RMS(Cart)= 0.00001883 RMS(Int)= 0.02453726 Iteration 95 RMS(Cart)= 0.00001854 RMS(Int)= 0.02452965 Iteration 96 RMS(Cart)= 0.00001825 RMS(Int)= 0.02452223 Iteration 97 RMS(Cart)= 0.00001798 RMS(Int)= 0.02451499 Iteration 98 RMS(Cart)= 0.00001770 RMS(Int)= 0.02450794 Iteration 99 RMS(Cart)= 0.00001744 RMS(Int)= 0.02450105 Iteration100 RMS(Cart)= 0.00001718 RMS(Int)= 0.02449433 New curvilinear step not converged. ITry= 2 IFail=1 DXMaxC= 3.54D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.10722430 RMS(Int)= 0.43130209 Iteration 2 RMS(Cart)= 0.00922534 RMS(Int)= 0.39827116 Iteration 3 RMS(Cart)= 0.00788517 RMS(Int)= 0.36439461 Iteration 4 RMS(Cart)= 0.00795904 RMS(Int)= 0.33074598 Iteration 5 RMS(Cart)= 0.00801759 RMS(Int)= 0.29736186 Iteration 6 RMS(Cart)= 0.00803438 RMS(Int)= 0.26426676 Iteration 7 RMS(Cart)= 0.00797944 RMS(Int)= 0.23149071 Iteration 8 RMS(Cart)= 0.00782326 RMS(Int)= 0.19909031 Iteration 9 RMS(Cart)= 0.00752775 RMS(Int)= 0.16720326 Iteration 10 RMS(Cart)= 0.00703892 RMS(Int)= 0.13614775 Iteration 11 RMS(Cart)= 0.00630739 RMS(Int)= 0.10655966 Iteration 12 RMS(Cart)= 0.00533234 RMS(Int)= 0.07953959 Iteration 13 RMS(Cart)= 0.00418315 RMS(Int)= 0.05673727 Iteration 14 RMS(Cart)= 0.00298340 RMS(Int)= 0.04004627 Iteration 15 RMS(Cart)= 0.00189004 RMS(Int)= 0.03040929 Iteration 16 RMS(Cart)= 0.00090893 RMS(Int)= 0.02785444 Iteration 17 RMS(Cart)= 0.00058118 RMS(Int)= 0.02655454 Iteration 18 RMS(Cart)= 0.00040186 RMS(Int)= 0.02577882 Iteration 19 RMS(Cart)= 0.00029443 RMS(Int)= 0.02526654 Iteration 20 RMS(Cart)= 0.00022720 RMS(Int)= 0.02490070 Iteration 21 RMS(Cart)= 0.00018371 RMS(Int)= 0.02462231 Iteration 22 RMS(Cart)= 0.00015449 RMS(Int)= 0.02439956 Iteration 23 RMS(Cart)= 0.00013402 RMS(Int)= 0.02421434 Iteration 24 RMS(Cart)= 0.00011905 RMS(Int)= 0.02405585 Iteration 25 RMS(Cart)= 0.00010766 RMS(Int)= 0.02391728 Iteration 26 RMS(Cart)= 0.00009869 RMS(Int)= 0.02379413 Iteration 27 RMS(Cart)= 0.00009141 RMS(Int)= 0.02368332 Iteration 28 RMS(Cart)= 0.00008534 RMS(Int)= 0.02358264 Iteration 29 RMS(Cart)= 0.00008019 RMS(Int)= 0.02349045 Iteration 30 RMS(Cart)= 0.00007574 RMS(Int)= 0.02340550 Iteration 31 RMS(Cart)= 0.00007184 RMS(Int)= 0.02332681 Iteration 32 RMS(Cart)= 0.00006838 RMS(Int)= 0.02325362 Iteration 33 RMS(Cart)= 0.00006527 RMS(Int)= 0.02318527 Iteration 34 RMS(Cart)= 0.00006247 RMS(Int)= 0.02312124 Iteration 35 RMS(Cart)= 0.00005991 RMS(Int)= 0.02306110 Iteration 36 RMS(Cart)= 0.00005757 RMS(Int)= 0.02300447 Iteration 37 RMS(Cart)= 0.00005541 RMS(Int)= 0.02295103 Iteration 38 RMS(Cart)= 0.00005341 RMS(Int)= 0.02290050 Iteration 39 RMS(Cart)= 0.00005155 RMS(Int)= 0.02285264 Iteration 40 RMS(Cart)= 0.00004982 RMS(Int)= 0.02280723 Iteration 41 RMS(Cart)= 0.00004820 RMS(Int)= 0.02276409 Iteration 42 RMS(Cart)= 0.00004667 RMS(Int)= 0.02272304 Iteration 43 RMS(Cart)= 0.00004524 RMS(Int)= 0.02268394 Iteration 44 RMS(Cart)= 0.00004389 RMS(Int)= 0.02264664 Iteration 45 RMS(Cart)= 0.00004261 RMS(Int)= 0.02261104 Iteration 46 RMS(Cart)= 0.00004140 RMS(Int)= 0.02257701 Iteration 47 RMS(Cart)= 0.00004024 RMS(Int)= 0.02254446 Iteration 48 RMS(Cart)= 0.00003915 RMS(Int)= 0.02251329 Iteration 49 RMS(Cart)= 0.00003811 RMS(Int)= 0.02248343 Iteration 50 RMS(Cart)= 0.00003712 RMS(Int)= 0.02245478 Iteration 51 RMS(Cart)= 0.00003617 RMS(Int)= 0.02242729 Iteration 52 RMS(Cart)= 0.00003526 RMS(Int)= 0.02240088 Iteration 53 RMS(Cart)= 0.00003439 RMS(Int)= 0.02237550 Iteration 54 RMS(Cart)= 0.00003356 RMS(Int)= 0.02235109 Iteration 55 RMS(Cart)= 0.00003277 RMS(Int)= 0.02232760 Iteration 56 RMS(Cart)= 0.00003200 RMS(Int)= 0.02230497 Iteration 57 RMS(Cart)= 0.00003127 RMS(Int)= 0.02228317 Iteration 58 RMS(Cart)= 0.00003056 RMS(Int)= 0.02226216 Iteration 59 RMS(Cart)= 0.00002988 RMS(Int)= 0.02224189 Iteration 60 RMS(Cart)= 0.00002923 RMS(Int)= 0.02222232 Iteration 61 RMS(Cart)= 0.00002859 RMS(Int)= 0.02220343 Iteration 62 RMS(Cart)= 0.00002799 RMS(Int)= 0.02218518 Iteration 63 RMS(Cart)= 0.00002740 RMS(Int)= 0.02216754 Iteration 64 RMS(Cart)= 0.00002683 RMS(Int)= 0.02215048 Iteration 65 RMS(Cart)= 0.00002629 RMS(Int)= 0.02213398 Iteration 66 RMS(Cart)= 0.00002576 RMS(Int)= 0.02211802 Iteration 67 RMS(Cart)= 0.00002524 RMS(Int)= 0.02210256 Iteration 68 RMS(Cart)= 0.00002475 RMS(Int)= 0.02208758 Iteration 69 RMS(Cart)= 0.00002427 RMS(Int)= 0.02207308 Iteration 70 RMS(Cart)= 0.00002381 RMS(Int)= 0.02205901 Iteration 71 RMS(Cart)= 0.00002336 RMS(Int)= 0.02204538 Iteration 72 RMS(Cart)= 0.00002292 RMS(Int)= 0.02203215 Iteration 73 RMS(Cart)= 0.00002250 RMS(Int)= 0.02201932 Iteration 74 RMS(Cart)= 0.00002209 RMS(Int)= 0.02200686 Iteration 75 RMS(Cart)= 0.00002169 RMS(Int)= 0.02199476 Iteration 76 RMS(Cart)= 0.00002130 RMS(Int)= 0.02198301 Iteration 77 RMS(Cart)= 0.00002093 RMS(Int)= 0.02197160 Iteration 78 RMS(Cart)= 0.00002056 RMS(Int)= 0.02196050 Iteration 79 RMS(Cart)= 0.00002021 RMS(Int)= 0.02194972 Iteration 80 RMS(Cart)= 0.00001986 RMS(Int)= 0.02193923 Iteration 81 RMS(Cart)= 0.00001953 RMS(Int)= 0.02192903 Iteration 82 RMS(Cart)= 0.00001920 RMS(Int)= 0.02191910 Iteration 83 RMS(Cart)= 0.00001888 RMS(Int)= 0.02190944 Iteration 84 RMS(Cart)= 0.00001857 RMS(Int)= 0.02190003 Iteration 85 RMS(Cart)= 0.00001827 RMS(Int)= 0.02189087 Iteration 86 RMS(Cart)= 0.00001798 RMS(Int)= 0.02188195 Iteration 87 RMS(Cart)= 0.00001769 RMS(Int)= 0.02187326 Iteration 88 RMS(Cart)= 0.00001741 RMS(Int)= 0.02186478 Iteration 89 RMS(Cart)= 0.00001714 RMS(Int)= 0.02185653 Iteration 90 RMS(Cart)= 0.00001687 RMS(Int)= 0.02184848 Iteration 91 RMS(Cart)= 0.00001662 RMS(Int)= 0.02184063 Iteration 92 RMS(Cart)= 0.00001636 RMS(Int)= 0.02183297 Iteration 93 RMS(Cart)= 0.00001612 RMS(Int)= 0.02182550 Iteration 94 RMS(Cart)= 0.00001588 RMS(Int)= 0.02181820 Iteration 95 RMS(Cart)= 0.00001564 RMS(Int)= 0.02181109 Iteration 96 RMS(Cart)= 0.00001541 RMS(Int)= 0.02180414 Iteration 97 RMS(Cart)= 0.00001519 RMS(Int)= 0.02179736 Iteration 98 RMS(Cart)= 0.00001497 RMS(Int)= 0.02179073 Iteration 99 RMS(Cart)= 0.00001475 RMS(Int)= 0.02178426 Iteration100 RMS(Cart)= 0.00001455 RMS(Int)= 0.02177793 New curvilinear step not converged. ITry= 3 IFail=1 DXMaxC= 3.60D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.10759894 RMS(Int)= 0.42851795 Iteration 2 RMS(Cart)= 0.00823087 RMS(Int)= 0.39565473 Iteration 3 RMS(Cart)= 0.00692019 RMS(Int)= 0.36169053 Iteration 4 RMS(Cart)= 0.00699831 RMS(Int)= 0.32788815 Iteration 5 RMS(Cart)= 0.00705923 RMS(Int)= 0.29429125 Iteration 6 RMS(Cart)= 0.00708159 RMS(Int)= 0.26092558 Iteration 7 RMS(Cart)= 0.00703666 RMS(Int)= 0.22783081 Iteration 8 RMS(Cart)= 0.00689503 RMS(Int)= 0.19508628 Iteration 9 RMS(Cart)= 0.00662033 RMS(Int)= 0.16286711 Iteration 10 RMS(Cart)= 0.00616562 RMS(Int)= 0.13153761 Iteration 11 RMS(Cart)= 0.00549403 RMS(Int)= 0.10177288 Iteration 12 RMS(Cart)= 0.00461521 RMS(Int)= 0.07468867 Iteration 13 RMS(Cart)= 0.00359757 RMS(Int)= 0.05192400 Iteration 14 RMS(Cart)= 0.00255051 RMS(Int)= 0.03536486 Iteration 15 RMS(Cart)= 0.00155472 RMS(Int)= 0.02717315 Iteration 16 RMS(Cart)= 0.00083427 RMS(Int)= 0.02456648 Iteration 17 RMS(Cart)= 0.00054984 RMS(Int)= 0.02322207 Iteration 18 RMS(Cart)= 0.00038587 RMS(Int)= 0.02242347 Iteration 19 RMS(Cart)= 0.00028186 RMS(Int)= 0.02190701 Iteration 20 RMS(Cart)= 0.00021291 RMS(Int)= 0.02155123 Iteration 21 RMS(Cart)= 0.00016623 RMS(Int)= 0.02129262 Iteration 22 RMS(Cart)= 0.00013419 RMS(Int)= 0.02109544 Iteration 23 RMS(Cart)= 0.00011185 RMS(Int)= 0.02093860 Iteration 24 RMS(Cart)= 0.00009594 RMS(Int)= 0.02080929 Iteration 25 RMS(Cart)= 0.00008431 RMS(Int)= 0.02069949 Iteration 26 RMS(Cart)= 0.00007556 RMS(Int)= 0.02060406 Iteration 27 RMS(Cart)= 0.00006878 RMS(Int)= 0.02051958 Iteration 28 RMS(Cart)= 0.00006338 RMS(Int)= 0.02044370 Iteration 29 RMS(Cart)= 0.00005897 RMS(Int)= 0.02037479 Iteration 30 RMS(Cart)= 0.00005528 RMS(Int)= 0.02031162 Iteration 31 RMS(Cart)= 0.00005215 RMS(Int)= 0.02025331 Iteration 32 RMS(Cart)= 0.00004944 RMS(Int)= 0.02019915 Iteration 33 RMS(Cart)= 0.00004707 RMS(Int)= 0.02014861 Iteration 34 RMS(Cart)= 0.00004496 RMS(Int)= 0.02010124 Iteration 35 RMS(Cart)= 0.00004307 RMS(Int)= 0.02005669 Iteration 36 RMS(Cart)= 0.00004136 RMS(Int)= 0.02001467 Iteration 37 RMS(Cart)= 0.00003981 RMS(Int)= 0.01997493 Iteration 38 RMS(Cart)= 0.00003838 RMS(Int)= 0.01993726 Iteration 39 RMS(Cart)= 0.00003707 RMS(Int)= 0.01990148 Iteration 40 RMS(Cart)= 0.00003585 RMS(Int)= 0.01986743 Iteration 41 RMS(Cart)= 0.00003472 RMS(Int)= 0.01983498 Iteration 42 RMS(Cart)= 0.00003366 RMS(Int)= 0.01980401 Iteration 43 RMS(Cart)= 0.00003266 RMS(Int)= 0.01977441 Iteration 44 RMS(Cart)= 0.00003173 RMS(Int)= 0.01974608 Iteration 45 RMS(Cart)= 0.00003085 RMS(Int)= 0.01971894 Iteration 46 RMS(Cart)= 0.00003001 RMS(Int)= 0.01969291 Iteration 47 RMS(Cart)= 0.00002922 RMS(Int)= 0.01966793 Iteration 48 RMS(Cart)= 0.00002847 RMS(Int)= 0.01964392 Iteration 49 RMS(Cart)= 0.00002776 RMS(Int)= 0.01962084 Iteration 50 RMS(Cart)= 0.00002708 RMS(Int)= 0.01959863 Iteration 51 RMS(Cart)= 0.00002643 RMS(Int)= 0.01957724 Iteration 52 RMS(Cart)= 0.00002581 RMS(Int)= 0.01955662 Iteration 53 RMS(Cart)= 0.00002522 RMS(Int)= 0.01953674 Iteration 54 RMS(Cart)= 0.00002465 RMS(Int)= 0.01951755 Iteration 55 RMS(Cart)= 0.00002410 RMS(Int)= 0.01949903 Iteration 56 RMS(Cart)= 0.00002358 RMS(Int)= 0.01948113 Iteration 57 RMS(Cart)= 0.00002307 RMS(Int)= 0.01946383 Iteration 58 RMS(Cart)= 0.00002259 RMS(Int)= 0.01944710 Iteration 59 RMS(Cart)= 0.00002212 RMS(Int)= 0.01943091 Iteration 60 RMS(Cart)= 0.00002167 RMS(Int)= 0.01941524 Iteration 61 RMS(Cart)= 0.00002123 RMS(Int)= 0.01940006 Iteration 62 RMS(Cart)= 0.00002082 RMS(Int)= 0.01938535 Iteration 63 RMS(Cart)= 0.00002041 RMS(Int)= 0.01937110 Iteration 64 RMS(Cart)= 0.00002002 RMS(Int)= 0.01935727 Iteration 65 RMS(Cart)= 0.00001964 RMS(Int)= 0.01934386 Iteration 66 RMS(Cart)= 0.00001927 RMS(Int)= 0.01933085 Iteration 67 RMS(Cart)= 0.00001892 RMS(Int)= 0.01931821 Iteration 68 RMS(Cart)= 0.00001857 RMS(Int)= 0.01930594 Iteration 69 RMS(Cart)= 0.00001824 RMS(Int)= 0.01929401 Iteration 70 RMS(Cart)= 0.00001792 RMS(Int)= 0.01928243 Iteration 71 RMS(Cart)= 0.00001760 RMS(Int)= 0.01927116 Iteration 72 RMS(Cart)= 0.00001730 RMS(Int)= 0.01926021 Iteration 73 RMS(Cart)= 0.00001700 RMS(Int)= 0.01924955 Iteration 74 RMS(Cart)= 0.00001671 RMS(Int)= 0.01923918 Iteration 75 RMS(Cart)= 0.00001643 RMS(Int)= 0.01922908 Iteration 76 RMS(Cart)= 0.00001616 RMS(Int)= 0.01921925 Iteration 77 RMS(Cart)= 0.00001590 RMS(Int)= 0.01920968 Iteration 78 RMS(Cart)= 0.00001564 RMS(Int)= 0.01920036 Iteration 79 RMS(Cart)= 0.00001539 RMS(Int)= 0.01919127 Iteration 80 RMS(Cart)= 0.00001515 RMS(Int)= 0.01918242 Iteration 81 RMS(Cart)= 0.00001491 RMS(Int)= 0.01917378 Iteration 82 RMS(Cart)= 0.00001468 RMS(Int)= 0.01916536 Iteration 83 RMS(Cart)= 0.00001445 RMS(Int)= 0.01915715 Iteration 84 RMS(Cart)= 0.00001423 RMS(Int)= 0.01914914 Iteration 85 RMS(Cart)= 0.00001402 RMS(Int)= 0.01914132 Iteration 86 RMS(Cart)= 0.00001381 RMS(Int)= 0.01913369 Iteration 87 RMS(Cart)= 0.00001360 RMS(Int)= 0.01912624 Iteration 88 RMS(Cart)= 0.00001340 RMS(Int)= 0.01911896 Iteration 89 RMS(Cart)= 0.00001321 RMS(Int)= 0.01911186 Iteration 90 RMS(Cart)= 0.00001302 RMS(Int)= 0.01910492 Iteration 91 RMS(Cart)= 0.00001283 RMS(Int)= 0.01909813 Iteration 92 RMS(Cart)= 0.00001265 RMS(Int)= 0.01909150 Iteration 93 RMS(Cart)= 0.00001247 RMS(Int)= 0.01908503 Iteration 94 RMS(Cart)= 0.00001230 RMS(Int)= 0.01907869 Iteration 95 RMS(Cart)= 0.00001213 RMS(Int)= 0.01907250 Iteration 96 RMS(Cart)= 0.00001196 RMS(Int)= 0.01906644 Iteration 97 RMS(Cart)= 0.00001180 RMS(Int)= 0.01906051 Iteration 98 RMS(Cart)= 0.00001164 RMS(Int)= 0.01905472 Iteration 99 RMS(Cart)= 0.00001149 RMS(Int)= 0.01904904 Iteration100 RMS(Cart)= 0.00001134 RMS(Int)= 0.01904349 New curvilinear step not converged. ITry= 4 IFail=1 DXMaxC= 3.65D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.10838516 RMS(Int)= 0.42573487 Iteration 2 RMS(Cart)= 0.00731272 RMS(Int)= 0.39289132 Iteration 3 RMS(Cart)= 0.00594198 RMS(Int)= 0.35884837 Iteration 4 RMS(Cart)= 0.00601810 RMS(Int)= 0.32491234 Iteration 5 RMS(Cart)= 0.00607721 RMS(Int)= 0.29112983 Iteration 6 RMS(Cart)= 0.00610170 RMS(Int)= 0.25752768 Iteration 7 RMS(Cart)= 0.00606477 RMS(Int)= 0.22415435 Iteration 8 RMS(Cart)= 0.00593862 RMS(Int)= 0.19110997 Iteration 9 RMS(Cart)= 0.00568986 RMS(Int)= 0.15860317 Iteration 10 RMS(Cart)= 0.00527916 RMS(Int)= 0.12703730 Iteration 11 RMS(Cart)= 0.00468053 RMS(Int)= 0.09711591 Iteration 12 RMS(Cart)= 0.00391046 RMS(Int)= 0.06995687 Iteration 13 RMS(Cart)= 0.00303260 RMS(Int)= 0.04717700 Iteration 14 RMS(Cart)= 0.00214047 RMS(Int)= 0.03066495 Iteration 15 RMS(Cart)= 0.00125920 RMS(Int)= 0.02377218 Iteration 16 RMS(Cart)= 0.00074863 RMS(Int)= 0.02118116 Iteration 17 RMS(Cart)= 0.00051623 RMS(Int)= 0.01980428 Iteration 18 RMS(Cart)= 0.00037530 RMS(Int)= 0.01897818 Iteration 19 RMS(Cart)= 0.00028135 RMS(Int)= 0.01844488 Iteration 20 RMS(Cart)= 0.00021529 RMS(Int)= 0.01808262 Iteration 21 RMS(Cart)= 0.00016747 RMS(Int)= 0.01782661 Iteration 22 RMS(Cart)= 0.00013224 RMS(Int)= 0.01763959 Iteration 23 RMS(Cart)= 0.00010605 RMS(Int)= 0.01749883 Iteration 24 RMS(Cart)= 0.00008651 RMS(Int)= 0.01738986 Iteration 25 RMS(Cart)= 0.00007190 RMS(Int)= 0.01730315 Iteration 26 RMS(Cart)= 0.00006096 RMS(Int)= 0.01723230 Iteration 27 RMS(Cart)= 0.00005271 RMS(Int)= 0.01717293 Iteration 28 RMS(Cart)= 0.00004644 RMS(Int)= 0.01712206 Iteration 29 RMS(Cart)= 0.00004160 RMS(Int)= 0.01707760 Iteration 30 RMS(Cart)= 0.00003781 RMS(Int)= 0.01703808 Iteration 31 RMS(Cart)= 0.00003478 RMS(Int)= 0.01700246 Iteration 32 RMS(Cart)= 0.00003232 RMS(Int)= 0.01696999 Iteration 33 RMS(Cart)= 0.00003028 RMS(Int)= 0.01694010 Iteration 34 RMS(Cart)= 0.00002857 RMS(Int)= 0.01691237 Iteration 35 RMS(Cart)= 0.00002710 RMS(Int)= 0.01688649 Iteration 36 RMS(Cart)= 0.00002583 RMS(Int)= 0.01686220 Iteration 37 RMS(Cart)= 0.00002471 RMS(Int)= 0.01683930 Iteration 38 RMS(Cart)= 0.00002372 RMS(Int)= 0.01681764 Iteration 39 RMS(Cart)= 0.00002284 RMS(Int)= 0.01679706 Iteration 40 RMS(Cart)= 0.00002203 RMS(Int)= 0.01677748 Iteration 41 RMS(Cart)= 0.00002130 RMS(Int)= 0.01675879 Iteration 42 RMS(Cart)= 0.00002064 RMS(Int)= 0.01674092 Iteration 43 RMS(Cart)= 0.00002002 RMS(Int)= 0.01672380 Iteration 44 RMS(Cart)= 0.00001945 RMS(Int)= 0.01670737 Iteration 45 RMS(Cart)= 0.00001892 RMS(Int)= 0.01669158 Iteration 46 RMS(Cart)= 0.00001842 RMS(Int)= 0.01667639 Iteration 47 RMS(Cart)= 0.00001795 RMS(Int)= 0.01666175 Iteration 48 RMS(Cart)= 0.00001751 RMS(Int)= 0.01664764 Iteration 49 RMS(Cart)= 0.00001710 RMS(Int)= 0.01663401 Iteration 50 RMS(Cart)= 0.00001670 RMS(Int)= 0.01662084 Iteration 51 RMS(Cart)= 0.00001633 RMS(Int)= 0.01660810 Iteration 52 RMS(Cart)= 0.00001598 RMS(Int)= 0.01659578 Iteration 53 RMS(Cart)= 0.00001564 RMS(Int)= 0.01658384 Iteration 54 RMS(Cart)= 0.00001531 RMS(Int)= 0.01657227 Iteration 55 RMS(Cart)= 0.00001500 RMS(Int)= 0.01656105 Iteration 56 RMS(Cart)= 0.00001471 RMS(Int)= 0.01655017 Iteration 57 RMS(Cart)= 0.00001442 RMS(Int)= 0.01653960 Iteration 58 RMS(Cart)= 0.00001415 RMS(Int)= 0.01652933 Iteration 59 RMS(Cart)= 0.00001389 RMS(Int)= 0.01651936 Iteration 60 RMS(Cart)= 0.00001363 RMS(Int)= 0.01650966 Iteration 61 RMS(Cart)= 0.00001339 RMS(Int)= 0.01650022 Iteration 62 RMS(Cart)= 0.00001315 RMS(Int)= 0.01649104 Iteration 63 RMS(Cart)= 0.00001292 RMS(Int)= 0.01648210 Iteration 64 RMS(Cart)= 0.00001270 RMS(Int)= 0.01647340 Iteration 65 RMS(Cart)= 0.00001249 RMS(Int)= 0.01646492 Iteration 66 RMS(Cart)= 0.00001228 RMS(Int)= 0.01645666 Iteration 67 RMS(Cart)= 0.00001208 RMS(Int)= 0.01644860 Iteration 68 RMS(Cart)= 0.00001189 RMS(Int)= 0.01644075 Iteration 69 RMS(Cart)= 0.00001170 RMS(Int)= 0.01643309 Iteration 70 RMS(Cart)= 0.00001152 RMS(Int)= 0.01642561 Iteration 71 RMS(Cart)= 0.00001134 RMS(Int)= 0.01641831 Iteration 72 RMS(Cart)= 0.00001116 RMS(Int)= 0.01641119 Iteration 73 RMS(Cart)= 0.00001100 RMS(Int)= 0.01640423 Iteration 74 RMS(Cart)= 0.00001083 RMS(Int)= 0.01639743 Iteration 75 RMS(Cart)= 0.00001067 RMS(Int)= 0.01639079 Iteration 76 RMS(Cart)= 0.00001052 RMS(Int)= 0.01638430 Iteration 77 RMS(Cart)= 0.00001037 RMS(Int)= 0.01637796 Iteration 78 RMS(Cart)= 0.00001022 RMS(Int)= 0.01637175 Iteration 79 RMS(Cart)= 0.00001007 RMS(Int)= 0.01636569 Iteration 80 RMS(Cart)= 0.00000993 RMS(Int)= 0.01635975 Iteration 81 RMS(Cart)= 0.00000980 RMS(Int)= 0.01635395 Iteration 82 RMS(Cart)= 0.00000966 RMS(Int)= 0.01634827 Iteration 83 RMS(Cart)= 0.00000953 RMS(Int)= 0.01634271 Iteration 84 RMS(Cart)= 0.00000941 RMS(Int)= 0.01633726 Iteration 85 RMS(Cart)= 0.00000928 RMS(Int)= 0.01633193 Iteration 86 RMS(Cart)= 0.00000916 RMS(Int)= 0.01632671 Iteration 87 RMS(Cart)= 0.00000904 RMS(Int)= 0.01632160 Iteration 88 RMS(Cart)= 0.00000892 RMS(Int)= 0.01631659 Iteration 89 RMS(Cart)= 0.00000881 RMS(Int)= 0.01631168 Iteration 90 RMS(Cart)= 0.00000870 RMS(Int)= 0.01630687 Iteration 91 RMS(Cart)= 0.00000859 RMS(Int)= 0.01630216 Iteration 92 RMS(Cart)= 0.00000848 RMS(Int)= 0.01629753 Iteration 93 RMS(Cart)= 0.00000838 RMS(Int)= 0.01629300 Iteration 94 RMS(Cart)= 0.00000827 RMS(Int)= 0.01628856 Iteration 95 RMS(Cart)= 0.00000817 RMS(Int)= 0.01628420 Iteration 96 RMS(Cart)= 0.00000808 RMS(Int)= 0.01627992 Iteration 97 RMS(Cart)= 0.00000798 RMS(Int)= 0.01627573 Iteration 98 RMS(Cart)= 0.00000789 RMS(Int)= 0.01627161 Iteration 99 RMS(Cart)= 0.00000779 RMS(Int)= 0.01626757 Iteration100 RMS(Cart)= 0.00000770 RMS(Int)= 0.01626361 New curvilinear step not converged. ITry= 5 IFail=1 DXMaxC= 3.70D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.10965156 RMS(Int)= 0.42294238 Iteration 2 RMS(Cart)= 0.00642250 RMS(Int)= 0.39013086 Iteration 3 RMS(Cart)= 0.00494918 RMS(Int)= 0.35602460 Iteration 4 RMS(Cart)= 0.00501958 RMS(Int)= 0.32197463 Iteration 5 RMS(Cart)= 0.00507360 RMS(Int)= 0.28803356 Iteration 6 RMS(Cart)= 0.00509747 RMS(Int)= 0.25422909 Iteration 7 RMS(Cart)= 0.00506761 RMS(Int)= 0.22061735 Iteration 8 RMS(Cart)= 0.00495880 RMS(Int)= 0.18731627 Iteration 9 RMS(Cart)= 0.00474195 RMS(Int)= 0.15456229 Iteration 10 RMS(Cart)= 0.00438544 RMS(Int)= 0.12278826 Iteration 11 RMS(Cart)= 0.00387235 RMS(Int)= 0.09271291 Iteration 12 RMS(Cart)= 0.00322236 RMS(Int)= 0.06543990 Iteration 13 RMS(Cart)= 0.00249077 RMS(Int)= 0.04254732 Iteration 14 RMS(Cart)= 0.00175447 RMS(Int)= 0.02593960 Iteration 15 RMS(Cart)= 0.00100199 RMS(Int)= 0.02019125 Iteration 16 RMS(Cart)= 0.00065550 RMS(Int)= 0.01768352 Iteration 17 RMS(Cart)= 0.00047716 RMS(Int)= 0.01630162 Iteration 18 RMS(Cart)= 0.00036420 RMS(Int)= 0.01546137 Iteration 19 RMS(Cart)= 0.00028587 RMS(Int)= 0.01491869 Iteration 20 RMS(Cart)= 0.00022862 RMS(Int)= 0.01455250 Iteration 21 RMS(Cart)= 0.00018528 RMS(Int)= 0.01429677 Iteration 22 RMS(Cart)= 0.00015165 RMS(Int)= 0.01411307 Iteration 23 RMS(Cart)= 0.00012507 RMS(Int)= 0.01397797 Iteration 24 RMS(Cart)= 0.00010377 RMS(Int)= 0.01387658 Iteration 25 RMS(Cart)= 0.00008650 RMS(Int)= 0.01379916 Iteration 26 RMS(Cart)= 0.00007241 RMS(Int)= 0.01373913 Iteration 27 RMS(Cart)= 0.00006082 RMS(Int)= 0.01369196 Iteration 28 RMS(Cart)= 0.00005126 RMS(Int)= 0.01365444 Iteration 29 RMS(Cart)= 0.00004334 RMS(Int)= 0.01362427 Iteration 30 RMS(Cart)= 0.00003677 RMS(Int)= 0.01359977 Iteration 31 RMS(Cart)= 0.00003133 RMS(Int)= 0.01357967 Iteration 32 RMS(Cart)= 0.00002681 RMS(Int)= 0.01356302 Iteration 33 RMS(Cart)= 0.00002307 RMS(Int)= 0.01354910 Iteration 34 RMS(Cart)= 0.00001998 RMS(Int)= 0.01353734 Iteration 35 RMS(Cart)= 0.00001744 RMS(Int)= 0.01352730 Iteration 36 RMS(Cart)= 0.00001535 RMS(Int)= 0.01351863 Iteration 37 RMS(Cart)= 0.00001363 RMS(Int)= 0.01351106 Iteration 38 RMS(Cart)= 0.00001222 RMS(Int)= 0.01350438 Iteration 39 RMS(Cart)= 0.00001107 RMS(Int)= 0.01349841 Iteration 40 RMS(Cart)= 0.00001012 RMS(Int)= 0.01349301 Iteration 41 RMS(Cart)= 0.00000934 RMS(Int)= 0.01348810 Iteration 42 RMS(Cart)= 0.00000869 RMS(Int)= 0.01348357 Iteration 43 RMS(Cart)= 0.00000814 RMS(Int)= 0.01347937 Iteration 44 RMS(Cart)= 0.00000768 RMS(Int)= 0.01347544 Iteration 45 RMS(Cart)= 0.00000729 RMS(Int)= 0.01347175 Iteration 46 RMS(Cart)= 0.00000695 RMS(Int)= 0.01346826 Iteration 47 RMS(Cart)= 0.00000666 RMS(Int)= 0.01346494 Iteration 48 RMS(Cart)= 0.00000640 RMS(Int)= 0.01346177 Iteration 49 RMS(Cart)= 0.00000618 RMS(Int)= 0.01345874 Iteration 50 RMS(Cart)= 0.00000598 RMS(Int)= 0.01345583 Iteration 51 RMS(Cart)= 0.00000580 RMS(Int)= 0.01345302 Iteration 52 RMS(Cart)= 0.00000564 RMS(Int)= 0.01345031 Iteration 53 RMS(Cart)= 0.00000549 RMS(Int)= 0.01344769 Iteration 54 RMS(Cart)= 0.00000535 RMS(Int)= 0.01344516 Iteration 55 RMS(Cart)= 0.00000523 RMS(Int)= 0.01344269 Iteration 56 RMS(Cart)= 0.00000512 RMS(Int)= 0.01344030 Iteration 57 RMS(Cart)= 0.00000501 RMS(Int)= 0.01343797 Iteration 58 RMS(Cart)= 0.00000491 RMS(Int)= 0.01343570 Iteration 59 RMS(Cart)= 0.00000482 RMS(Int)= 0.01343348 Iteration 60 RMS(Cart)= 0.00000473 RMS(Int)= 0.01343132 Iteration 61 RMS(Cart)= 0.00000465 RMS(Int)= 0.01342921 Iteration 62 RMS(Cart)= 0.00000457 RMS(Int)= 0.01342714 Iteration 63 RMS(Cart)= 0.00000450 RMS(Int)= 0.01342512 Iteration 64 RMS(Cart)= 0.00000443 RMS(Int)= 0.01342314 Iteration 65 RMS(Cart)= 0.00000436 RMS(Int)= 0.01342121 Iteration 66 RMS(Cart)= 0.00000430 RMS(Int)= 0.01341931 Iteration 67 RMS(Cart)= 0.00000424 RMS(Int)= 0.01341744 Iteration 68 RMS(Cart)= 0.00000418 RMS(Int)= 0.01341562 Iteration 69 RMS(Cart)= 0.00000413 RMS(Int)= 0.01341382 Iteration 70 RMS(Cart)= 0.00000407 RMS(Int)= 0.01341206 Iteration 71 RMS(Cart)= 0.00000402 RMS(Int)= 0.01341033 Iteration 72 RMS(Cart)= 0.00000397 RMS(Int)= 0.01340864 Iteration 73 RMS(Cart)= 0.00000392 RMS(Int)= 0.01340697 Iteration 74 RMS(Cart)= 0.00000388 RMS(Int)= 0.01340533 Iteration 75 RMS(Cart)= 0.00000383 RMS(Int)= 0.01340371 Iteration 76 RMS(Cart)= 0.00000379 RMS(Int)= 0.01340212 Iteration 77 RMS(Cart)= 0.00000374 RMS(Int)= 0.01340056 Iteration 78 RMS(Cart)= 0.00000370 RMS(Int)= 0.01339902 Iteration 79 RMS(Cart)= 0.00000366 RMS(Int)= 0.01339751 Iteration 80 RMS(Cart)= 0.00000362 RMS(Int)= 0.01339602 Iteration 81 RMS(Cart)= 0.00000359 RMS(Int)= 0.01339455 Iteration 82 RMS(Cart)= 0.00000355 RMS(Int)= 0.01339311 Iteration 83 RMS(Cart)= 0.00000351 RMS(Int)= 0.01339169 Iteration 84 RMS(Cart)= 0.00000348 RMS(Int)= 0.01339028 Iteration 85 RMS(Cart)= 0.00000344 RMS(Int)= 0.01338890 Iteration 86 RMS(Cart)= 0.00000341 RMS(Int)= 0.01338754 Iteration 87 RMS(Cart)= 0.00000338 RMS(Int)= 0.01338619 Iteration 88 RMS(Cart)= 0.00000335 RMS(Int)= 0.01338487 Iteration 89 RMS(Cart)= 0.00000331 RMS(Int)= 0.01338356 Iteration 90 RMS(Cart)= 0.00000328 RMS(Int)= 0.01338228 Iteration 91 RMS(Cart)= 0.00000325 RMS(Int)= 0.01338101 Iteration 92 RMS(Cart)= 0.00000322 RMS(Int)= 0.01337975 Iteration 93 RMS(Cart)= 0.00000319 RMS(Int)= 0.01337852 Iteration 94 RMS(Cart)= 0.00000317 RMS(Int)= 0.01337730 Iteration 95 RMS(Cart)= 0.00000314 RMS(Int)= 0.01337609 Iteration 96 RMS(Cart)= 0.00000311 RMS(Int)= 0.01337490 Iteration 97 RMS(Cart)= 0.00000308 RMS(Int)= 0.01337373 Iteration 98 RMS(Cart)= 0.00000306 RMS(Int)= 0.01337257 Iteration 99 RMS(Cart)= 0.00000303 RMS(Int)= 0.01337143 Iteration100 RMS(Cart)= 0.00000301 RMS(Int)= 0.01337030 New curvilinear step not converged. ITry= 6 IFail=1 DXMaxC= 3.75D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.11139959 RMS(Int)= 0.42013061 Iteration 2 RMS(Cart)= 0.00559139 RMS(Int)= 0.38737848 Iteration 3 RMS(Cart)= 0.00394242 RMS(Int)= 0.35322665 Iteration 4 RMS(Cart)= 0.00400470 RMS(Int)= 0.31908314 Iteration 5 RMS(Cart)= 0.00405074 RMS(Int)= 0.28501156 Iteration 6 RMS(Cart)= 0.00407195 RMS(Int)= 0.25104012 Iteration 7 RMS(Cart)= 0.00404865 RMS(Int)= 0.21723108 Iteration 8 RMS(Cart)= 0.00395939 RMS(Int)= 0.18371632 Iteration 9 RMS(Cart)= 0.00378022 RMS(Int)= 0.15075285 Iteration 10 RMS(Cart)= 0.00348713 RMS(Int)= 0.11879176 Iteration 11 RMS(Cart)= 0.00307023 RMS(Int)= 0.08855180 Iteration 12 RMS(Cart)= 0.00254888 RMS(Int)= 0.06110370 Iteration 13 RMS(Cart)= 0.00196858 RMS(Int)= 0.03796614 Iteration 14 RMS(Cart)= 0.00138846 RMS(Int)= 0.02106806 Iteration 15 RMS(Cart)= 0.00077743 RMS(Int)= 0.01636769 Iteration 16 RMS(Cart)= 0.00055732 RMS(Int)= 0.01402526 Iteration 17 RMS(Cart)= 0.00042946 RMS(Int)= 0.01269731 Iteration 18 RMS(Cart)= 0.00034501 RMS(Int)= 0.01189721 Iteration 19 RMS(Cart)= 0.00028439 RMS(Int)= 0.01139929 Iteration 20 RMS(Cart)= 0.00023878 RMS(Int)= 0.01108289 Iteration 21 RMS(Cart)= 0.00020332 RMS(Int)= 0.01087899 Iteration 22 RMS(Cart)= 0.00017507 RMS(Int)= 0.01074649 Iteration 23 RMS(Cart)= 0.00015212 RMS(Int)= 0.01066009 Iteration 24 RMS(Cart)= 0.00013316 RMS(Int)= 0.01060388 Iteration 25 RMS(Cart)= 0.00011727 RMS(Int)= 0.01056763 Iteration 26 RMS(Cart)= 0.00010374 RMS(Int)= 0.01054465 Iteration 27 RMS(Cart)= 0.00009201 RMS(Int)= 0.01053051 Iteration 28 RMS(Cart)= 0.00008163 RMS(Int)= 0.01052221 Iteration 29 RMS(Cart)= 0.00007213 RMS(Int)= 0.01051768 Iteration 30 RMS(Cart)= 0.00006300 RMS(Int)= 0.01051552 Iteration 31 RMS(Cart)= 0.00005358 RMS(Int)= 0.01051468 Iteration 32 RMS(Cart)= 0.00004287 RMS(Int)= 0.01051448 Iteration 33 RMS(Cart)= 0.00002899 RMS(Int)= 0.01051445 Iteration 34 RMS(Cart)= 0.00000697 RMS(Int)= 0.01051445 Iteration 35 RMS(Cart)= 0.00000006 RMS(Int)= 0.01051445 ITry= 7 IFail=0 DXMaxC= 3.79D-01 DCOld= 1.00D+10 DXMaxT= 2.40D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.25725 -0.00834 -0.00498 -0.05013 -0.02503 4.23222 R2 4.20954 -0.00471 -0.01059 -0.02134 -0.01913 4.19041 R3 4.78446 0.00798 0.09335 0.02959 0.10672 4.89118 R4 5.03449 -0.00627 -0.04838 -0.05569 -0.06762 4.96687 R5 4.38611 -0.02235 -0.01564 -0.10254 -0.05666 4.32945 R6 4.35553 -0.01509 -0.00731 -0.06828 -0.03462 4.32091 R7 4.59714 0.01605 0.13583 0.02204 0.14164 4.73878 R8 4.83069 0.00699 0.08242 0.01702 0.08753 4.91821 A1 1.69504 0.00759 0.03718 0.04131 0.05412 1.74916 A2 1.54994 0.00197 0.07110 -0.03415 0.05629 1.60624 A3 1.56808 0.00130 -0.03907 0.01363 -0.03477 1.53331 A4 1.47099 -0.01081 -0.06863 -0.01820 -0.07320 1.39780 A5 1.70746 -0.00396 -0.04712 0.07028 -0.04272 1.66474 A6 1.59403 0.00194 0.11424 -0.07072 0.11495 1.70899 A7 3.14159 -0.01421 0.00115 -0.10416 -0.00016 3.14143 A8 1.43413 0.01816 0.04750 0.03381 0.04259 1.47673 A9 1.54756 -0.01615 -0.11466 -0.03345 -0.11483 1.43273 A10 1.68552 0.01154 0.07521 0.01695 0.07104 1.75656 A11 1.57858 0.01542 0.10821 0.03456 0.11705 1.69563 A12 3.02094 -0.00883 0.00248 -0.05235 -0.01691 3.00403 A13 3.03907 -0.00951 -0.10770 -0.00457 -0.10796 2.93111 A14 3.30149 -0.00202 0.06712 -0.00044 0.07223 3.37373 A15 3.11174 -0.00111 -0.00734 -0.05463 -0.02912 3.08262 A16 3.10888 -0.00110 -0.01898 -0.03803 -0.03417 3.07471 A17 3.10688 0.00004 0.00078 0.00666 0.00373 3.11062 D1 3.13505 -0.00119 -0.00967 -0.05141 -0.03029 3.10476 D2 0.02332 -0.00007 -0.00233 0.00322 -0.00118 0.02214 D3 3.08683 -0.00105 -0.01684 -0.04107 -0.03326 3.05357 D4 -0.02205 0.00005 0.00214 -0.00304 0.00091 -0.02113 D5 3.11740 0.00012 0.00225 -0.00323 0.00184 3.11925 D6 -0.02419 0.00016 0.00333 -0.00297 0.00195 -0.02224 D7 0.02029 0.00000 -2.38939 -0.14913 -2.44904 -2.42876 D8 -3.08405 -0.00022 -0.00356 -0.00405 -0.00490 -3.08895 D9 0.02284 -0.00011 -0.00266 0.00316 -0.00114 0.02169 Item Value Threshold Converged? Maximum Force 0.022353 0.000450 NO RMS Force 0.009024 0.000300 NO Maximum Displacement 0.378633 0.001800 NO RMS Displacement 0.120287 0.001200 NO Predicted change in Energy=-6.500607D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.146861 1.491192 0.006157 2 13 0 2.769632 1.706123 0.016396 3 17 0 -2.704544 3.099517 0.058077 4 17 0 -2.440702 -0.306053 -0.108134 5 17 0 4.395388 3.318847 -0.053831 6 17 0 4.219748 -0.061555 -0.009730 7 35 0 0.774660 3.225160 -0.014231 8 35 0 0.923013 -0.126154 0.095912 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.922399 0.000000 3 Cl 2.239593 5.648883 0.000000 4 Cl 2.217471 5.586765 3.419817 0.000000 5 Cl 5.836133 2.291047 7.104200 7.737892 0.000000 6 Cl 5.586750 2.286527 7.612016 6.665663 3.385249 7 Br 2.588302 2.507653 3.482223 4.776698 3.622156 8 Br 2.628354 2.602607 4.854436 3.374697 4.893653 6 7 8 6 Cl 0.000000 7 Br 4.761423 0.000000 8 Br 3.299060 3.356404 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.997880 -0.031767 -0.002926 2 13 0 -1.924138 -0.084575 0.011358 3 17 0 3.487820 -1.702681 0.059534 4 17 0 3.364775 1.709609 -0.130936 5 17 0 -3.615212 -1.629192 -0.046258 6 17 0 -3.299995 1.741291 -0.026522 7 35 0 0.006330 -1.684942 -0.009646 8 35 0 -0.003309 1.670341 0.076546 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5958372 0.2705407 0.1862374 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1680.4055497121 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.43D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999994 -0.001324 -0.000488 0.003250 Ang= -0.41 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.12460621 A.U. after 12 cycles NFock= 12 Conv=0.44D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.011404313 -0.005419520 0.000185568 2 13 0.033885520 -0.008972935 -0.001596845 3 17 0.010196076 -0.003809255 0.000715929 4 17 0.001039495 0.001849161 -0.000820468 5 17 -0.019707189 -0.007835375 0.001145848 6 17 -0.008500841 0.010050948 0.000195592 7 35 -0.000303816 0.009649336 -0.001122525 8 35 -0.005204932 0.004487639 0.001296901 ------------------------------------------------------------------- Cartesian Forces: Max 0.033885520 RMS 0.009752542 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.019532633 RMS 0.006010505 Search for a local minimum. Step number 8 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 8 DE= -7.59D-03 DEPred=-6.50D-03 R= 1.17D+00 TightC=F SS= 1.41D+00 RLast= 2.48D+00 DXNew= 4.0363D+00 7.4274D+00 Trust test= 1.17D+00 RLast= 2.48D+00 DXMaxT set to 3.00D+00 ITU= 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00094 0.01319 0.01439 0.02713 0.03806 Eigenvalues --- 0.07818 0.11741 0.12661 0.13501 0.16502 Eigenvalues --- 0.20123 0.21944 0.22421 0.23137 0.23678 Eigenvalues --- 0.24837 0.36582 0.82131 RFO step: Lambda=-6.17367075D-03 EMin= 9.42690265D-04 Quartic linear search produced a step of 0.08266. Iteration 1 RMS(Cart)= 0.00788761 RMS(Int)= 0.48564748 Iteration 2 RMS(Cart)= 0.07601815 RMS(Int)= 0.45803217 Iteration 3 RMS(Cart)= 0.00207488 RMS(Int)= 0.42414473 Iteration 4 RMS(Cart)= 0.00051643 RMS(Int)= 0.40703332 Iteration 5 RMS(Cart)= 0.00015311 RMS(Int)= 0.40353976 Iteration 6 RMS(Cart)= 0.00013311 RMS(Int)= 0.40056837 Iteration 7 RMS(Cart)= 0.00012621 RMS(Int)= 0.39777944 Iteration 8 RMS(Cart)= 0.00012343 RMS(Int)= 0.39506515 Iteration 9 RMS(Cart)= 0.00012257 RMS(Int)= 0.39237060 Iteration 10 RMS(Cart)= 0.00012287 RMS(Int)= 0.38965383 Iteration 11 RMS(Cart)= 0.00012402 RMS(Int)= 0.38686710 Iteration 12 RMS(Cart)= 0.00012597 RMS(Int)= 0.38393236 Iteration 13 RMS(Cart)= 0.00012887 RMS(Int)= 0.38066880 Iteration 14 RMS(Cart)= 0.00013315 RMS(Int)= 0.37636014 Iteration 15 RMS(Cart)= 0.00014254 RMS(Int)= 0.06193425 Iteration 16 RMS(Cart)= 0.00167797 RMS(Int)= 0.47844971 Iteration 17 RMS(Cart)= 0.00065737 RMS(Int)= 0.45307234 Iteration 18 RMS(Cart)= 0.00056737 RMS(Int)= 0.42080712 Iteration 19 RMS(Cart)= 0.00044185 RMS(Int)= 0.40707663 Iteration 20 RMS(Cart)= 0.00015246 RMS(Int)= 0.40356925 Iteration 21 RMS(Cart)= 0.00013244 RMS(Int)= 0.40059444 Iteration 22 RMS(Cart)= 0.00012568 RMS(Int)= 0.39780397 Iteration 23 RMS(Cart)= 0.00012303 RMS(Int)= 0.39508915 Iteration 24 RMS(Cart)= 0.00012228 RMS(Int)= 0.39239477 Iteration 25 RMS(Cart)= 0.00012266 RMS(Int)= 0.38967891 Iteration 26 RMS(Cart)= 0.00012386 RMS(Int)= 0.38689417 Iteration 27 RMS(Cart)= 0.00012585 RMS(Int)= 0.38396362 Iteration 28 RMS(Cart)= 0.00012874 RMS(Int)= 0.38071043 Iteration 29 RMS(Cart)= 0.00013332 RMS(Int)= 0.37644580 Iteration 30 RMS(Cart)= 0.00014232 RMS(Int)= 0.15119701 Iteration 31 RMS(Cart)= 0.00007290 RMS(Int)= 0.38837815 Iteration 32 RMS(Cart)= 0.00029599 RMS(Int)= 0.14988800 Iteration 33 RMS(Cart)= 0.00126873 RMS(Int)= 0.38932899 Iteration 34 RMS(Cart)= 0.00035771 RMS(Int)= 0.38599606 Iteration 35 RMS(Cart)= 0.00034919 RMS(Int)= 0.38165509 Iteration 36 RMS(Cart)= 0.00034688 RMS(Int)= 0.32590902 Iteration 37 RMS(Cart)= 0.00063592 RMS(Int)= 0.21350976 Iteration 38 RMS(Cart)= 0.00102312 RMS(Int)= 0.32243280 Iteration 39 RMS(Cart)= 0.00068268 RMS(Int)= 0.21399685 Iteration 40 RMS(Cart)= 0.00099772 RMS(Int)= 0.32454278 Iteration 41 RMS(Cart)= 0.00069088 RMS(Int)= 0.21871175 Iteration 42 RMS(Cart)= 0.00130322 RMS(Int)= 0.32067341 Iteration 43 RMS(Cart)= 0.00049590 RMS(Int)= 0.31707027 Iteration 44 RMS(Cart)= 0.00048131 RMS(Int)= 0.31147727 Iteration 45 RMS(Cart)= 0.00047913 RMS(Int)= 0.22369363 Iteration 46 RMS(Cart)= 0.00128544 RMS(Int)= 0.31539032 Iteration 47 RMS(Cart)= 0.00051274 RMS(Int)= 0.31131670 Iteration 48 RMS(Cart)= 0.00049992 RMS(Int)= 0.29933457 Iteration 49 RMS(Cart)= 0.00053206 RMS(Int)= 0.23950540 Iteration 50 RMS(Cart)= 0.00121023 RMS(Int)= 0.29871739 Iteration 51 RMS(Cart)= 0.00058139 RMS(Int)= 0.29045133 Iteration 52 RMS(Cart)= 0.00058774 RMS(Int)= 0.24771613 Iteration 53 RMS(Cart)= 0.00115731 RMS(Int)= 0.29062075 Iteration 54 RMS(Cart)= 0.00062541 RMS(Int)= 0.27972480 Iteration 55 RMS(Cart)= 0.00064329 RMS(Int)= 0.25896662 Iteration 56 RMS(Cart)= 0.00109439 RMS(Int)= 0.27867659 Iteration 57 RMS(Cart)= 0.00067962 RMS(Int)= 0.24023129 Iteration 58 RMS(Cart)= 0.00118277 RMS(Int)= 0.29904067 Iteration 59 RMS(Cart)= 0.00060134 RMS(Int)= 0.29423665 Iteration 60 RMS(Cart)= 0.00058694 RMS(Int)= 0.22889401 Iteration 61 RMS(Cart)= 0.00125020 RMS(Int)= 0.31037984 Iteration 62 RMS(Cart)= 0.00054332 RMS(Int)= 0.30627067 Iteration 63 RMS(Cart)= 0.00052871 RMS(Int)= 0.29335079 Iteration 64 RMS(Cart)= 0.00056422 RMS(Int)= 0.24555090 Iteration 65 RMS(Cart)= 0.00117647 RMS(Int)= 0.29244299 Iteration 66 RMS(Cart)= 0.00061072 RMS(Int)= 0.27816779 Iteration 67 RMS(Cart)= 0.00064822 RMS(Int)= 0.26079338 Iteration 68 RMS(Cart)= 0.00108674 RMS(Int)= 0.27644104 Iteration 69 RMS(Cart)= 0.00068745 RMS(Int)= 0.25390405 Iteration 70 RMS(Cart)= 0.00110344 RMS(Int)= 0.28518980 Iteration 71 RMS(Cart)= 0.00066748 RMS(Int)= 0.27804635 Iteration 72 RMS(Cart)= 0.00066159 RMS(Int)= 0.25951789 Iteration 73 RMS(Cart)= 0.00108320 RMS(Int)= 0.27877656 Iteration 74 RMS(Cart)= 0.00068616 RMS(Int)= 0.23685292 Iteration 75 RMS(Cart)= 0.00086407 RMS(Int)= 0.30247424 Iteration 76 RMS(Cart)= 0.00083899 RMS(Int)= 0.12441864 Iteration 77 RMS(Cart)= 0.00134770 RMS(Int)= 0.41526324 Iteration 78 RMS(Cart)= 0.00026425 RMS(Int)= 0.41245457 Iteration 79 RMS(Cart)= 0.00025696 RMS(Int)= 0.40951123 Iteration 80 RMS(Cart)= 0.00025138 RMS(Int)= 0.40629029 Iteration 81 RMS(Cart)= 0.00024793 RMS(Int)= 0.40230904 Iteration 82 RMS(Cart)= 0.00024864 RMS(Int)= 0.39091914 Iteration 83 RMS(Cart)= 0.00028461 RMS(Int)= 0.14813221 Iteration 84 RMS(Cart)= 0.00127369 RMS(Int)= 0.39099804 Iteration 85 RMS(Cart)= 0.00035169 RMS(Int)= 0.38766465 Iteration 86 RMS(Cart)= 0.00034289 RMS(Int)= 0.38332486 Iteration 87 RMS(Cart)= 0.00034138 RMS(Int)= 0.32411970 Iteration 88 RMS(Cart)= 0.00065041 RMS(Int)= 0.21530148 Iteration 89 RMS(Cart)= 0.00101252 RMS(Int)= 0.32037110 Iteration 90 RMS(Cart)= 0.00069665 RMS(Int)= 0.21649763 Iteration 91 RMS(Cart)= 0.00098531 RMS(Int)= 0.32187474 Iteration 92 RMS(Cart)= 0.00070675 RMS(Int)= 0.18345987 Iteration 93 RMS(Cart)= 0.00111864 RMS(Int)= 0.35594937 Iteration 94 RMS(Cart)= 0.00053425 RMS(Int)= 0.35155895 Iteration 95 RMS(Cart)= 0.00052267 RMS(Int)= 0.28890561 Iteration 96 RMS(Cart)= 0.00087248 RMS(Int)= 0.25047000 Iteration 97 RMS(Cart)= 0.00084832 RMS(Int)= 0.04986957 New curvilinear step failed, DQL= 3.14D+00 SP=-9.39D-01. ITry= 1 IFail=1 DXMaxC= 2.72D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00709981 RMS(Int)= 0.48731776 Iteration 2 RMS(Cart)= 0.06860647 RMS(Int)= 0.45847577 Iteration 3 RMS(Cart)= 0.00167204 RMS(Int)= 0.42483924 Iteration 4 RMS(Cart)= 0.00044364 RMS(Int)= 0.40907641 Iteration 5 RMS(Cart)= 0.00013673 RMS(Int)= 0.40561452 Iteration 6 RMS(Cart)= 0.00011926 RMS(Int)= 0.40265070 Iteration 7 RMS(Cart)= 0.00011321 RMS(Int)= 0.39986472 Iteration 8 RMS(Cart)= 0.00011079 RMS(Int)= 0.39715132 Iteration 9 RMS(Cart)= 0.00011007 RMS(Int)= 0.39445615 Iteration 10 RMS(Cart)= 0.00011036 RMS(Int)= 0.39173722 Iteration 11 RMS(Cart)= 0.00011143 RMS(Int)= 0.38894604 Iteration 12 RMS(Cart)= 0.00011319 RMS(Int)= 0.38600253 Iteration 13 RMS(Cart)= 0.00011585 RMS(Int)= 0.38271783 Iteration 14 RMS(Cart)= 0.00011999 RMS(Int)= 0.37832128 Iteration 15 RMS(Cart)= 0.00012858 RMS(Int)= 0.12811842 Iteration 16 RMS(Cart)= 0.00148710 RMS(Int)= 0.41132750 Iteration 17 RMS(Cart)= 0.00017637 RMS(Int)= 0.40707002 Iteration 18 RMS(Cart)= 0.00013599 RMS(Int)= 0.40388116 Iteration 19 RMS(Cart)= 0.00012428 RMS(Int)= 0.40099905 Iteration 20 RMS(Cart)= 0.00011935 RMS(Int)= 0.39824335 Iteration 21 RMS(Cart)= 0.00011708 RMS(Int)= 0.39553952 Iteration 22 RMS(Cart)= 0.00011627 RMS(Int)= 0.39284249 Iteration 23 RMS(Cart)= 0.00011642 RMS(Int)= 0.39011249 Iteration 24 RMS(Cart)= 0.00011732 RMS(Int)= 0.38729889 Iteration 25 RMS(Cart)= 0.00011895 RMS(Int)= 0.38431181 Iteration 26 RMS(Cart)= 0.00012156 RMS(Int)= 0.38092344 Iteration 27 RMS(Cart)= 0.00012586 RMS(Int)= 0.37604299 Iteration 28 RMS(Cart)= 0.00013623 RMS(Int)= 0.15641931 Iteration 29 RMS(Cart)= 0.00141512 RMS(Int)= 0.38289480 Iteration 30 RMS(Cart)= 0.00020185 RMS(Int)= 0.38019451 Iteration 31 RMS(Cart)= 0.00019652 RMS(Int)= 0.37746299 Iteration 32 RMS(Cart)= 0.00019246 RMS(Int)= 0.37466232 Iteration 33 RMS(Cart)= 0.00018954 RMS(Int)= 0.37172674 Iteration 34 RMS(Cart)= 0.00018785 RMS(Int)= 0.36850864 Iteration 35 RMS(Cart)= 0.00018789 RMS(Int)= 0.36450058 Iteration 36 RMS(Cart)= 0.00019167 RMS(Int)= 0.35153035 Iteration 37 RMS(Cart)= 0.00023486 RMS(Int)= 0.18740224 Iteration 38 RMS(Cart)= 0.00132032 RMS(Int)= 0.35151873 Iteration 39 RMS(Cart)= 0.00030949 RMS(Int)= 0.34844348 Iteration 40 RMS(Cart)= 0.00030162 RMS(Int)= 0.34492545 Iteration 41 RMS(Cart)= 0.00029679 RMS(Int)= 0.33970308 Iteration 42 RMS(Cart)= 0.00030065 RMS(Int)= 0.19387520 Iteration 43 RMS(Cart)= 0.00128122 RMS(Int)= 0.34527303 Iteration 44 RMS(Cart)= 0.00034260 RMS(Int)= 0.34215318 Iteration 45 RMS(Cart)= 0.00033299 RMS(Int)= 0.33852523 Iteration 46 RMS(Cart)= 0.00032690 RMS(Int)= 0.33263755 Iteration 47 RMS(Cart)= 0.00033238 RMS(Int)= 0.20351844 Iteration 48 RMS(Cart)= 0.00124422 RMS(Int)= 0.33550107 Iteration 49 RMS(Cart)= 0.00038136 RMS(Int)= 0.33211447 Iteration 50 RMS(Cart)= 0.00037099 RMS(Int)= 0.32759791 Iteration 51 RMS(Cart)= 0.00036723 RMS(Int)= 0.14244418 Iteration 52 RMS(Cart)= 0.00145645 RMS(Int)= 0.39694326 Iteration 53 RMS(Cart)= 0.00016282 RMS(Int)= 0.39418290 Iteration 54 RMS(Cart)= 0.00015704 RMS(Int)= 0.39147262 Iteration 55 RMS(Cart)= 0.00015313 RMS(Int)= 0.38877774 Iteration 56 RMS(Cart)= 0.00015054 RMS(Int)= 0.38606727 Iteration 57 RMS(Cart)= 0.00014895 RMS(Int)= 0.38330483 Iteration 58 RMS(Cart)= 0.00014827 RMS(Int)= 0.38043435 Iteration 59 RMS(Cart)= 0.00014855 RMS(Int)= 0.37734229 Iteration 60 RMS(Cart)= 0.00015010 RMS(Int)= 0.37369628 Iteration 61 RMS(Cart)= 0.00015417 RMS(Int)= 0.36710498 Iteration 62 RMS(Cart)= 0.00017050 RMS(Int)= 0.17047750 Iteration 63 RMS(Cart)= 0.00137790 RMS(Int)= 0.36869714 Iteration 64 RMS(Cart)= 0.00024837 RMS(Int)= 0.36590037 Iteration 65 RMS(Cart)= 0.00024196 RMS(Int)= 0.36298114 Iteration 66 RMS(Cart)= 0.00023706 RMS(Int)= 0.35981430 Iteration 67 RMS(Cart)= 0.00023405 RMS(Int)= 0.35601019 Iteration 68 RMS(Cart)= 0.00023448 RMS(Int)= 0.34811803 Iteration 69 RMS(Cart)= 0.00025365 RMS(Int)= 0.19002035 Iteration 70 RMS(Cart)= 0.00130716 RMS(Int)= 0.34896864 Iteration 71 RMS(Cart)= 0.00032226 RMS(Int)= 0.34586756 Iteration 72 RMS(Cart)= 0.00031378 RMS(Int)= 0.34228490 Iteration 73 RMS(Cart)= 0.00030859 RMS(Int)= 0.33668196 Iteration 74 RMS(Cart)= 0.00031366 RMS(Int)= 0.19873908 Iteration 75 RMS(Cart)= 0.00126372 RMS(Int)= 0.34033997 Iteration 76 RMS(Cart)= 0.00036188 RMS(Int)= 0.33709620 Iteration 77 RMS(Cart)= 0.00035187 RMS(Int)= 0.33310240 Iteration 78 RMS(Cart)= 0.00034658 RMS(Int)= 0.32252425 Iteration 79 RMS(Cart)= 0.00037381 RMS(Int)= 0.21609178 Iteration 80 RMS(Cart)= 0.00119543 RMS(Int)= 0.32250123 Iteration 81 RMS(Cart)= 0.00042985 RMS(Int)= 0.31831575 Iteration 82 RMS(Cart)= 0.00042082 RMS(Int)= 0.30135506 Iteration 83 RMS(Cart)= 0.00047592 RMS(Int)= 0.23761891 Iteration 84 RMS(Cart)= 0.00109203 RMS(Int)= 0.30029999 Iteration 85 RMS(Cart)= 0.00052330 RMS(Int)= 0.29066121 Iteration 86 RMS(Cart)= 0.00053547 RMS(Int)= 0.24772903 Iteration 87 RMS(Cart)= 0.00103408 RMS(Int)= 0.29025675 Iteration 88 RMS(Cart)= 0.00057151 RMS(Int)= 0.27292023 Iteration 89 RMS(Cart)= 0.00061829 RMS(Int)= 0.26602975 Iteration 90 RMS(Cart)= 0.00094051 RMS(Int)= 0.27031713 Iteration 91 RMS(Cart)= 0.00065325 RMS(Int)= 0.26531982 Iteration 92 RMS(Cart)= 0.00092536 RMS(Int)= 0.27315396 Iteration 93 RMS(Cart)= 0.00065776 RMS(Int)= 0.20421354 Iteration 94 RMS(Cart)= 0.00093056 RMS(Int)= 0.33505928 Iteration 95 RMS(Cart)= 0.00057446 RMS(Int)= 0.32904886 Iteration 96 RMS(Cart)= 0.00056808 RMS(Int)= 0.20714553 Iteration 97 RMS(Cart)= 0.00093266 RMS(Int)= 0.33143475 Iteration 98 RMS(Cart)= 0.00057979 RMS(Int)= 0.31845713 Iteration 99 RMS(Cart)= 0.00061192 RMS(Int)= 0.22033726 Iteration100 RMS(Cart)= 0.00089337 RMS(Int)= 0.31623548 New curvilinear step not converged. ITry= 2 IFail=1 DXMaxC= 2.46D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00632823 RMS(Int)= 0.48901929 Iteration 2 RMS(Cart)= 0.06118821 RMS(Int)= 0.45910751 Iteration 3 RMS(Cart)= 0.00132272 RMS(Int)= 0.42577625 Iteration 4 RMS(Cart)= 0.00037633 RMS(Int)= 0.41119301 Iteration 5 RMS(Cart)= 0.00012094 RMS(Int)= 0.40772421 Iteration 6 RMS(Cart)= 0.00010567 RMS(Int)= 0.40476573 Iteration 7 RMS(Cart)= 0.00010037 RMS(Int)= 0.40198171 Iteration 8 RMS(Cart)= 0.00009826 RMS(Int)= 0.39926884 Iteration 9 RMS(Cart)= 0.00009763 RMS(Int)= 0.39657314 Iteration 10 RMS(Cart)= 0.00009790 RMS(Int)= 0.39385260 Iteration 11 RMS(Cart)= 0.00009887 RMS(Int)= 0.39105815 Iteration 12 RMS(Cart)= 0.00010046 RMS(Int)= 0.38810807 Iteration 13 RMS(Cart)= 0.00010284 RMS(Int)= 0.38480753 Iteration 14 RMS(Cart)= 0.00010658 RMS(Int)= 0.38034050 Iteration 15 RMS(Cart)= 0.00011454 RMS(Int)= 0.13781652 Iteration 16 RMS(Cart)= 0.00130045 RMS(Int)= 0.40144241 Iteration 17 RMS(Cart)= 0.00014065 RMS(Int)= 0.39863404 Iteration 18 RMS(Cart)= 0.00013483 RMS(Int)= 0.39590197 Iteration 19 RMS(Cart)= 0.00013109 RMS(Int)= 0.39320274 Iteration 20 RMS(Cart)= 0.00012869 RMS(Int)= 0.39050312 Iteration 21 RMS(Cart)= 0.00012724 RMS(Int)= 0.38776934 Iteration 22 RMS(Cart)= 0.00012661 RMS(Int)= 0.38495576 Iteration 23 RMS(Cart)= 0.00012672 RMS(Int)= 0.38198096 Iteration 24 RMS(Cart)= 0.00012780 RMS(Int)= 0.37864584 Iteration 25 RMS(Cart)= 0.00013043 RMS(Int)= 0.37410273 Iteration 26 RMS(Cart)= 0.00013756 RMS(Int)= 0.14674943 Iteration 27 RMS(Cart)= 0.00128169 RMS(Int)= 0.39247970 Iteration 28 RMS(Cart)= 0.00016027 RMS(Int)= 0.38977760 Iteration 29 RMS(Cart)= 0.00015563 RMS(Int)= 0.38708090 Iteration 30 RMS(Cart)= 0.00015225 RMS(Int)= 0.38436115 Iteration 31 RMS(Cart)= 0.00014982 RMS(Int)= 0.38158192 Iteration 32 RMS(Cart)= 0.00014830 RMS(Int)= 0.37868359 Iteration 33 RMS(Cart)= 0.00014772 RMS(Int)= 0.37553982 Iteration 34 RMS(Cart)= 0.00014846 RMS(Int)= 0.37175579 Iteration 35 RMS(Cart)= 0.00015185 RMS(Int)= 0.36366328 Iteration 36 RMS(Cart)= 0.00017156 RMS(Int)= 0.17451679 Iteration 37 RMS(Cart)= 0.00120752 RMS(Int)= 0.36445431 Iteration 38 RMS(Cart)= 0.00024053 RMS(Int)= 0.36157762 Iteration 39 RMS(Cart)= 0.00023429 RMS(Int)= 0.35850561 Iteration 40 RMS(Cart)= 0.00022971 RMS(Int)= 0.35498283 Iteration 41 RMS(Cart)= 0.00022763 RMS(Int)= 0.34967525 Iteration 42 RMS(Cart)= 0.00023325 RMS(Int)= 0.18456512 Iteration 43 RMS(Cart)= 0.00116752 RMS(Int)= 0.35448377 Iteration 44 RMS(Cart)= 0.00027878 RMS(Int)= 0.35148861 Iteration 45 RMS(Cart)= 0.00027104 RMS(Int)= 0.34816795 Iteration 46 RMS(Cart)= 0.00026559 RMS(Int)= 0.34387414 Iteration 47 RMS(Cart)= 0.00026491 RMS(Int)= 0.30779036 Iteration 48 RMS(Cart)= 0.00040165 RMS(Int)= 0.23131173 Iteration 49 RMS(Cart)= 0.00099265 RMS(Int)= 0.30644392 Iteration 50 RMS(Cart)= 0.00044779 RMS(Int)= 0.29805737 Iteration 51 RMS(Cart)= 0.00045422 RMS(Int)= 0.23992422 Iteration 52 RMS(Cart)= 0.00094498 RMS(Int)= 0.29823884 Iteration 53 RMS(Cart)= 0.00048708 RMS(Int)= 0.28946398 Iteration 54 RMS(Cart)= 0.00049257 RMS(Int)= 0.24861308 Iteration 55 RMS(Cart)= 0.00090429 RMS(Int)= 0.28928746 Iteration 56 RMS(Cart)= 0.00052139 RMS(Int)= 0.26618942 Iteration 57 RMS(Cart)= 0.00058723 RMS(Int)= 0.27276353 Iteration 58 RMS(Cart)= 0.00079506 RMS(Int)= 0.26191668 Iteration 59 RMS(Cart)= 0.00061981 RMS(Int)= 0.27562524 Iteration 60 RMS(Cart)= 0.00076857 RMS(Int)= 0.26163044 Iteration 61 RMS(Cart)= 0.00063116 RMS(Int)= 0.27336950 Iteration 62 RMS(Cart)= 0.00077099 RMS(Int)= 0.26492640 Iteration 63 RMS(Cart)= 0.00062653 RMS(Int)= 0.25784583 Iteration 64 RMS(Cart)= 0.00084086 RMS(Int)= 0.28110917 Iteration 65 RMS(Cart)= 0.00057035 RMS(Int)= 0.27242129 Iteration 66 RMS(Cart)= 0.00056963 RMS(Int)= 0.26560078 Iteration 67 RMS(Cart)= 0.00082126 RMS(Int)= 0.27171299 Iteration 68 RMS(Cart)= 0.00058984 RMS(Int)= 0.26048646 Iteration 69 RMS(Cart)= 0.00083190 RMS(Int)= 0.27822696 Iteration 70 RMS(Cart)= 0.00057780 RMS(Int)= 0.26453907 Iteration 71 RMS(Cart)= 0.00059812 RMS(Int)= 0.27413382 Iteration 72 RMS(Cart)= 0.00078492 RMS(Int)= 0.26142189 Iteration 73 RMS(Cart)= 0.00062437 RMS(Int)= 0.27572209 Iteration 74 RMS(Cart)= 0.00076598 RMS(Int)= 0.26181354 Iteration 75 RMS(Cart)= 0.00063229 RMS(Int)= 0.27226527 Iteration 76 RMS(Cart)= 0.00077483 RMS(Int)= 0.26618071 Iteration 77 RMS(Cart)= 0.00062325 RMS(Int)= 0.24116981 Iteration 78 RMS(Cart)= 0.00092198 RMS(Int)= 0.29789646 Iteration 79 RMS(Cart)= 0.00050404 RMS(Int)= 0.29271609 Iteration 80 RMS(Cart)= 0.00049256 RMS(Int)= 0.23921290 Iteration 81 RMS(Cart)= 0.00093642 RMS(Int)= 0.29964332 Iteration 82 RMS(Cart)= 0.00049219 RMS(Int)= 0.29411111 Iteration 83 RMS(Cart)= 0.00048312 RMS(Int)= 0.24033807 Iteration 84 RMS(Cart)= 0.00093352 RMS(Int)= 0.29839076 Iteration 85 RMS(Cart)= 0.00049489 RMS(Int)= 0.29232276 Iteration 86 RMS(Cart)= 0.00048804 RMS(Int)= 0.24375720 Iteration 87 RMS(Cart)= 0.00092002 RMS(Int)= 0.29478034 Iteration 88 RMS(Cart)= 0.00050658 RMS(Int)= 0.28722791 Iteration 89 RMS(Cart)= 0.00050554 RMS(Int)= 0.25037792 Iteration 90 RMS(Cart)= 0.00089326 RMS(Int)= 0.28769282 Iteration 91 RMS(Cart)= 0.00052998 RMS(Int)= 0.26836142 Iteration 92 RMS(Cart)= 0.00057864 RMS(Int)= 0.27052394 Iteration 93 RMS(Cart)= 0.00080508 RMS(Int)= 0.26480510 Iteration 94 RMS(Cart)= 0.00060955 RMS(Int)= 0.27229090 Iteration 95 RMS(Cart)= 0.00078289 RMS(Int)= 0.26539507 Iteration 96 RMS(Cart)= 0.00061877 RMS(Int)= 0.26684659 Iteration 97 RMS(Cart)= 0.00079989 RMS(Int)= 0.27181489 Iteration 98 RMS(Cart)= 0.00060320 RMS(Int)= 0.24111725 Iteration 99 RMS(Cart)= 0.00069268 RMS(Int)= 0.29790669 Iteration100 RMS(Cart)= 0.00067340 RMS(Int)= 0.19139175 New curvilinear step not converged. ITry= 3 IFail=1 DXMaxC= 2.19D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00555039 RMS(Int)= 0.49074845 Iteration 2 RMS(Cart)= 0.05380079 RMS(Int)= 0.45975819 Iteration 3 RMS(Cart)= 0.00102705 RMS(Int)= 0.42681197 Iteration 4 RMS(Cart)= 0.00031238 RMS(Int)= 0.41337818 Iteration 5 RMS(Cart)= 0.00010573 RMS(Int)= 0.40991921 Iteration 6 RMS(Cart)= 0.00009230 RMS(Int)= 0.40695890 Iteration 7 RMS(Cart)= 0.00008766 RMS(Int)= 0.40417443 Iteration 8 RMS(Cart)= 0.00008582 RMS(Int)= 0.40146121 Iteration 9 RMS(Cart)= 0.00008526 RMS(Int)= 0.39876518 Iteration 10 RMS(Cart)= 0.00008550 RMS(Int)= 0.39604424 Iteration 11 RMS(Cart)= 0.00008634 RMS(Int)= 0.39324933 Iteration 12 RMS(Cart)= 0.00008773 RMS(Int)= 0.39029854 Iteration 13 RMS(Cart)= 0.00008981 RMS(Int)= 0.38699648 Iteration 14 RMS(Cart)= 0.00009308 RMS(Int)= 0.38252270 Iteration 15 RMS(Cart)= 0.00010005 RMS(Int)= 0.13625710 Iteration 16 RMS(Cart)= 0.00113729 RMS(Int)= 0.40287908 Iteration 17 RMS(Cart)= 0.00012424 RMS(Int)= 0.40008706 Iteration 18 RMS(Cart)= 0.00011934 RMS(Int)= 0.39736223 Iteration 19 RMS(Cart)= 0.00011615 RMS(Int)= 0.39466456 Iteration 20 RMS(Cart)= 0.00011403 RMS(Int)= 0.39196184 Iteration 21 RMS(Cart)= 0.00011276 RMS(Int)= 0.38921983 Iteration 22 RMS(Cart)= 0.00011219 RMS(Int)= 0.38639021 Iteration 23 RMS(Cart)= 0.00011228 RMS(Int)= 0.38338364 Iteration 24 RMS(Cart)= 0.00011328 RMS(Int)= 0.37997012 Iteration 25 RMS(Cart)= 0.00011578 RMS(Int)= 0.37504292 Iteration 26 RMS(Cart)= 0.00012318 RMS(Int)= 0.15717051 Iteration 27 RMS(Cart)= 0.00109264 RMS(Int)= 0.38188600 Iteration 28 RMS(Cart)= 0.00017111 RMS(Int)= 0.37916344 Iteration 29 RMS(Cart)= 0.00016653 RMS(Int)= 0.37638437 Iteration 30 RMS(Cart)= 0.00016306 RMS(Int)= 0.37349515 Iteration 31 RMS(Cart)= 0.00016054 RMS(Int)= 0.37038539 Iteration 32 RMS(Cart)= 0.00015927 RMS(Int)= 0.36673422 Iteration 33 RMS(Cart)= 0.00016022 RMS(Int)= 0.36037008 Iteration 34 RMS(Cart)= 0.00017062 RMS(Int)= 0.17660310 Iteration 35 RMS(Cart)= 0.00104412 RMS(Int)= 0.36229287 Iteration 36 RMS(Cart)= 0.00022475 RMS(Int)= 0.35936795 Iteration 37 RMS(Cart)= 0.00021871 RMS(Int)= 0.35619916 Iteration 38 RMS(Cart)= 0.00021433 RMS(Int)= 0.35241129 Iteration 39 RMS(Cart)= 0.00021278 RMS(Int)= 0.34490167 Iteration 40 RMS(Cart)= 0.00022503 RMS(Int)= 0.19280091 Iteration 41 RMS(Cart)= 0.00099395 RMS(Int)= 0.34592693 Iteration 42 RMS(Cart)= 0.00027418 RMS(Int)= 0.34265976 Iteration 43 RMS(Cart)= 0.00026691 RMS(Int)= 0.33858389 Iteration 44 RMS(Cart)= 0.00026347 RMS(Int)= 0.32552692 Iteration 45 RMS(Cart)= 0.00029429 RMS(Int)= 0.21309242 Iteration 46 RMS(Cart)= 0.00092756 RMS(Int)= 0.32519949 Iteration 47 RMS(Cart)= 0.00033972 RMS(Int)= 0.32082039 Iteration 48 RMS(Cart)= 0.00033204 RMS(Int)= 0.27183347 Iteration 49 RMS(Cart)= 0.00049845 RMS(Int)= 0.26718005 Iteration 50 RMS(Cart)= 0.00071307 RMS(Int)= 0.26723505 Iteration 51 RMS(Cart)= 0.00053029 RMS(Int)= 0.27014677 Iteration 52 RMS(Cart)= 0.00068743 RMS(Int)= 0.26721260 Iteration 53 RMS(Cart)= 0.00054097 RMS(Int)= 0.26627508 Iteration 54 RMS(Cart)= 0.00069503 RMS(Int)= 0.27217284 Iteration 55 RMS(Cart)= 0.00053287 RMS(Int)= 0.15325454 Iteration 56 RMS(Cart)= 0.00088653 RMS(Int)= 0.38588089 Iteration 57 RMS(Cart)= 0.00025333 RMS(Int)= 0.38275384 Iteration 58 RMS(Cart)= 0.00024613 RMS(Int)= 0.37909899 Iteration 59 RMS(Cart)= 0.00024167 RMS(Int)= 0.37295743 Iteration 60 RMS(Cart)= 0.00024663 RMS(Int)= 0.16356527 Iteration 61 RMS(Cart)= 0.00086492 RMS(Int)= 0.37525520 Iteration 62 RMS(Cart)= 0.00028085 RMS(Int)= 0.37172883 Iteration 63 RMS(Cart)= 0.00027397 RMS(Int)= 0.36649442 Iteration 64 RMS(Cart)= 0.00027422 RMS(Int)= 0.16686822 Iteration 65 RMS(Cart)= 0.00085336 RMS(Int)= 0.37206094 Iteration 66 RMS(Cart)= 0.00029378 RMS(Int)= 0.36850833 Iteration 67 RMS(Cart)= 0.00028630 RMS(Int)= 0.36313144 Iteration 68 RMS(Cart)= 0.00028652 RMS(Int)= 0.17106881 Iteration 69 RMS(Cart)= 0.00084247 RMS(Int)= 0.36781082 Iteration 70 RMS(Cart)= 0.00030732 RMS(Int)= 0.36408334 Iteration 71 RMS(Cart)= 0.00029987 RMS(Int)= 0.35741826 Iteration 72 RMS(Cart)= 0.00030447 RMS(Int)= 0.17965522 Iteration 73 RMS(Cart)= 0.00082248 RMS(Int)= 0.35895175 Iteration 74 RMS(Cart)= 0.00033397 RMS(Int)= 0.35452854 Iteration 75 RMS(Cart)= 0.00032789 RMS(Int)= 0.22125415 Iteration 76 RMS(Cart)= 0.00088036 RMS(Int)= 0.31780377 Iteration 77 RMS(Cart)= 0.00037979 RMS(Int)= 0.31388309 Iteration 78 RMS(Cart)= 0.00036877 RMS(Int)= 0.30518513 Iteration 79 RMS(Cart)= 0.00037719 RMS(Int)= 0.23280598 Iteration 80 RMS(Cart)= 0.00084815 RMS(Int)= 0.30532674 Iteration 81 RMS(Cart)= 0.00040900 RMS(Int)= 0.29829861 Iteration 82 RMS(Cart)= 0.00040804 RMS(Int)= 0.23890214 Iteration 83 RMS(Cart)= 0.00082014 RMS(Int)= 0.29935378 Iteration 84 RMS(Cart)= 0.00043231 RMS(Int)= 0.29144653 Iteration 85 RMS(Cart)= 0.00043323 RMS(Int)= 0.24623860 Iteration 86 RMS(Cart)= 0.00079142 RMS(Int)= 0.29171347 Iteration 87 RMS(Cart)= 0.00045669 RMS(Int)= 0.27505899 Iteration 88 RMS(Cart)= 0.00048956 RMS(Int)= 0.26365676 Iteration 89 RMS(Cart)= 0.00072453 RMS(Int)= 0.27236241 Iteration 90 RMS(Cart)= 0.00051601 RMS(Int)= 0.26351085 Iteration 91 RMS(Cart)= 0.00071119 RMS(Int)= 0.27463049 Iteration 92 RMS(Cart)= 0.00052069 RMS(Int)= 0.21125035 Iteration 93 RMS(Cart)= 0.00091976 RMS(Int)= 0.32777263 Iteration 94 RMS(Cart)= 0.00034372 RMS(Int)= 0.32418025 Iteration 95 RMS(Cart)= 0.00033354 RMS(Int)= 0.31864539 Iteration 96 RMS(Cart)= 0.00033188 RMS(Int)= 0.21599901 Iteration 97 RMS(Cart)= 0.00090705 RMS(Int)= 0.32276742 Iteration 98 RMS(Cart)= 0.00035557 RMS(Int)= 0.31876840 Iteration 99 RMS(Cart)= 0.00034637 RMS(Int)= 0.30855314 Iteration100 RMS(Cart)= 0.00036207 RMS(Int)= 0.22975211 New curvilinear step not converged. ITry= 4 IFail=1 DXMaxC= 1.93D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00475980 RMS(Int)= 0.49250195 Iteration 2 RMS(Cart)= 0.04645962 RMS(Int)= 0.46029983 Iteration 3 RMS(Cart)= 0.00077783 RMS(Int)= 0.42777682 Iteration 4 RMS(Cart)= 0.00025045 RMS(Int)= 0.41555548 Iteration 5 RMS(Cart)= 0.00009014 RMS(Int)= 0.41210365 Iteration 6 RMS(Cart)= 0.00007846 RMS(Int)= 0.40914218 Iteration 7 RMS(Cart)= 0.00007488 RMS(Int)= 0.40635855 Iteration 8 RMS(Cart)= 0.00007346 RMS(Int)= 0.40364567 Iteration 9 RMS(Cart)= 0.00007298 RMS(Int)= 0.40094931 Iteration 10 RMS(Cart)= 0.00007319 RMS(Int)= 0.39822739 Iteration 11 RMS(Cart)= 0.00007385 RMS(Int)= 0.39543081 Iteration 12 RMS(Cart)= 0.00007504 RMS(Int)= 0.39247673 Iteration 13 RMS(Cart)= 0.00007683 RMS(Int)= 0.38916668 Iteration 14 RMS(Cart)= 0.00007967 RMS(Int)= 0.38465612 Iteration 15 RMS(Cart)= 0.00008567 RMS(Int)= 0.13712258 Iteration 16 RMS(Cart)= 0.00096690 RMS(Int)= 0.40190052 Iteration 17 RMS(Cart)= 0.00011097 RMS(Int)= 0.39916057 Iteration 18 RMS(Cart)= 0.00010695 RMS(Int)= 0.39645715 Iteration 19 RMS(Cart)= 0.00010456 RMS(Int)= 0.39375950 Iteration 20 RMS(Cart)= 0.00010296 RMS(Int)= 0.39103648 Iteration 21 RMS(Cart)= 0.00010191 RMS(Int)= 0.38824840 Iteration 22 RMS(Cart)= 0.00010137 RMS(Int)= 0.38532946 Iteration 23 RMS(Cart)= 0.00010157 RMS(Int)= 0.38213357 Iteration 24 RMS(Cart)= 0.00010278 RMS(Int)= 0.37816282 Iteration 25 RMS(Cart)= 0.00010625 RMS(Int)= 0.36559011 Iteration 26 RMS(Cart)= 0.00013194 RMS(Int)= 0.17301124 Iteration 27 RMS(Cart)= 0.00090114 RMS(Int)= 0.36568578 Iteration 28 RMS(Cart)= 0.00018701 RMS(Int)= 0.36275509 Iteration 29 RMS(Cart)= 0.00018219 RMS(Int)= 0.35957274 Iteration 30 RMS(Cart)= 0.00017878 RMS(Int)= 0.35574020 Iteration 31 RMS(Cart)= 0.00017785 RMS(Int)= 0.34761647 Iteration 32 RMS(Cart)= 0.00019042 RMS(Int)= 0.19024681 Iteration 33 RMS(Cart)= 0.00085481 RMS(Int)= 0.34837085 Iteration 34 RMS(Cart)= 0.00023380 RMS(Int)= 0.34510286 Iteration 35 RMS(Cart)= 0.00022762 RMS(Int)= 0.34102321 Iteration 36 RMS(Cart)= 0.00022473 RMS(Int)= 0.32777869 Iteration 37 RMS(Cart)= 0.00025177 RMS(Int)= 0.21076393 Iteration 38 RMS(Cart)= 0.00079608 RMS(Int)= 0.32744390 Iteration 39 RMS(Cart)= 0.00029055 RMS(Int)= 0.32307956 Iteration 40 RMS(Cart)= 0.00028424 RMS(Int)= 0.27870224 Iteration 41 RMS(Cart)= 0.00041166 RMS(Int)= 0.26021568 Iteration 42 RMS(Cart)= 0.00062914 RMS(Int)= 0.27498327 Iteration 43 RMS(Cart)= 0.00043855 RMS(Int)= 0.26152277 Iteration 44 RMS(Cart)= 0.00061129 RMS(Int)= 0.27634099 Iteration 45 RMS(Cart)= 0.00044591 RMS(Int)= 0.24086848 Iteration 46 RMS(Cart)= 0.00067811 RMS(Int)= 0.29797715 Iteration 47 RMS(Cart)= 0.00039028 RMS(Int)= 0.29225997 Iteration 48 RMS(Cart)= 0.00038330 RMS(Int)= 0.24273787 Iteration 49 RMS(Cart)= 0.00067798 RMS(Int)= 0.29569323 Iteration 50 RMS(Cart)= 0.00039154 RMS(Int)= 0.28772325 Iteration 51 RMS(Cart)= 0.00039102 RMS(Int)= 0.24989435 Iteration 52 RMS(Cart)= 0.00065799 RMS(Int)= 0.28781690 Iteration 53 RMS(Cart)= 0.00040894 RMS(Int)= 0.19064668 Iteration 54 RMS(Cart)= 0.00067376 RMS(Int)= 0.34834082 Iteration 55 RMS(Cart)= 0.00032087 RMS(Int)= 0.34407134 Iteration 56 RMS(Cart)= 0.00031334 RMS(Int)= 0.31907392 Iteration 57 RMS(Cart)= 0.00038043 RMS(Int)= 0.21975374 Iteration 58 RMS(Cart)= 0.00061745 RMS(Int)= 0.31635443 Iteration 59 RMS(Cart)= 0.00040632 RMS(Int)= 0.21840817 Iteration 60 RMS(Cart)= 0.00060692 RMS(Int)= 0.31994341 Iteration 61 RMS(Cart)= 0.00040673 RMS(Int)= 0.30327135 Iteration 62 RMS(Cart)= 0.00044119 RMS(Int)= 0.23537765 Iteration 63 RMS(Cart)= 0.00057357 RMS(Int)= 0.29930247 Iteration 64 RMS(Cart)= 0.00046512 RMS(Int)= 0.23811847 Iteration 65 RMS(Cart)= 0.00055783 RMS(Int)= 0.29879595 Iteration 66 RMS(Cart)= 0.00047327 RMS(Int)= 0.23679782 Iteration 67 RMS(Cart)= 0.00055607 RMS(Int)= 0.30109108 Iteration 68 RMS(Cart)= 0.00047015 RMS(Int)= 0.22973499 Iteration 69 RMS(Cart)= 0.00057137 RMS(Int)= 0.30879819 Iteration 70 RMS(Cart)= 0.00044804 RMS(Int)= 0.26537818 Iteration 71 RMS(Cart)= 0.00058416 RMS(Int)= 0.27352068 Iteration 72 RMS(Cart)= 0.00046574 RMS(Int)= 0.26036989 Iteration 73 RMS(Cart)= 0.00047642 RMS(Int)= 0.27808142 Iteration 74 RMS(Cart)= 0.00055919 RMS(Int)= 0.25614194 Iteration 75 RMS(Cart)= 0.00049559 RMS(Int)= 0.28162371 Iteration 76 RMS(Cart)= 0.00054130 RMS(Int)= 0.25421498 Iteration 77 RMS(Cart)= 0.00050478 RMS(Int)= 0.28303189 Iteration 78 RMS(Cart)= 0.00053330 RMS(Int)= 0.25348777 Iteration 79 RMS(Cart)= 0.00050902 RMS(Int)= 0.28334850 Iteration 80 RMS(Cart)= 0.00053044 RMS(Int)= 0.25356326 Iteration 81 RMS(Cart)= 0.00051024 RMS(Int)= 0.28288896 Iteration 82 RMS(Cart)= 0.00053085 RMS(Int)= 0.25432158 Iteration 83 RMS(Cart)= 0.00050925 RMS(Int)= 0.28166408 Iteration 84 RMS(Cart)= 0.00053413 RMS(Int)= 0.25583573 Iteration 85 RMS(Cart)= 0.00050607 RMS(Int)= 0.27940619 Iteration 86 RMS(Cart)= 0.00054097 RMS(Int)= 0.25841636 Iteration 87 RMS(Cart)= 0.00050036 RMS(Int)= 0.27526449 Iteration 88 RMS(Cart)= 0.00055425 RMS(Int)= 0.26293249 Iteration 89 RMS(Cart)= 0.00048961 RMS(Int)= 0.26515311 Iteration 90 RMS(Cart)= 0.00058898 RMS(Int)= 0.27347928 Iteration 91 RMS(Cart)= 0.00046221 RMS(Int)= 0.24816676 Iteration 92 RMS(Cart)= 0.00051146 RMS(Int)= 0.29062173 Iteration 93 RMS(Cart)= 0.00051654 RMS(Int)= 0.22758926 Iteration 94 RMS(Cart)= 0.00057435 RMS(Int)= 0.31120351 Iteration 95 RMS(Cart)= 0.00044258 RMS(Int)= 0.29710558 Iteration 96 RMS(Cart)= 0.00046586 RMS(Int)= 0.24142853 Iteration 97 RMS(Cart)= 0.00055558 RMS(Int)= 0.29262274 Iteration 98 RMS(Cart)= 0.00048903 RMS(Int)= 0.24518445 Iteration 99 RMS(Cart)= 0.00053948 RMS(Int)= 0.29065453 Iteration100 RMS(Cart)= 0.00049996 RMS(Int)= 0.24657861 New curvilinear step not converged. ITry= 5 IFail=1 DXMaxC= 1.66D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00398930 RMS(Int)= 0.49427753 Iteration 2 RMS(Cart)= 0.03914711 RMS(Int)= 0.46087301 Iteration 3 RMS(Cart)= 0.00056916 RMS(Int)= 0.42885573 Iteration 4 RMS(Cart)= 0.00019301 RMS(Int)= 0.41784390 Iteration 5 RMS(Cart)= 0.00007490 RMS(Int)= 0.41438746 Iteration 6 RMS(Cart)= 0.00006553 RMS(Int)= 0.41142729 Iteration 7 RMS(Cart)= 0.00006219 RMS(Int)= 0.40864260 Iteration 8 RMS(Cart)= 0.00006085 RMS(Int)= 0.40592900 Iteration 9 RMS(Cart)= 0.00006046 RMS(Int)= 0.40323252 Iteration 10 RMS(Cart)= 0.00006065 RMS(Int)= 0.40051093 Iteration 11 RMS(Cart)= 0.00006125 RMS(Int)= 0.39771504 Iteration 12 RMS(Cart)= 0.00006224 RMS(Int)= 0.39476259 Iteration 13 RMS(Cart)= 0.00006369 RMS(Int)= 0.39145744 Iteration 14 RMS(Cart)= 0.00006605 RMS(Int)= 0.38696757 Iteration 15 RMS(Cart)= 0.00007102 RMS(Int)= 0.13319955 Iteration 16 RMS(Cart)= 0.00081018 RMS(Int)= 0.40574056 Iteration 17 RMS(Cart)= 0.00009052 RMS(Int)= 0.40297674 Iteration 18 RMS(Cart)= 0.00008692 RMS(Int)= 0.40026347 Iteration 19 RMS(Cart)= 0.00008502 RMS(Int)= 0.39756706 Iteration 20 RMS(Cart)= 0.00008351 RMS(Int)= 0.39485618 Iteration 21 RMS(Cart)= 0.00008259 RMS(Int)= 0.39209479 Iteration 22 RMS(Cart)= 0.00008222 RMS(Int)= 0.38922737 Iteration 23 RMS(Cart)= 0.00008225 RMS(Int)= 0.38614415 Iteration 24 RMS(Cart)= 0.00008301 RMS(Int)= 0.38252659 Iteration 25 RMS(Cart)= 0.00007910 RMS(Int)= 0.37693875 Iteration 26 RMS(Cart)= 0.00009231 RMS(Int)= 0.15927902 Iteration 27 RMS(Cart)= 0.00077017 RMS(Int)= 0.37953378 Iteration 28 RMS(Cart)= 0.00013420 RMS(Int)= 0.37676040 Iteration 29 RMS(Cart)= 0.00013067 RMS(Int)= 0.37388622 Iteration 30 RMS(Cart)= 0.00012791 RMS(Int)= 0.37081412 Iteration 31 RMS(Cart)= 0.00012608 RMS(Int)= 0.36727967 Iteration 32 RMS(Cart)= 0.00013071 RMS(Int)= 0.36150672 Iteration 33 RMS(Cart)= 0.00012943 RMS(Int)= 0.17381979 Iteration 34 RMS(Cart)= 0.00074123 RMS(Int)= 0.36495294 Iteration 35 RMS(Cart)= 0.00016497 RMS(Int)= 0.36201564 Iteration 36 RMS(Cart)= 0.00016042 RMS(Int)= 0.35882206 Iteration 37 RMS(Cart)= 0.00015707 RMS(Int)= 0.35496180 Iteration 38 RMS(Cart)= 0.00015590 RMS(Int)= 0.34649288 Iteration 39 RMS(Cart)= 0.00016694 RMS(Int)= 0.19138689 Iteration 40 RMS(Cart)= 0.00070453 RMS(Int)= 0.34711500 Iteration 41 RMS(Cart)= 0.00020338 RMS(Int)= 0.34373593 Iteration 42 RMS(Cart)= 0.00019689 RMS(Int)= 0.33926543 Iteration 43 RMS(Cart)= 0.00019514 RMS(Int)= 0.07469158 Iteration 44 RMS(Cart)= 0.00085531 RMS(Int)= 0.46439061 Iteration 45 RMS(Cart)= 0.00017488 RMS(Int)= 0.43027983 Iteration 46 RMS(Cart)= 0.00019720 RMS(Int)= 0.41745430 Iteration 47 RMS(Cart)= 0.00006976 RMS(Int)= 0.41410296 Iteration 48 RMS(Cart)= 0.00006229 RMS(Int)= 0.41118154 Iteration 49 RMS(Cart)= 0.00005979 RMS(Int)= 0.40841426 Iteration 50 RMS(Cart)= 0.00005893 RMS(Int)= 0.40570735 Iteration 51 RMS(Cart)= 0.00005886 RMS(Int)= 0.40300941 Iteration 52 RMS(Cart)= 0.00005928 RMS(Int)= 0.40027756 Iteration 53 RMS(Cart)= 0.00006009 RMS(Int)= 0.39745810 Iteration 54 RMS(Cart)= 0.00006129 RMS(Int)= 0.39445459 Iteration 55 RMS(Cart)= 0.00006300 RMS(Int)= 0.39101416 Iteration 56 RMS(Cart)= 0.00007248 RMS(Int)= 0.38494470 Iteration 57 RMS(Cart)= 0.00006785 RMS(Int)= 0.15064389 Iteration 58 RMS(Cart)= 0.00078323 RMS(Int)= 0.38822169 Iteration 59 RMS(Cart)= 0.00011767 RMS(Int)= 0.38550775 Iteration 60 RMS(Cart)= 0.00011463 RMS(Int)= 0.38274649 Iteration 61 RMS(Cart)= 0.00011221 RMS(Int)= 0.37989118 Iteration 62 RMS(Cart)= 0.00011053 RMS(Int)= 0.37684988 Iteration 63 RMS(Cart)= 0.00010964 RMS(Int)= 0.37338153 Iteration 64 RMS(Cart)= 0.00010979 RMS(Int)= 0.36829706 Iteration 65 RMS(Cart)= 0.00011410 RMS(Int)= 0.16455464 Iteration 66 RMS(Cart)= 0.00075700 RMS(Int)= 0.37428730 Iteration 67 RMS(Cart)= 0.00014536 RMS(Int)= 0.37147131 Iteration 68 RMS(Cart)= 0.00014153 RMS(Int)= 0.36851776 Iteration 69 RMS(Cart)= 0.00013848 RMS(Int)= 0.36528005 Iteration 70 RMS(Cart)= 0.00013635 RMS(Int)= 0.36126021 Iteration 71 RMS(Cart)= 0.00013655 RMS(Int)= 0.34900233 Iteration 72 RMS(Cart)= 0.00015791 RMS(Int)= 0.18944012 Iteration 73 RMS(Cart)= 0.00070620 RMS(Int)= 0.34899132 Iteration 74 RMS(Cart)= 0.00019629 RMS(Int)= 0.34563175 Iteration 75 RMS(Cart)= 0.00019063 RMS(Int)= 0.34122548 Iteration 76 RMS(Cart)= 0.00018959 RMS(Int)= 0.19401907 Iteration 77 RMS(Cart)= 0.00042657 RMS(Int)= 0.34490935 Iteration 78 RMS(Cart)= 0.00026158 RMS(Int)= 0.33905169 Iteration 79 RMS(Cart)= 0.00026143 RMS(Int)= 0.19657381 Iteration 80 RMS(Cart)= 0.00056063 RMS(Int)= 0.34186571 Iteration 81 RMS(Cart)= 0.00027428 RMS(Int)= 0.33636848 Iteration 82 RMS(Cart)= 0.00027060 RMS(Int)= 0.19796922 Iteration 83 RMS(Cart)= 0.00055649 RMS(Int)= 0.34056088 Iteration 84 RMS(Cart)= 0.00027840 RMS(Int)= 0.33515670 Iteration 85 RMS(Cart)= 0.00027441 RMS(Int)= 0.19871702 Iteration 86 RMS(Cart)= 0.00055457 RMS(Int)= 0.33983530 Iteration 87 RMS(Cart)= 0.00028019 RMS(Int)= 0.33441771 Iteration 88 RMS(Cart)= 0.00027677 RMS(Int)= 0.19955414 Iteration 89 RMS(Cart)= 0.00055152 RMS(Int)= 0.33898490 Iteration 90 RMS(Cart)= 0.00028235 RMS(Int)= 0.33341891 Iteration 91 RMS(Cart)= 0.00027916 RMS(Int)= 0.20121899 Iteration 92 RMS(Cart)= 0.00054849 RMS(Int)= 0.33726220 Iteration 93 RMS(Cart)= 0.00028639 RMS(Int)= 0.33131241 Iteration 94 RMS(Cart)= 0.00028415 RMS(Int)= 0.20444406 Iteration 95 RMS(Cart)= 0.00054276 RMS(Int)= 0.33389477 Iteration 96 RMS(Cart)= 0.00029418 RMS(Int)= 0.32682738 Iteration 97 RMS(Cart)= 0.00029496 RMS(Int)= 0.21031211 Iteration 98 RMS(Cart)= 0.00053256 RMS(Int)= 0.32765961 Iteration 99 RMS(Cart)= 0.00030857 RMS(Int)= 0.31459549 Iteration100 RMS(Cart)= 0.00032704 RMS(Int)= 0.22382596 New curvilinear step not converged. ITry= 6 IFail=1 DXMaxC= 1.39D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00323045 RMS(Int)= 0.49606402 Iteration 2 RMS(Cart)= 0.03190029 RMS(Int)= 0.46146663 Iteration 3 RMS(Cart)= 0.00039976 RMS(Int)= 0.43010385 Iteration 4 RMS(Cart)= 0.00014218 RMS(Int)= 0.42019250 Iteration 5 RMS(Cart)= 0.00005962 RMS(Int)= 0.41672065 Iteration 6 RMS(Cart)= 0.00005203 RMS(Int)= 0.41376121 Iteration 7 RMS(Cart)= 0.00004966 RMS(Int)= 0.41097721 Iteration 8 RMS(Cart)= 0.00004858 RMS(Int)= 0.40826385 Iteration 9 RMS(Cart)= 0.00004819 RMS(Int)= 0.40556724 Iteration 10 RMS(Cart)= 0.00004838 RMS(Int)= 0.40284492 Iteration 11 RMS(Cart)= 0.00004873 RMS(Int)= 0.40004870 Iteration 12 RMS(Cart)= 0.00004952 RMS(Int)= 0.39709551 Iteration 13 RMS(Cart)= 0.00005071 RMS(Int)= 0.39378766 Iteration 14 RMS(Cart)= 0.00005258 RMS(Int)= 0.38928641 Iteration 15 RMS(Cart)= 0.00005655 RMS(Int)= 0.13174059 Iteration 16 RMS(Cart)= 0.00064710 RMS(Int)= 0.40712668 Iteration 17 RMS(Cart)= 0.00007329 RMS(Int)= 0.40437609 Iteration 18 RMS(Cart)= 0.00007072 RMS(Int)= 0.40166867 Iteration 19 RMS(Cart)= 0.00006895 RMS(Int)= 0.39897184 Iteration 20 RMS(Cart)= 0.00006776 RMS(Int)= 0.39625503 Iteration 21 RMS(Cart)= 0.00006701 RMS(Int)= 0.39348061 Iteration 22 RMS(Cart)= 0.00006661 RMS(Int)= 0.39058897 Iteration 23 RMS(Cart)= 0.00006669 RMS(Int)= 0.38745375 Iteration 24 RMS(Cart)= 0.00006738 RMS(Int)= 0.38368141 Iteration 25 RMS(Cart)= 0.00006933 RMS(Int)= 0.37560278 Iteration 26 RMS(Cart)= 0.00007924 RMS(Int)= 0.16223472 Iteration 27 RMS(Cart)= 0.00060960 RMS(Int)= 0.37642441 Iteration 28 RMS(Cart)= 0.00011525 RMS(Int)= 0.37358766 Iteration 29 RMS(Cart)= 0.00011168 RMS(Int)= 0.37059820 Iteration 30 RMS(Cart)= 0.00010950 RMS(Int)= 0.36727698 Iteration 31 RMS(Cart)= 0.00010824 RMS(Int)= 0.36293966 Iteration 32 RMS(Cart)= 0.00010925 RMS(Int)= 0.28269136 Iteration 33 RMS(Cart)= 0.00000088 RMS(Int)= 0.25442667 ITry= 7 IFail=0 DXMaxC= 1.13D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.23222 -0.00981 -0.00207 -0.03596 -0.01641 4.21580 R2 4.19041 -0.00206 -0.00158 -0.01421 -0.00723 4.18318 R3 4.89118 0.00381 0.00882 0.04084 0.02649 4.91767 R4 4.96687 -0.00213 -0.00559 -0.02616 -0.01464 4.95223 R5 4.32945 -0.01953 -0.00468 -0.08248 -0.03766 4.29179 R6 4.32091 -0.01317 -0.00286 -0.06256 -0.02787 4.29304 R7 4.73878 0.00389 0.01171 0.01704 0.01711 4.75589 R8 4.91821 0.00193 0.00724 0.00607 0.00831 4.92652 A1 1.74916 0.00476 0.00447 0.02543 0.01529 1.76445 A2 1.60624 -0.00807 0.00465 -0.03328 -0.00958 1.59666 A3 1.53331 0.00234 -0.00287 0.02705 0.00703 1.54034 A4 1.39780 0.00116 -0.00605 -0.00948 -0.00737 1.39043 A5 1.66474 0.00675 -0.00353 0.04972 0.00667 1.67141 A6 1.70899 -0.00982 0.00950 -0.02962 0.01000 1.71899 A7 3.14143 0.01216 -0.00001 0.05335 0.00016 3.14159 A8 1.47673 0.00285 0.00352 -0.00759 -0.00655 1.47018 A9 1.43273 0.00045 -0.00949 -0.01148 -0.01012 1.42261 A10 1.75656 -0.00181 0.00587 0.00104 0.00283 1.75939 A11 1.69563 0.00015 0.00968 0.01929 0.01449 1.71012 A12 3.00403 -0.00690 -0.00140 -0.04276 -0.01695 2.98709 A13 2.93111 0.00351 -0.00892 0.01757 -0.00034 2.93077 A14 3.37373 -0.00307 0.00597 0.02011 0.01668 3.39040 A15 3.08262 -0.00243 -0.00241 -0.09950 -0.04121 3.04141 A16 3.07471 -0.00132 -0.00282 -0.08470 -0.03760 3.03711 A17 3.11062 0.00147 0.00031 0.01152 0.00243 3.11305 D1 3.10476 -0.00143 -0.00250 -0.08481 -0.03738 3.06738 D2 0.02214 0.00099 -0.00010 0.01469 0.00383 0.02597 D3 3.05357 -0.00228 -0.00275 -0.09882 -0.04133 3.01224 D4 -0.02113 -0.00097 0.00008 -0.01412 -0.00373 -0.02487 D5 3.11925 0.00684 0.00015 0.01974 -0.00362 3.11563 D6 -0.02224 -0.00098 0.00016 -0.01461 -0.00373 -0.02597 D7 -2.42876 0.00000 -0.20245 -0.11330 -1.73099 2.12344 D8 -3.08895 0.00130 -0.00041 0.01089 0.00148 -3.08747 D9 0.02169 0.00099 -0.00009 0.01459 0.00388 0.02558 Item Value Threshold Converged? Maximum Force 0.019533 0.000450 NO RMS Force 0.006011 0.000300 NO Maximum Displacement 0.113344 0.001800 NO RMS Displacement 0.035298 0.001200 NO Predicted change in Energy=-7.548769D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.156567 1.482356 0.003707 2 13 0 2.781321 1.715752 0.014057 3 17 0 -2.693676 3.095367 0.115248 4 17 0 -2.437035 -0.315172 -0.168113 5 17 0 4.400827 3.304970 -0.083699 6 17 0 4.201651 -0.057263 0.022122 7 35 0 0.771509 3.229575 -0.038988 8 35 0 0.922303 -0.108508 0.126282 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.944812 0.000000 3 Cl 2.230908 5.647049 0.000000 4 Cl 2.213646 5.602596 3.431899 0.000000 5 Cl 5.849290 2.271117 7.100386 7.737501 0.000000 6 Cl 5.575057 2.271780 7.582432 6.646417 3.369790 7 Br 2.602321 2.516708 3.471211 4.782956 3.630377 8 Br 2.620605 2.607004 4.831173 3.378540 4.878121 6 7 8 6 Cl 0.000000 7 Br 4.751096 0.000000 8 Br 3.281402 3.345572 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 2.007504 -0.026348 -0.006062 2 13 0 -1.936829 -0.086090 0.008652 3 17 0 3.472254 -1.704111 0.122646 4 17 0 3.365663 1.711079 -0.198362 5 17 0 -3.624784 -1.603479 -0.070763 6 17 0 -3.277761 1.747695 -0.002283 7 35 0 0.004377 -1.687388 -0.028529 8 35 0 0.000763 1.655719 0.099822 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5981882 0.2708709 0.1868487 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1682.4695763788 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.43D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 -0.000197 0.000012 0.001358 Ang= -0.16 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.12643292 A.U. after 11 cycles NFock= 11 Conv=0.68D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.008095263 -0.005318189 0.000630976 2 13 0.028132002 -0.008564277 -0.001232025 3 17 0.008512667 -0.003132033 0.000951833 4 17 0.000397365 0.001603512 -0.001437187 5 17 -0.017380971 -0.004978427 0.001100740 6 17 -0.006261391 0.007834802 -0.000013726 7 35 0.000664116 0.009210084 -0.001790384 8 35 -0.005968523 0.003344528 0.001789773 ------------------------------------------------------------------- Cartesian Forces: Max 0.028132002 RMS 0.008204757 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.015922789 RMS 0.004789740 Search for a local minimum. Step number 9 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 8 9 DE= -1.83D-03 DEPred=-7.55D-04 R= 2.42D+00 TightC=F SS= 1.41D+00 RLast= 1.73D+00 DXNew= 5.0454D+00 5.2030D+00 Trust test= 2.42D+00 RLast= 1.73D+00 DXMaxT set to 3.00D+00 ITU= 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00002 0.01435 0.02116 0.02969 0.03860 Eigenvalues --- 0.07782 0.10780 0.12052 0.12898 0.13930 Eigenvalues --- 0.18563 0.20301 0.23098 0.23458 0.23528 Eigenvalues --- 0.30176 0.43112 0.76669 RFO step: Lambda=-5.58979973D-03 EMin= 2.11226246D-05 Quartic linear search produced a step of 2.00000. SLEqS3 Cycle: 30 Max:0.130048 RMS: 4408.96 Conv:0.112966E-01 Iteration 1 RMS(Cart)= 0.17943369 RMS(Int)= 0.44748542 Iteration 2 RMS(Cart)= 0.00282052 RMS(Int)= 0.09718532 Iteration 3 RMS(Cart)= 0.01236200 RMS(Int)= 0.07473022 Iteration 4 RMS(Cart)= 0.01013993 RMS(Int)= 0.05119972 Iteration 5 RMS(Cart)= 0.00518944 RMS(Int)= 0.03387127 Iteration 6 RMS(Cart)= 0.00114484 RMS(Int)= 0.02948523 Iteration 7 RMS(Cart)= 0.00057135 RMS(Int)= 0.02746529 Iteration 8 RMS(Cart)= 0.00043854 RMS(Int)= 0.02595030 Iteration 9 RMS(Cart)= 0.00036674 RMS(Int)= 0.02470264 Iteration 10 RMS(Cart)= 0.00031811 RMS(Int)= 0.02363350 Iteration 11 RMS(Cart)= 0.00028172 RMS(Int)= 0.02269666 Iteration 12 RMS(Cart)= 0.00025285 RMS(Int)= 0.02186376 Iteration 13 RMS(Cart)= 0.00022926 RMS(Int)= 0.02111542 Iteration 14 RMS(Cart)= 0.00020944 RMS(Int)= 0.02043771 Iteration 15 RMS(Cart)= 0.00019244 RMS(Int)= 0.01982009 Iteration 16 RMS(Cart)= 0.00017769 RMS(Int)= 0.01925424 Iteration 17 RMS(Cart)= 0.00016476 RMS(Int)= 0.01873348 Iteration 18 RMS(Cart)= 0.00015332 RMS(Int)= 0.01825230 Iteration 19 RMS(Cart)= 0.00014313 RMS(Int)= 0.01780612 Iteration 20 RMS(Cart)= 0.00013399 RMS(Int)= 0.01739104 Iteration 21 RMS(Cart)= 0.00012575 RMS(Int)= 0.01700369 Iteration 22 RMS(Cart)= 0.00011828 RMS(Int)= 0.01664118 Iteration 23 RMS(Cart)= 0.00011148 RMS(Int)= 0.01630090 Iteration 24 RMS(Cart)= 0.00010526 RMS(Int)= 0.01598054 Iteration 25 RMS(Cart)= 0.00009955 RMS(Int)= 0.01567797 Iteration 26 RMS(Cart)= 0.00009430 RMS(Int)= 0.01539116 Iteration 27 RMS(Cart)= 0.00008944 RMS(Int)= 0.01511809 Iteration 28 RMS(Cart)= 0.00008492 RMS(Int)= 0.01485664 Iteration 29 RMS(Cart)= 0.00008071 RMS(Int)= 0.01460424 Iteration 30 RMS(Cart)= 0.00007676 RMS(Int)= 0.01435740 Iteration 31 RMS(Cart)= 0.00007302 RMS(Int)= 0.01411014 Iteration 32 RMS(Cart)= 0.00006937 RMS(Int)= 0.01384855 Iteration 33 RMS(Cart)= 0.00006582 RMS(Int)= 0.01351614 Iteration 34 RMS(Cart)= 0.00006341 RMS(Int)= 0.01332209 Iteration 35 RMS(Cart)= 0.00006082 RMS(Int)= 0.01313862 Iteration 36 RMS(Cart)= 0.00005796 RMS(Int)= 0.01292925 Iteration 37 RMS(Cart)= 0.00005647 RMS(Int)= 0.01276985 Iteration 38 RMS(Cart)= 0.00005814 RMS(Int)= 0.01261854 Iteration 39 RMS(Cart)= 0.00061329 RMS(Int)= 0.00982844 Iteration 40 RMS(Cart)= 0.00116830 RMS(Int)= 0.00892701 New curvilinear step failed, DQL= 3.14D+00 SP=-4.88D-02. ITry= 1 IFail=1 DXMaxC= 6.81D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 56 Max:0.132162E-01 RMS: 4408.96 Conv:0.112966E-01 New curvilinear step failed, DQL= 3.16D+00 SP=-2.73D-01. ITry= 2 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F SLEqS3 Cycle: 27 Max:0.117815 RMS: 4408.96 Conv:0.112966E-01 Iteration 1 RMS(Cart)= 0.18002669 RMS(Int)= 0.44773641 Iteration 2 RMS(Cart)= 0.00179943 RMS(Int)= 0.09516915 Iteration 3 RMS(Cart)= 0.00889634 RMS(Int)= 0.07291347 Iteration 4 RMS(Cart)= 0.00791714 RMS(Int)= 0.04679841 Iteration 5 RMS(Cart)= 0.00243784 RMS(Int)= 0.03409802 Iteration 6 RMS(Cart)= 0.00067921 RMS(Int)= 0.03014837 Iteration 7 RMS(Cart)= 0.00037974 RMS(Int)= 0.02806269 Iteration 8 RMS(Cart)= 0.00030416 RMS(Int)= 0.02642211 Iteration 9 RMS(Cart)= 0.00025804 RMS(Int)= 0.02504596 Iteration 10 RMS(Cart)= 0.00022551 RMS(Int)= 0.02385393 Iteration 11 RMS(Cart)= 0.00020052 RMS(Int)= 0.02280193 Iteration 12 RMS(Cart)= 0.00018037 RMS(Int)= 0.02186167 Iteration 13 RMS(Cart)= 0.00016364 RMS(Int)= 0.02101331 Iteration 14 RMS(Cart)= 0.00014946 RMS(Int)= 0.02024204 Iteration 15 RMS(Cart)= 0.00013726 RMS(Int)= 0.01953636 Iteration 16 RMS(Cart)= 0.00012662 RMS(Int)= 0.01888703 Iteration 17 RMS(Cart)= 0.00011727 RMS(Int)= 0.01828637 Iteration 18 RMS(Cart)= 0.00010897 RMS(Int)= 0.01772788 Iteration 19 RMS(Cart)= 0.00010155 RMS(Int)= 0.01720576 Iteration 20 RMS(Cart)= 0.00009487 RMS(Int)= 0.01671466 Iteration 21 RMS(Cart)= 0.00008883 RMS(Int)= 0.01624922 Iteration 22 RMS(Cart)= 0.00008331 RMS(Int)= 0.01580337 Iteration 23 RMS(Cart)= 0.00007823 RMS(Int)= 0.01536891 Iteration 24 RMS(Cart)= 0.00007352 RMS(Int)= 0.01493138 Iteration 25 RMS(Cart)= 0.00006941 RMS(Int)= 0.01445214 Iteration 26 RMS(Cart)= 0.00006435 RMS(Int)= 0.01395584 Iteration 27 RMS(Cart)= 0.00006016 RMS(Int)= 0.01362685 Iteration 28 RMS(Cart)= 0.00005714 RMS(Int)= 0.01332700 Iteration 29 RMS(Cart)= 0.00005494 RMS(Int)= 0.01306383 Iteration 30 RMS(Cart)= 0.00005462 RMS(Int)= 0.01281897 Iteration 31 RMS(Cart)= 0.00014633 RMS(Int)= 0.01204714 Iteration 32 RMS(Cart)= 0.00134271 RMS(Int)= 0.00702820 Iteration 33 RMS(Cart)= 0.00000056 RMS(Int)= 0.00702812 ITry= 3 IFail=0 DXMaxC= 5.94D-01 DCOld= 1.00D+10 DXMaxT= 3.00D+00 DXLimC= 3.00D+00 Rises=F Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.21580 -0.00809 -0.03283 -0.02721 -0.05294 4.16286 R2 4.18318 -0.00142 -0.01446 -0.00860 -0.02014 4.16305 R3 4.91767 0.00394 0.05299 0.03295 0.08044 4.99811 R4 4.95223 -0.00174 -0.02929 -0.02306 -0.04606 4.90616 R5 4.29179 -0.01592 -0.07532 -0.06136 -0.11961 4.17218 R6 4.29304 -0.01003 -0.05574 -0.04232 -0.08916 4.20388 R7 4.75589 0.00201 0.03422 0.00151 0.03451 4.79040 R8 4.92652 0.00212 0.01662 0.01131 0.02407 4.95060 A1 1.76445 0.00374 0.03058 0.02001 0.06496 1.82940 A2 1.59666 -0.00797 -0.01915 -0.02794 -0.03382 1.56284 A3 1.54034 0.00182 0.01406 0.02737 0.04411 1.58446 A4 1.39043 0.00290 -0.01474 0.00832 -0.00631 1.38412 A5 1.67141 0.00311 0.01335 0.02629 0.02833 1.69975 A6 1.71899 -0.00611 0.02000 -0.02160 0.01075 1.72973 A7 3.14159 0.00690 0.00031 0.02713 -0.00001 3.14158 A8 1.47018 0.00019 -0.01310 -0.01332 -0.02833 1.44185 A9 1.42261 0.00264 -0.02024 0.00795 -0.01075 1.41186 A10 1.75939 -0.00350 0.00565 -0.01414 -0.00849 1.75090 A11 1.71012 -0.00199 0.02898 -0.00241 0.02462 1.73473 A12 2.98709 -0.00506 -0.03389 -0.01963 -0.04012 2.94696 A13 2.93077 0.00473 -0.00067 0.03568 0.03781 2.96858 A14 3.39040 -0.00300 0.03335 0.00469 0.03908 3.42948 A15 3.04141 -0.00233 -0.08242 -0.15484 -0.20566 2.83575 A16 3.03711 -0.00350 -0.07520 -0.17173 -0.20860 2.82851 A17 3.11305 -0.00119 0.00486 0.00284 0.01129 3.12434 D1 3.06738 -0.00334 -0.07477 -0.14917 -0.19117 2.87621 D2 0.02597 -0.00101 0.00765 0.00567 0.01449 0.04046 D3 3.01224 -0.00254 -0.08267 -0.17716 -0.22277 2.78947 D4 -0.02487 0.00096 -0.00747 -0.00544 -0.01418 -0.03904 D5 3.11563 -0.00500 -0.00724 -0.02920 -0.01396 3.10167 D6 -0.02597 0.00103 -0.00745 -0.00550 -0.01394 -0.03991 D7 2.12344 0.00000 -3.46198 -0.01498 2.81080 -1.34895 D8 -3.08747 -0.00128 0.00295 -0.00298 0.00367 -3.08380 D9 0.02558 -0.00097 0.00777 0.00576 0.01496 0.04054 Item Value Threshold Converged? Maximum Force 0.015923 0.000450 NO RMS Force 0.004790 0.000300 NO Maximum Displacement 0.593790 0.001800 NO RMS Displacement 0.176770 0.001200 NO Predicted change in Energy=-5.898690D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.170869 1.445992 0.005919 2 13 0 2.796162 1.739514 0.001375 3 17 0 -2.612746 3.063033 0.404547 4 17 0 -2.411728 -0.307586 -0.482333 5 17 0 4.377050 3.262001 -0.238027 6 17 0 4.129995 -0.031199 0.186583 7 35 0 0.762151 3.242349 -0.172855 8 35 0 0.920318 -0.067027 0.285408 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.977877 0.000000 3 Cl 2.202892 5.583057 0.000000 4 Cl 2.202989 5.616646 3.491137 0.000000 5 Cl 5.842670 2.207824 7.022089 7.673926 0.000000 6 Cl 5.505805 2.224599 7.422017 6.581640 3.329639 7 Br 2.644886 2.534969 3.428626 4.771931 3.615540 8 Br 2.596229 2.619743 4.721653 3.427803 4.827567 6 7 8 6 Cl 0.000000 7 Br 4.710381 0.000000 8 Br 3.211398 3.344696 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 2.022471 -0.003433 -0.006331 2 13 0 -1.954572 -0.084899 -0.005790 3 17 0 3.376243 -1.680429 0.449431 4 17 0 3.354847 1.663635 -0.552972 5 17 0 -3.614580 -1.528214 -0.194742 6 17 0 -3.191919 1.759764 0.116796 7 35 0 -0.003745 -1.699198 -0.125725 8 35 0 0.015153 1.627697 0.218379 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5965307 0.2741634 0.1913268 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1690.5339434811 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.45D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999989 0.000345 0.000263 0.004739 Ang= 0.55 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.13365990 A.U. after 14 cycles NFock= 14 Conv=0.40D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.001622503 -0.005643751 0.000932660 2 13 0.009580212 -0.007084335 0.000153923 3 17 0.002487425 -0.001427480 0.003191521 4 17 -0.000349377 0.001996106 -0.003731830 5 17 -0.007293627 0.004979272 -0.000066129 6 17 0.002038988 -0.000244161 -0.000067453 7 35 0.002784361 0.005341019 -0.004669047 8 35 -0.010870485 0.002083331 0.004256354 ------------------------------------------------------------------- Cartesian Forces: Max 0.010870485 RMS 0.004540144 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.007981146 RMS 0.003584464 Search for a local minimum. Step number 10 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 9 10 DE= -7.23D-03 DEPred=-5.90D-03 R= 1.23D+00 TightC=F SS= 1.41D+00 RLast= 2.85D+00 DXNew= 5.0454D+00 8.5508D+00 Trust test= 1.23D+00 RLast= 2.85D+00 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- -11.59153 0.00000 0.00089 0.01449 0.02581 Eigenvalues --- 0.03789 0.07733 0.10765 0.12956 0.14027 Eigenvalues --- 0.17178 0.18994 0.23075 0.23353 0.23480 Eigenvalues --- 0.30738 0.62300 0.83456 RFO step: Lambda=-1.15915351D+01 EMin=-1.15915311D+01 I= 1 Eig= -1.16D+01 Dot1= -4.10D-03 I= 1 Stepn= -6.00D-01 RXN= 6.00D-01 EDone=F Mixed 1 eigenvectors in step. Raw Step.Grad= 4.10D-03. RFO eigenvector is Hessian eigenvector with negative curvature. Taking step of 6.00D-01 in eigenvector direction(s). Step.Grad= 2.47D-03. Skip linear search -- no minimum in search direction. SLEqS3 Cycle: 241 Max:0.138837 RMS:0.517585E-01 Conv:0.278455E-06 SLEqS3 Cycle: 241 Max:0.138837 RMS:0.517585E-01 Conv:0.278455E-06 Iteration 1 RMS(Cart)= 0.12382888 RMS(Int)= 0.06480789 SLEqS3 Cycle: 241 Max:0.799033E-01 RMS:0.287565E-01 Conv:0.215381E-04 SLEqS3 Cycle: 241 Max:0.106173 RMS:0.374755E-01 Conv:0.215381E-04 Iteration 2 RMS(Cart)= 0.05173726 RMS(Int)= 0.05188081 Iteration 3 RMS(Cart)= 0.04348487 RMS(Int)= 0.01469925 Iteration 4 RMS(Cart)= 0.01356789 RMS(Int)= 0.00178250 Iteration 5 RMS(Cart)= 0.00001890 RMS(Int)= 0.00178160 Iteration 6 RMS(Cart)= 0.00000002 RMS(Int)= 0.00178160 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.16286 -0.00210 0.00000 0.14921 0.14921 4.31208 R2 4.16305 -0.00056 0.00000 0.02137 0.02137 4.18442 R3 4.99811 0.00266 0.00000 -0.04144 -0.04134 4.95677 R4 4.90616 -0.00329 0.00000 -0.04720 -0.04714 4.85902 R5 4.17218 -0.00178 0.00000 0.35328 0.35328 4.52547 R6 4.20388 0.00141 0.00000 0.28527 0.28527 4.48915 R7 4.79040 -0.00144 0.00000 -0.07777 -0.07782 4.71258 R8 4.95060 0.00487 0.00000 0.07675 0.07664 5.02724 A1 1.82940 0.00077 0.00000 -0.08613 -0.07889 1.75052 A2 1.56284 -0.00291 0.00000 0.12836 0.13178 1.69462 A3 1.58446 0.00227 0.00000 0.01161 0.01500 1.59945 A4 1.38412 0.00390 0.00000 0.01060 0.01058 1.39470 A5 1.69975 -0.00076 0.00000 -0.04989 -0.04978 1.64997 A6 1.72973 -0.00367 0.00000 -0.00348 -0.00357 1.72617 A7 3.14158 -0.00210 0.00000 -0.04582 -0.04607 3.09551 A8 1.44185 0.00111 0.00000 0.05737 0.05745 1.49930 A9 1.41186 0.00329 0.00000 -0.00478 -0.00516 1.40670 A10 1.75090 -0.00357 0.00000 0.01530 0.01558 1.76648 A11 1.73473 -0.00359 0.00000 -0.02071 -0.02061 1.71412 A12 2.94696 0.00098 0.00000 0.13896 0.14236 3.08933 A13 2.96858 0.00617 0.00000 0.02220 0.02558 2.99416 A14 3.42948 -0.00443 0.00000 -0.05337 -0.05334 3.37614 A15 2.83575 -0.00736 0.00000 -0.11850 -0.11713 2.71862 A16 2.82851 -0.00798 0.00000 -0.12274 -0.12149 2.70702 A17 3.12434 -0.00059 0.00000 -0.01232 -0.01123 3.11311 D1 2.87621 -0.00778 0.00000 -0.12277 -0.12173 2.75448 D2 0.04046 -0.00042 0.00000 -0.00428 -0.00460 0.03586 D3 2.78947 -0.00753 0.00000 -0.11713 -0.11577 2.67370 D4 -0.03904 0.00045 0.00000 0.00561 0.00572 -0.03332 D5 3.10167 -0.00162 0.00000 -0.04054 -0.04051 3.06117 D6 -0.03991 0.00047 0.00000 0.00511 0.00531 -0.03459 D7 -1.34895 0.00000 0.00000 0.00000 -0.00001 -1.34896 D8 -3.08380 -0.00044 0.00000 -0.00615 -0.00506 -3.08886 D9 0.04054 -0.00043 0.00000 -0.00539 -0.00557 0.03497 Item Value Threshold Converged? Maximum Force 0.007981 0.000450 NO RMS Force 0.003584 0.000300 NO Maximum Displacement 0.364528 0.001800 NO RMS Displacement 0.158292 0.001200 NO Predicted change in Energy=-2.090854D+00 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.172846 1.482311 0.000718 2 13 0 2.774876 1.722679 0.023755 3 17 0 -2.788648 2.979447 0.596212 4 17 0 -2.430899 -0.209881 -0.675233 5 17 0 4.498568 3.328968 -0.404803 6 17 0 4.278861 -0.091863 0.321652 7 35 0 0.788688 3.205505 -0.250599 8 35 0 0.841734 -0.070087 0.378915 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.955100 0.000000 3 Cl 2.281852 5.732362 0.000000 4 Cl 2.214300 5.596738 3.452010 0.000000 5 Cl 5.978254 2.394773 7.363947 7.785506 0.000000 6 Cl 5.683496 2.375558 7.710903 6.784437 3.504011 7 Br 2.623008 2.493789 3.683141 4.712846 3.715135 8 Br 2.571284 2.660299 4.746215 3.441061 5.053734 6 7 8 6 Cl 0.000000 7 Br 4.835433 0.000000 8 Br 3.437673 3.335957 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 2.017177 -0.036692 -0.022028 2 13 0 -1.937358 -0.080493 0.028422 3 17 0 3.561452 -1.570780 0.662545 4 17 0 3.352307 1.545252 -0.808162 5 17 0 -3.740207 -1.623921 -0.291742 6 17 0 -3.348877 1.821117 0.214882 7 35 0 -0.027845 -1.673702 -0.157139 8 35 0 0.083356 1.633846 0.262824 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5875590 0.2552762 0.1844785 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1657.6182471268 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.46D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999969 0.007367 -0.002758 -0.001011 Ang= 0.91 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.12243166 A.U. after 14 cycles NFock= 14 Conv=0.42D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.016705105 0.000764094 0.004870055 2 13 0.049040596 -0.010583177 -0.002441668 3 17 0.020527324 -0.009410322 -0.000827463 4 17 0.003517443 0.003281332 -0.004894851 5 17 -0.030445333 -0.018595087 0.005980378 6 17 -0.020876721 0.021808088 -0.002731895 7 35 -0.004039500 0.011553021 -0.005419046 8 35 -0.001018703 0.001182051 0.005464489 ------------------------------------------------------------------- Cartesian Forces: Max 0.049040596 RMS 0.015576186 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.035455669 RMS 0.010671154 Search for a local minimum. Step number 11 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 10 ITU= 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.88741. Iteration 1 RMS(Cart)= 0.04006386 RMS(Int)= 0.06911085 Iteration 2 RMS(Cart)= 0.05874587 RMS(Int)= 0.03257597 Iteration 3 RMS(Cart)= 0.04342979 RMS(Int)= 0.00108074 Iteration 4 RMS(Cart)= 0.00059044 RMS(Int)= 0.00020132 Iteration 5 RMS(Cart)= 0.00000151 RMS(Int)= 0.00017767 Iteration 6 RMS(Cart)= 0.00000000 RMS(Int)= 0.00017767 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.31208 -0.02093 -0.13241 0.00000 -0.13241 4.17966 R2 4.18442 -0.00301 -0.01897 0.00000 -0.01897 4.16545 R3 4.95677 0.00017 0.03669 0.00000 0.03668 4.99345 R4 4.85902 -0.00147 0.04183 0.00000 0.04183 4.90085 R5 4.52547 -0.03546 -0.31351 0.00000 -0.31351 4.21196 R6 4.48915 -0.03022 -0.25315 0.00000 -0.25315 4.23600 R7 4.71258 0.00336 0.06906 0.00000 0.06906 4.78164 R8 5.02724 -0.00160 -0.06801 0.00000 -0.06800 4.95923 A1 1.75052 0.01137 0.07000 0.00000 0.06928 1.81980 A2 1.69462 -0.01321 -0.11694 0.00000 -0.11729 1.57733 A3 1.59945 0.00127 -0.01331 0.00000 -0.01365 1.58580 A4 1.39470 0.00820 -0.00939 0.00000 -0.00939 1.38531 A5 1.64997 0.00617 0.04417 0.00000 0.04416 1.69413 A6 1.72617 -0.00802 0.00316 0.00000 0.00318 1.72934 A7 3.09551 -0.00074 0.04088 0.00000 0.04091 3.13642 A8 1.49930 -0.00593 -0.05098 0.00000 -0.05099 1.44831 A9 1.40670 0.00783 0.00458 0.00000 0.00461 1.41131 A10 1.76648 -0.00901 -0.01382 0.00000 -0.01385 1.75263 A11 1.71412 -0.00699 0.01829 0.00000 0.01828 1.73241 A12 3.08933 -0.00501 -0.12633 0.00000 -0.12668 2.96264 A13 2.99416 0.00947 -0.02270 0.00000 -0.02305 2.97111 A14 3.37614 -0.00184 0.04734 0.00000 0.04734 3.42347 A15 2.71862 -0.00918 0.10394 0.00000 0.10383 2.82245 A16 2.70702 -0.01100 0.10781 0.00000 0.10773 2.81475 A17 3.11311 0.00146 0.00996 0.00000 0.00985 3.12297 D1 2.75448 -0.00954 0.10802 0.00000 0.10794 2.86243 D2 0.03586 -0.00036 0.00408 0.00000 0.00411 0.03998 D3 2.67370 -0.01072 0.10273 0.00000 0.10264 2.77634 D4 -0.03332 0.00028 -0.00508 0.00000 -0.00509 -0.03841 D5 3.06117 -0.00033 0.03595 0.00000 0.03594 3.09711 D6 -0.03459 0.00034 -0.00471 0.00000 -0.00474 -0.03933 D7 -1.34896 0.00084 0.00001 0.00000 0.00001 -1.34895 D8 -3.08886 -0.00185 0.00449 0.00000 0.00438 -3.08448 D9 0.03497 -0.00031 0.00494 0.00000 0.00496 0.03993 Item Value Threshold Converged? Maximum Force 0.035456 0.000450 NO RMS Force 0.010671 0.000300 NO Maximum Displacement 0.331314 0.001800 NO RMS Displacement 0.140678 0.001200 NO Predicted change in Energy=-1.309073D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.170928 1.449876 0.006355 2 13 0 2.793972 1.737414 0.002666 3 17 0 -2.632803 3.056040 0.424857 4 17 0 -2.414597 -0.298196 -0.499910 5 17 0 4.390762 3.270139 -0.259800 6 17 0 4.146786 -0.038730 0.202559 7 35 0 0.765212 3.237993 -0.184377 8 35 0 0.911930 -0.067459 0.298266 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.975314 0.000000 3 Cl 2.211783 5.600616 0.000000 4 Cl 2.204262 5.614755 3.486216 0.000000 5 Cl 5.858037 2.228873 7.060103 7.687885 0.000000 6 Cl 5.525625 2.241595 7.455860 6.603979 3.349912 7 Br 2.642419 2.530334 3.456990 4.766066 3.626477 8 Br 2.593418 2.624314 4.726246 3.428718 4.853171 6 7 8 6 Cl 0.000000 7 Br 4.724582 0.000000 8 Br 3.236399 3.343723 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 2.021762 -0.006566 -0.007820 2 13 0 -1.952781 -0.084694 -0.002360 3 17 0 3.397643 -1.670155 0.473225 4 17 0 3.355005 1.652663 -0.580703 5 17 0 -3.628496 -1.540141 -0.206138 6 17 0 -3.209846 1.766669 0.128006 7 35 0 -0.006174 -1.696204 -0.130208 8 35 0 0.022175 1.628569 0.224143 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5954824 0.2719778 0.1904990 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1686.6056320405 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.45D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Lowest energy guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000597 -0.000269 -0.000187 Ang= 0.08 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999974 -0.006777 0.002489 0.000827 Ang= -0.83 deg. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.13388564 A.U. after 11 cycles NFock= 11 Conv=0.20D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000601640 -0.004531814 0.001327969 2 13 0.015490765 -0.007262640 -0.000150873 3 17 0.004841307 -0.002667217 0.002812451 4 17 0.000088608 0.002113068 -0.003881189 5 17 -0.010967945 0.001172509 0.000566261 6 17 -0.001255549 0.003164852 -0.000320738 7 35 0.001891618 0.005996564 -0.004736103 8 35 -0.009487165 0.002014680 0.004382222 ------------------------------------------------------------------- Cartesian Forces: Max 0.015490765 RMS 0.005331970 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.008321397 RMS 0.004023781 Search for a local minimum. Step number 12 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 11 10 12 ITU= 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00001 0.00071 0.01449 0.02576 0.03788 Eigenvalues --- 0.07677 0.08944 0.12009 0.12959 0.15645 Eigenvalues --- 0.18872 0.19717 0.23171 0.23425 0.23489 Eigenvalues --- 0.30909 0.62282 0.83357 RFO step: Lambda=-1.64139338D-02 EMin= 1.14850298D-05 Quartic linear search produced a step of -0.00823. Iteration 1 RMS(Cart)= 0.18491954 RMS(Int)= 0.08681695 Iteration 2 RMS(Cart)= 0.16115752 RMS(Int)= 0.02414340 Iteration 3 RMS(Cart)= 0.03309407 RMS(Int)= 0.01671602 Iteration 4 RMS(Cart)= 0.00098854 RMS(Int)= 0.01670390 Iteration 5 RMS(Cart)= 0.00002865 RMS(Int)= 0.01670389 Iteration 6 RMS(Cart)= 0.00000138 RMS(Int)= 0.01670389 Iteration 7 RMS(Cart)= 0.00000008 RMS(Int)= 0.01670389 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.17966 -0.00461 -0.00014 -0.01066 -0.01080 4.16887 R2 4.16545 -0.00083 -0.00002 -0.02756 -0.02758 4.13787 R3 4.99345 0.00224 0.00004 0.12990 0.13142 5.12486 R4 4.90085 -0.00308 0.00004 -0.14043 -0.13917 4.76168 R5 4.21196 -0.00712 -0.00033 -0.00679 -0.00711 4.20484 R6 4.23600 -0.00330 -0.00026 0.01511 0.01485 4.25085 R7 4.78164 -0.00095 0.00007 0.01631 0.01533 4.79696 R8 4.95923 0.00394 -0.00007 0.11615 0.11444 5.07367 A1 1.81980 0.00212 0.00008 0.07966 0.14844 1.96824 A2 1.57733 -0.00435 -0.00012 0.03496 0.06515 1.64249 A3 1.58580 0.00215 -0.00001 0.11308 0.14506 1.73086 A4 1.38531 0.00445 -0.00001 0.00723 0.00335 1.38866 A5 1.69413 0.00022 0.00005 0.02273 0.02236 1.71649 A6 1.72934 -0.00425 0.00000 0.00970 0.01147 1.74082 A7 3.13642 -0.00191 0.00004 -0.04230 -0.04268 3.09374 A8 1.44831 0.00010 -0.00005 -0.01575 -0.01482 1.43349 A9 1.41131 0.00390 0.00000 -0.01738 -0.01928 1.39203 A10 1.75263 -0.00426 -0.00001 -0.01602 -0.01307 1.73956 A11 1.73241 -0.00406 0.00002 0.02543 0.02823 1.76063 A12 2.96264 0.00011 -0.00013 0.04219 0.06850 3.03114 A13 2.97111 0.00660 -0.00002 0.12030 0.14841 3.11952 A14 3.42347 -0.00403 0.00005 0.03243 0.03384 3.45731 A15 2.82245 -0.00760 0.00011 -0.44393 -0.42431 2.39814 A16 2.81475 -0.00832 0.00011 -0.45013 -0.43387 2.38088 A17 3.12297 -0.00030 0.00001 0.00457 0.00364 3.12661 D1 2.86243 -0.00801 0.00011 -0.43383 -0.41463 2.44780 D2 0.03998 -0.00041 0.00000 0.01011 0.00968 0.04966 D3 2.77634 -0.00789 0.00011 -0.45934 -0.44259 2.33375 D4 -0.03841 0.00043 -0.00001 -0.00921 -0.00872 -0.04713 D5 3.09711 -0.00145 0.00004 -0.05019 -0.04986 3.04725 D6 -0.03933 0.00045 0.00000 -0.00806 -0.00724 -0.04657 D7 -1.34895 0.00016 0.00000 0.00801 0.00811 -1.34084 D8 -3.08448 -0.00062 0.00001 -0.00592 -0.00681 -3.09129 D9 0.03993 -0.00041 0.00000 0.01065 0.01039 0.05032 Item Value Threshold Converged? Maximum Force 0.008321 0.000450 NO RMS Force 0.004024 0.000300 NO Maximum Displacement 1.174606 0.001800 NO RMS Displacement 0.370348 0.001200 NO Predicted change in Energy=-1.375608D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.209054 1.392742 0.014581 2 13 0 2.787164 1.767989 -0.006196 3 17 0 -2.524080 2.849933 1.021580 4 17 0 -2.323661 -0.111136 -1.121484 5 17 0 4.393511 3.186519 -0.604970 6 17 0 4.088241 0.026534 0.572230 7 35 0 0.748024 3.204595 -0.477120 8 35 0 0.830187 0.029901 0.591996 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 4.013851 0.000000 3 Cl 2.206070 5.516905 0.000000 4 Cl 2.189667 5.558373 3.660713 0.000000 5 Cl 5.915252 2.225108 7.114212 7.500780 0.000000 6 Cl 5.498985 2.249454 7.203908 6.633258 3.385926 7 Br 2.711961 2.538444 3.616428 4.565580 3.647772 8 Br 2.519772 2.684873 4.403207 3.592028 4.908588 6 7 8 6 Cl 0.000000 7 Br 4.728452 0.000000 8 Br 3.258116 3.350887 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 2.054077 0.027535 -0.012795 2 13 0 -1.958276 -0.080692 0.004780 3 17 0 3.275585 -1.366217 1.183916 4 17 0 3.259149 1.288733 -1.336360 5 17 0 -3.658606 -1.456573 -0.403800 6 17 0 -3.137650 1.805012 0.341295 7 35 0 -0.021638 -1.699651 -0.263736 8 35 0 0.113079 1.587788 0.371116 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5767842 0.2639267 0.2008646 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1680.8390528822 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.49D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999667 0.024526 -0.001509 0.007898 Ang= 2.96 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.15364647 A.U. after 14 cycles NFock= 14 Conv=0.34D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.006102275 0.001880415 0.002856398 2 13 0.011795543 -0.006620467 -0.000285105 3 17 0.006036235 -0.006606114 0.000809604 4 17 0.001259574 0.004622427 -0.003790918 5 17 -0.010303529 0.000561538 0.000710279 6 17 -0.004092442 0.006153364 -0.001061608 7 35 -0.000140772 0.001984856 -0.006067914 8 35 -0.010656885 -0.001976020 0.006829263 ------------------------------------------------------------------- Cartesian Forces: Max 0.011795543 RMS 0.005468278 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.011411035 RMS 0.005823958 Search for a local minimum. Step number 13 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 12 13 DE= -1.98D-02 DEPred=-1.38D-02 R= 1.44D+00 TightC=F SS= 1.41D+00 RLast= 9.32D-01 DXNew= 5.0454D+00 2.7972D+00 Trust test= 1.44D+00 RLast= 9.32D-01 DXMaxT set to 3.00D+00 ITU= 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.01092 0.00091 0.01441 0.02475 0.03442 Eigenvalues --- 0.06543 0.07730 0.11391 0.12810 0.14560 Eigenvalues --- 0.15559 0.18634 0.22874 0.23396 0.23447 Eigenvalues --- 0.29493 0.60656 0.82745 RFO step: Lambda=-3.30048277D-02 EMin=-1.09175517D-02 Skip linear search -- no minimum in search direction. Iteration 1 RMS(Cart)= 0.26721544 RMS(Int)= 0.07744929 Iteration 2 RMS(Cart)= 0.15473055 RMS(Int)= 0.01786317 Iteration 3 RMS(Cart)= 0.01185642 RMS(Int)= 0.01458243 Iteration 4 RMS(Cart)= 0.00040233 RMS(Int)= 0.01458090 Iteration 5 RMS(Cart)= 0.00002576 RMS(Int)= 0.01458089 Iteration 6 RMS(Cart)= 0.00000172 RMS(Int)= 0.01458089 Iteration 7 RMS(Cart)= 0.00000011 RMS(Int)= 0.01458089 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.16887 -0.00759 0.00000 -0.06538 -0.06538 4.10348 R2 4.13787 -0.00185 0.00000 -0.04318 -0.04318 4.09469 R3 5.12486 -0.00381 0.00000 -0.04022 -0.03647 5.08839 R4 4.76168 -0.00457 0.00000 -0.17712 -0.17369 4.58799 R5 4.20484 -0.00727 0.00000 -0.03362 -0.03362 4.17123 R6 4.25085 -0.00740 0.00000 -0.05992 -0.05992 4.19093 R7 4.79696 -0.00375 0.00000 -0.08000 -0.08316 4.71381 R8 5.07367 0.00456 0.00000 0.10562 0.10177 5.17545 A1 1.96824 0.00342 0.00000 0.12925 0.18854 2.15678 A2 1.64249 -0.00140 0.00000 0.11316 0.13386 1.77635 A3 1.73086 0.00266 0.00000 0.16434 0.19061 1.92147 A4 1.38866 0.00875 0.00000 0.11453 0.10941 1.49807 A5 1.71649 0.00232 0.00000 0.05500 0.05759 1.77408 A6 1.74082 -0.00747 0.00000 -0.08727 -0.08542 1.65540 A7 3.09374 -0.00135 0.00000 -0.04700 -0.04809 3.04566 A8 1.43349 -0.00194 0.00000 -0.03678 -0.02978 1.40371 A9 1.39203 0.00717 0.00000 0.07365 0.06670 1.45873 A10 1.73956 -0.00693 0.00000 -0.08659 -0.08077 1.65879 A11 1.76063 -0.00897 0.00000 -0.10147 -0.09510 1.66553 A12 3.03114 0.00736 0.00000 0.22769 0.24327 3.27442 A13 3.11952 0.01141 0.00000 0.27886 0.30002 3.41954 A14 3.45731 -0.00515 0.00000 -0.03227 -0.02783 3.42948 A15 2.39814 -0.00881 0.00000 -0.40513 -0.38149 2.01665 A16 2.38088 -0.00989 0.00000 -0.43040 -0.41424 1.96664 A17 3.12661 0.00180 0.00000 0.09870 0.09867 3.22528 D1 2.44780 -0.00901 0.00000 -0.40528 -0.38300 2.06480 D2 0.04966 -0.00020 0.00000 -0.00015 -0.00150 0.04816 D3 2.33375 -0.00960 0.00000 -0.42826 -0.41100 1.92275 D4 -0.04713 0.00030 0.00000 0.00214 0.00324 -0.04388 D5 3.04725 -0.00101 0.00000 -0.04281 -0.04087 3.00638 D6 -0.04657 0.00026 0.00000 0.00248 0.00373 -0.04284 D7 -1.34084 0.00101 0.00000 0.10329 0.10319 -1.23765 D8 -3.09129 -0.00226 0.00000 -0.11277 -0.11217 3.07972 D9 0.05032 -0.00030 0.00000 -0.00144 -0.00277 0.04755 Item Value Threshold Converged? Maximum Force 0.011411 0.000450 NO RMS Force 0.005824 0.000300 NO Maximum Displacement 0.975523 0.001800 NO RMS Displacement 0.413374 0.001200 NO Predicted change in Energy=-3.508883D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.138507 1.349478 0.024943 2 13 0 2.669575 1.732823 -0.043491 3 17 0 -2.222804 2.488139 1.522619 4 17 0 -2.094338 0.340976 -1.637709 5 17 0 4.189637 3.047439 -0.956426 6 17 0 3.936194 0.242910 1.002560 7 35 0 0.727852 3.121170 -0.767670 8 35 0 0.722726 0.024142 0.845792 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.827940 0.000000 3 Cl 2.171470 5.192165 0.000000 4 Cl 2.166819 5.212834 3.822890 0.000000 5 Cl 5.677611 2.207318 6.897672 6.875858 0.000000 6 Cl 5.285150 2.217743 6.576076 6.583916 3.430341 7 Br 2.692661 2.494440 3.788473 4.056008 3.467711 8 Br 2.427858 2.738729 3.899426 3.768820 4.940424 6 7 8 6 Cl 0.000000 7 Br 4.659566 0.000000 8 Br 3.224719 3.492115 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.974029 0.035099 -0.026777 2 13 0 -1.853042 -0.044535 -0.009028 3 17 0 2.982945 -0.376434 1.851523 4 17 0 2.986177 0.099864 -1.941578 5 17 0 -3.484251 -1.509876 -0.262374 6 17 0 -2.983828 1.850281 0.213192 7 35 0 -0.037225 -1.754449 0.026100 8 35 0 0.234638 1.726948 0.054828 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5381501 0.2781247 0.2251953 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1703.5055467232 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.35D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.988716 0.149565 -0.001055 0.008390 Ang= 17.23 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.17390529 A.U. after 14 cycles NFock= 14 Conv=0.26D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.006894996 0.005718300 -0.000031183 2 13 0.010105737 -0.002567367 0.002066729 3 17 -0.000995316 -0.001151427 0.000388975 4 17 -0.000842256 0.001689453 -0.002120216 5 17 -0.002673192 -0.000430715 -0.001109006 6 17 0.001505406 0.003493476 -0.000320116 7 35 -0.007480640 -0.004365674 0.000216143 8 35 -0.006514734 -0.002386046 0.000908673 ------------------------------------------------------------------- Cartesian Forces: Max 0.010105737 RMS 0.003823813 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.007569431 RMS 0.003106320 Search for a local minimum. Step number 14 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 13 14 DE= -2.03D-02 DEPred=-3.51D-02 R= 5.77D-01 TightC=F SS= 1.41D+00 RLast= 1.01D+00 DXNew= 5.0454D+00 3.0188D+00 Trust test= 5.77D-01 RLast= 1.01D+00 DXMaxT set to 3.00D+00 ITU= 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00410 0.01323 0.01888 0.02685 0.03527 Eigenvalues --- 0.06244 0.07727 0.11507 0.13078 0.15242 Eigenvalues --- 0.16351 0.18887 0.22943 0.23429 0.23456 Eigenvalues --- 0.30257 0.59594 0.73649 RFO step: Lambda=-3.21691449D-03 EMin= 4.10293703D-03 Quartic linear search produced a step of 0.17788. Iteration 1 RMS(Cart)= 0.16021183 RMS(Int)= 0.01486127 Iteration 2 RMS(Cart)= 0.01118178 RMS(Int)= 0.00225554 Iteration 3 RMS(Cart)= 0.00013137 RMS(Int)= 0.00225376 Iteration 4 RMS(Cart)= 0.00000065 RMS(Int)= 0.00225376 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.10348 0.00016 -0.01163 0.00827 -0.00336 4.10013 R2 4.09469 0.00121 -0.00768 0.00642 -0.00126 4.09343 R3 5.08839 -0.00757 -0.00649 -0.10019 -0.10653 4.98186 R4 4.58799 0.00109 -0.03090 0.01712 -0.01348 4.57451 R5 4.17123 -0.00164 -0.00598 0.02761 0.02163 4.19286 R6 4.19093 -0.00164 -0.01066 0.00539 -0.00527 4.18566 R7 4.71381 0.00231 -0.01479 -0.00227 -0.01732 4.69649 R8 5.17545 0.00587 0.01810 0.04426 0.06219 5.23764 A1 2.15678 -0.00161 0.03354 -0.02770 0.01292 2.16970 A2 1.77635 0.00243 0.02381 0.04129 0.06718 1.84353 A3 1.92147 0.00314 0.03390 0.01451 0.05197 1.97344 A4 1.49807 0.00056 0.01946 0.02229 0.04071 1.53877 A5 1.77408 -0.00358 0.01024 0.00789 0.02171 1.79579 A6 1.65540 0.00042 -0.01519 -0.01907 -0.03737 1.61803 A7 3.04566 -0.00569 -0.00855 -0.02204 -0.03065 3.01501 A8 1.40371 0.00620 -0.00530 0.02537 0.02394 1.42765 A9 1.45873 -0.00227 0.01186 -0.00337 0.00609 1.46482 A10 1.65879 0.00233 -0.01437 0.01016 -0.00294 1.65585 A11 1.66553 -0.00053 -0.01692 -0.02772 -0.04271 1.62283 A12 3.27442 0.00299 0.04327 0.06358 0.10788 3.38230 A13 3.41954 0.00370 0.05337 0.03679 0.09268 3.51221 A14 3.42948 -0.00317 -0.00495 -0.01118 -0.01566 3.41382 A15 2.01665 -0.00026 -0.06786 0.07300 0.00821 2.02486 A16 1.96664 -0.00399 -0.07368 -0.12122 -0.19306 1.77357 A17 3.22528 0.00221 0.01755 0.10423 0.12336 3.34863 D1 2.06480 -0.00119 -0.06813 0.05768 -0.00739 2.05741 D2 0.04816 -0.00093 -0.00027 -0.01532 -0.01561 0.03255 D3 1.92275 -0.00311 -0.07311 -0.10671 -0.17830 1.74445 D4 -0.04388 0.00089 0.00058 0.01451 0.01476 -0.02912 D5 3.00638 -0.00457 -0.00727 -0.00256 -0.00583 3.00055 D6 -0.04284 0.00085 0.00066 0.01375 0.01427 -0.02857 D7 -1.23765 0.00108 0.01835 0.15827 0.17567 -1.06198 D8 3.07972 -0.00441 -0.01995 -0.12279 -0.14076 2.93897 D9 0.04755 -0.00104 -0.00049 -0.01654 -0.01650 0.03105 Item Value Threshold Converged? Maximum Force 0.007569 0.000450 NO RMS Force 0.003106 0.000300 NO Maximum Displacement 0.506916 0.001800 NO RMS Displacement 0.159951 0.001200 NO Predicted change in Energy=-3.101425D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.110488 1.329466 0.085618 2 13 0 2.644671 1.661349 -0.082951 3 17 0 -2.224102 2.399079 1.609876 4 17 0 -1.963731 0.609224 -1.770572 5 17 0 4.091588 2.984776 -1.121166 6 17 0 3.952234 0.386958 1.170939 7 35 0 0.698425 3.031541 -0.797998 8 35 0 0.701737 -0.055317 0.896871 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.773564 0.000000 3 Cl 2.169694 5.207193 0.000000 4 Cl 2.166151 5.019203 3.833902 0.000000 5 Cl 5.590884 2.218765 6.905764 6.536962 0.000000 6 Cl 5.262832 2.214957 6.510640 6.610638 3.467250 7 Br 2.636286 2.485275 3.839144 3.728351 3.408839 8 Br 2.420727 2.771640 3.884968 3.829046 4.980535 6 7 8 6 Cl 0.000000 7 Br 4.632257 0.000000 8 Br 3.291876 3.521546 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.940366 0.096771 -0.018173 2 13 0 -1.830240 -0.051272 -0.038183 3 17 0 3.014708 0.063809 1.866575 4 17 0 2.802580 -0.461893 -1.925184 5 17 0 -3.371061 -1.645049 -0.131259 6 17 0 -3.037786 1.790154 0.200596 7 35 0 0.018417 -1.690742 0.228642 8 35 0 0.228008 1.796718 -0.212921 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5285428 0.2855579 0.2293326 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1709.7251983128 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.33D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.997137 0.074822 -0.007801 -0.007601 Ang= 8.67 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.17628339 A.U. after 13 cycles NFock= 13 Conv=0.87D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.004503401 0.006918058 -0.003486661 2 13 0.012224305 0.002514806 0.003523558 3 17 -0.000769428 -0.001406225 0.000562365 4 17 -0.003161663 -0.002459865 -0.000781166 5 17 -0.002260741 -0.004705848 -0.000799845 6 17 -0.000766786 0.003537664 -0.001435080 7 35 -0.005632729 -0.001631015 0.003755803 8 35 -0.004136359 -0.002767576 -0.001338975 ------------------------------------------------------------------- Cartesian Forces: Max 0.012224305 RMS 0.004011064 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.007040697 RMS 0.003309695 Search for a local minimum. Step number 15 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 14 15 DE= -2.38D-03 DEPred=-3.10D-03 R= 7.67D-01 TightC=F SS= 1.41D+00 RLast= 4.32D-01 DXNew= 5.0454D+00 1.2974D+00 Trust test= 7.67D-01 RLast= 4.32D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00788 0.01366 0.02454 0.02877 0.04339 Eigenvalues --- 0.06382 0.07664 0.10748 0.12987 0.15062 Eigenvalues --- 0.16806 0.18450 0.22945 0.23465 0.23481 Eigenvalues --- 0.29948 0.49027 0.66223 RFO step: Lambda=-4.01158672D-03 EMin= 7.87591492D-03 Quartic linear search produced a step of -0.08383. Iteration 1 RMS(Cart)= 0.12845093 RMS(Int)= 0.01034731 Iteration 2 RMS(Cart)= 0.01007477 RMS(Int)= 0.00205699 Iteration 3 RMS(Cart)= 0.00002433 RMS(Int)= 0.00205696 Iteration 4 RMS(Cart)= 0.00000005 RMS(Int)= 0.00205696 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.10013 0.00010 0.00028 -0.01011 -0.00982 4.09030 R2 4.09343 0.00273 0.00011 0.01201 0.01211 4.10554 R3 4.98186 -0.00381 0.00893 -0.12042 -0.11202 4.86983 R4 4.57451 0.00059 0.00113 0.00702 0.00775 4.58226 R5 4.19286 -0.00390 -0.00181 -0.00745 -0.00926 4.18360 R6 4.18566 -0.00330 0.00044 -0.02603 -0.02559 4.16008 R7 4.69649 0.00413 0.00145 0.01054 0.01231 4.70880 R8 5.23764 0.00437 -0.00521 0.07942 0.07476 5.31240 A1 2.16970 -0.00270 -0.00108 0.00374 -0.00562 2.16408 A2 1.84353 0.00402 -0.00563 0.07704 0.06835 1.91188 A3 1.97344 0.00038 -0.00436 0.03760 0.02966 2.00310 A4 1.53877 -0.00238 -0.00341 0.03572 0.03360 1.57237 A5 1.79579 -0.00120 -0.00182 0.01183 0.01101 1.80680 A6 1.61803 0.00131 0.00313 -0.01637 -0.01408 1.60395 A7 3.01501 -0.00691 0.00257 -0.03720 -0.03400 2.98101 A8 1.42765 0.00585 -0.00201 0.03338 0.03248 1.46013 A9 1.46482 -0.00441 -0.00051 -0.00645 -0.00642 1.45839 A10 1.65585 0.00397 0.00025 0.00703 0.00588 1.66173 A11 1.62283 0.00277 0.00358 -0.03757 -0.03490 1.58792 A12 3.38230 0.00164 -0.00904 0.11276 0.10195 3.48425 A13 3.51221 -0.00200 -0.00777 0.07332 0.06326 3.57547 A14 3.41382 0.00011 0.00131 -0.00454 -0.00307 3.41075 A15 2.02486 -0.00235 -0.00069 -0.12601 -0.13015 1.89471 A16 1.77357 0.00547 0.01618 0.08461 0.09825 1.87183 A17 3.34863 0.00216 -0.01034 0.16813 0.15822 3.50685 D1 2.05741 -0.00141 0.00062 -0.10293 -0.10520 1.95221 D2 0.03255 0.00094 0.00131 0.02308 0.02495 0.05750 D3 1.74445 0.00463 0.01495 0.06442 0.07661 1.82107 D4 -0.02912 -0.00084 -0.00124 -0.02019 -0.02164 -0.05076 D5 3.00055 -0.00704 0.00049 -0.05002 -0.04893 2.95161 D6 -0.02857 -0.00082 -0.00120 -0.01992 -0.02133 -0.04991 D7 -1.06198 -0.00058 -0.01473 0.06911 0.05411 -1.00787 D8 2.93897 -0.00271 0.01180 -0.15001 -0.13765 2.80131 D9 0.03105 0.00085 0.00138 0.02077 0.02178 0.05283 Item Value Threshold Converged? Maximum Force 0.007041 0.000450 NO RMS Force 0.003310 0.000300 NO Maximum Displacement 0.332421 0.001800 NO RMS Displacement 0.129695 0.001200 NO Predicted change in Energy=-2.284608D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.076815 1.392299 0.000418 2 13 0 2.658556 1.615571 -0.114904 3 17 0 -2.122262 2.231113 1.699968 4 17 0 -2.060634 0.687470 -1.803837 5 17 0 4.094411 2.903247 -1.201831 6 17 0 3.919907 0.557971 1.346848 7 35 0 0.733821 3.042926 -0.798322 8 35 0 0.643348 -0.083520 0.862276 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.743814 0.000000 3 Cl 2.164495 5.150619 0.000000 4 Cl 2.172561 5.097511 3.829266 0.000000 5 Cl 5.519958 2.213865 6.893419 6.569373 0.000000 6 Cl 5.241775 2.201418 6.279482 6.760950 3.467930 7 Br 2.577005 2.491788 3.880426 3.790542 3.387609 8 Br 2.424830 2.811201 3.702412 3.874803 5.009107 6 7 8 6 Cl 0.000000 7 Br 4.574702 0.000000 8 Br 3.373745 3.541247 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.897872 -0.043536 -0.005950 2 13 0 -1.843778 -0.005349 -0.127355 3 17 0 2.886850 0.355468 1.877599 4 17 0 2.916819 -0.764939 -1.783967 5 17 0 -3.401878 -1.577194 -0.180542 6 17 0 -2.987594 1.841351 0.229887 7 35 0 -0.061905 -1.672400 0.377498 8 35 0 0.326345 1.761138 -0.397430 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5277218 0.2863516 0.2297666 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1709.8383085590 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.33D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998920 0.043802 0.010864 0.011065 Ang= 5.33 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.17825155 A.U. after 11 cycles NFock= 11 Conv=0.71D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.000980382 0.000688669 -0.000871310 2 13 0.008721117 0.003608556 0.008010076 3 17 -0.003188689 0.003136200 0.000748454 4 17 -0.000493508 -0.000241973 0.000186637 5 17 -0.001388208 -0.005936672 -0.003101091 6 17 -0.000892365 0.001591059 -0.000495700 7 35 -0.006659281 -0.000087863 0.002524059 8 35 0.002920552 -0.002757977 -0.007001126 ------------------------------------------------------------------- Cartesian Forces: Max 0.008721117 RMS 0.003778084 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.009744667 RMS 0.003490597 Search for a local minimum. Step number 16 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 15 16 DE= -1.97D-03 DEPred=-2.28D-03 R= 8.61D-01 TightC=F SS= 1.41D+00 RLast= 3.73D-01 DXNew= 5.0454D+00 1.1190D+00 Trust test= 8.61D-01 RLast= 3.73D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01172 0.01436 0.02587 0.03702 0.05105 Eigenvalues --- 0.06455 0.07712 0.08939 0.13983 0.14365 Eigenvalues --- 0.15448 0.18632 0.22991 0.23467 0.23775 Eigenvalues --- 0.28945 0.43988 0.65610 RFO step: Lambda=-3.18945399D-03 EMin= 1.17177116D-02 Quartic linear search produced a step of -0.05338. Iteration 1 RMS(Cart)= 0.07765078 RMS(Int)= 0.00314959 Iteration 2 RMS(Cart)= 0.00322374 RMS(Int)= 0.00021390 Iteration 3 RMS(Cart)= 0.00000299 RMS(Int)= 0.00021389 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00021389 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09030 0.00335 0.00052 0.01234 0.01287 4.10317 R2 4.10554 0.00014 -0.00065 0.01501 0.01437 4.11991 R3 4.86983 -0.00310 0.00598 -0.08242 -0.07643 4.79340 R4 4.58226 0.00209 -0.00041 0.04643 0.04596 4.62823 R5 4.18360 -0.00283 0.00049 -0.01321 -0.01271 4.17088 R6 4.16008 -0.00161 0.00137 -0.01381 -0.01244 4.14763 R7 4.70880 0.00597 -0.00066 0.05959 0.05899 4.76779 R8 5.31240 0.00010 -0.00399 0.04747 0.04347 5.35587 A1 2.16408 -0.00353 0.00030 -0.05997 -0.05912 2.10496 A2 1.91188 -0.00088 -0.00365 0.01155 0.00821 1.92009 A3 2.00310 0.00046 -0.00158 -0.02265 -0.02389 1.97921 A4 1.57237 -0.00318 -0.00179 -0.00906 -0.01115 1.56122 A5 1.80680 0.00231 -0.00059 -0.00611 -0.00657 1.80023 A6 1.60395 -0.00063 0.00075 0.02378 0.02468 1.62862 A7 2.98101 -0.00974 0.00181 -0.02796 -0.02584 2.95517 A8 1.46013 0.00534 -0.00173 0.04021 0.03889 1.49903 A9 1.45839 -0.00408 0.00034 -0.03473 -0.03389 1.42450 A10 1.66173 0.00373 -0.00031 0.03492 0.03463 1.69636 A11 1.58792 0.00366 0.00186 0.00801 0.00964 1.59756 A12 3.48425 -0.00405 -0.00544 0.00249 -0.00294 3.48131 A13 3.57547 -0.00271 -0.00338 -0.03171 -0.03504 3.54043 A14 3.41075 0.00168 0.00016 0.01767 0.01811 3.42886 A15 1.89471 0.00510 0.00695 0.05817 0.06533 1.96004 A16 1.87183 -0.00065 -0.00524 0.03764 0.03256 1.90439 A17 3.50685 0.00023 -0.00845 0.14072 0.13208 3.63893 D1 1.95221 0.00369 0.00562 0.06737 0.07319 2.02540 D2 0.05750 -0.00140 -0.00133 0.00920 0.00786 0.06536 D3 1.82107 0.00054 -0.00409 0.02949 0.02558 1.84665 D4 -0.05076 0.00119 0.00115 -0.00815 -0.00698 -0.05774 D5 2.95161 -0.00741 0.00261 -0.03457 -0.03211 2.91950 D6 -0.04991 0.00117 0.00114 -0.00824 -0.00717 -0.05708 D7 -1.00787 -0.00259 -0.00289 -0.01662 -0.01946 -1.02733 D8 2.80131 -0.00333 0.00735 -0.13761 -0.13043 2.67089 D9 0.05283 -0.00131 -0.00116 0.00713 0.00584 0.05867 Item Value Threshold Converged? Maximum Force 0.009745 0.000450 NO RMS Force 0.003491 0.000300 NO Maximum Displacement 0.210031 0.001800 NO RMS Displacement 0.077612 0.001200 NO Predicted change in Energy=-1.713979D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.079429 1.406822 0.009603 2 13 0 2.708649 1.570448 -0.152484 3 17 0 -2.194994 2.229343 1.680991 4 17 0 -2.111532 0.724775 -1.785582 5 17 0 4.129815 2.855960 -1.247563 6 17 0 3.955115 0.669115 1.413152 7 35 0 0.729623 3.032436 -0.710699 8 35 0 0.653085 -0.141822 0.783198 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.795073 0.000000 3 Cl 2.171305 5.276503 0.000000 4 Cl 2.180164 5.159100 3.779923 0.000000 5 Cl 5.551278 2.207137 6.998020 6.617086 0.000000 6 Cl 5.278333 2.194834 6.350582 6.858513 3.448509 7 Br 2.536558 2.523005 3.862451 3.814818 3.446835 8 Br 2.449153 2.834204 3.813136 3.872044 5.019795 6 7 8 6 Cl 0.000000 7 Br 4.527674 0.000000 8 Br 3.458015 3.509060 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.898431 -0.044509 0.010273 2 13 0 -1.891562 -0.005004 -0.182021 3 17 0 2.958666 0.310581 1.871557 4 17 0 2.965263 -0.738439 -1.759880 5 17 0 -3.426247 -1.588658 -0.272753 6 17 0 -3.042264 1.772760 0.394813 7 35 0 -0.047276 -1.622787 0.407000 8 35 0 0.309236 1.759573 -0.456737 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5364596 0.2779443 0.2274129 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1702.5043001036 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.35D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999986 -0.004187 -0.001366 -0.002971 Ang= -0.61 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.18026510 A.U. after 11 cycles NFock= 11 Conv=0.87D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000686339 -0.002371978 -0.000193572 2 13 0.002565604 0.006208347 0.010365829 3 17 -0.000266924 0.001285079 0.000412026 4 17 0.001216333 0.000310477 0.000802523 5 17 -0.002485248 -0.005964251 -0.005568011 6 17 -0.002193248 -0.000349987 0.000435588 7 35 -0.001195815 0.002235384 0.000720718 8 35 0.003045637 -0.001353071 -0.006975101 ------------------------------------------------------------------- Cartesian Forces: Max 0.010365829 RMS 0.003578888 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.011333566 RMS 0.003281632 Search for a local minimum. Step number 17 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 15 16 17 DE= -2.01D-03 DEPred=-1.71D-03 R= 1.17D+00 TightC=F SS= 1.41D+00 RLast= 2.69D-01 DXNew= 5.0454D+00 8.0783D-01 Trust test= 1.17D+00 RLast= 2.69D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00989 0.01438 0.02652 0.03849 0.05032 Eigenvalues --- 0.06460 0.07925 0.09886 0.13812 0.13987 Eigenvalues --- 0.15754 0.18603 0.22958 0.23479 0.23791 Eigenvalues --- 0.28621 0.44117 0.68729 RFO step: Lambda=-1.77210230D-03 EMin= 9.89245597D-03 Quartic linear search produced a step of 0.40771. Iteration 1 RMS(Cart)= 0.12123183 RMS(Int)= 0.00871281 Iteration 2 RMS(Cart)= 0.00855359 RMS(Int)= 0.00107227 Iteration 3 RMS(Cart)= 0.00002165 RMS(Int)= 0.00107223 Iteration 4 RMS(Cart)= 0.00000003 RMS(Int)= 0.00107223 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.10317 0.00094 0.00525 -0.00174 0.00350 4.10668 R2 4.11991 -0.00134 0.00586 -0.00345 0.00241 4.12232 R3 4.79340 0.00004 -0.03116 -0.05636 -0.08693 4.70647 R4 4.62823 -0.00105 0.01874 -0.01404 0.00531 4.63354 R5 4.17088 -0.00231 -0.00518 -0.02351 -0.02869 4.14219 R6 4.14763 -0.00080 -0.00507 -0.01768 -0.02275 4.12488 R7 4.76779 0.00199 0.02405 0.02842 0.05195 4.81974 R8 5.35587 -0.00300 0.01772 0.01980 0.03695 5.39281 A1 2.10496 0.00079 -0.02411 0.00380 -0.02021 2.08475 A2 1.92009 -0.00160 0.00335 0.02349 0.02649 1.94659 A3 1.97921 -0.00060 -0.00974 0.01302 0.00294 1.98215 A4 1.56122 -0.00002 -0.00455 0.01352 0.00973 1.57095 A5 1.80023 0.00756 -0.00268 0.01535 0.01224 1.81248 A6 1.62862 -0.00501 0.01006 0.00039 0.01382 1.64244 A7 2.95517 -0.01133 -0.01054 -0.04786 -0.05782 2.89735 A8 1.49903 0.00183 0.01586 0.03112 0.04953 1.54856 A9 1.42450 0.00004 -0.01382 -0.00941 -0.02156 1.40294 A10 1.69636 -0.00063 0.01412 0.00126 0.01404 1.71040 A11 1.59756 0.00073 0.00393 -0.00663 -0.00392 1.59364 A12 3.48131 -0.00162 -0.00120 0.03702 0.03623 3.51754 A13 3.54043 -0.00062 -0.01429 0.02655 0.01267 3.55310 A14 3.42886 0.00254 0.00738 0.01574 0.02606 3.45492 A15 1.96004 0.00174 0.02664 -0.03731 -0.01046 1.94958 A16 1.90439 -0.00114 0.01328 0.00264 0.01580 1.92019 A17 3.63893 -0.00051 0.05385 0.13979 0.19309 3.83202 D1 2.02540 0.00063 0.02984 -0.02544 0.00426 2.02966 D2 0.06536 -0.00111 0.00320 0.01187 0.01473 0.08009 D3 1.84665 -0.00022 0.01043 -0.00795 0.00266 1.84931 D4 -0.05774 0.00092 -0.00285 -0.01059 -0.01314 -0.07088 D5 2.91950 -0.00926 -0.01309 -0.05994 -0.07389 2.84561 D6 -0.05708 0.00095 -0.00292 -0.01006 -0.01270 -0.06977 D7 -1.02733 -0.00389 -0.00793 -0.07710 -0.08380 -1.11113 D8 2.67089 -0.00236 -0.05318 -0.13759 -0.19106 2.47983 D9 0.05867 -0.00096 0.00238 0.00981 0.01153 0.07020 Item Value Threshold Converged? Maximum Force 0.011334 0.000450 NO RMS Force 0.003282 0.000300 NO Maximum Displacement 0.409643 0.001800 NO RMS Displacement 0.122006 0.001200 NO Predicted change in Energy=-9.765961D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.059576 1.424342 0.001002 2 13 0 2.739509 1.506849 -0.188305 3 17 0 -2.181605 2.127171 1.724285 4 17 0 -2.127914 0.842774 -1.809828 5 17 0 4.132109 2.736319 -1.351802 6 17 0 3.913008 0.885889 1.544295 7 35 0 0.739425 3.025592 -0.633404 8 35 0 0.635379 -0.201857 0.704373 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.804694 0.000000 3 Cl 2.173159 5.316029 0.000000 4 Cl 2.181438 5.173214 3.760653 0.000000 5 Cl 5.523130 2.191953 7.049565 6.556157 0.000000 6 Cl 5.234336 2.182795 6.222337 6.909757 3.443759 7 Br 2.490557 2.550496 3.859828 3.790818 3.479955 8 Br 2.451965 2.853755 3.794732 3.879208 5.008778 6 7 8 6 Cl 0.000000 7 Br 4.403672 0.000000 8 Br 3.554083 3.495268 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.873765 -0.082109 0.026864 2 13 0 -1.918982 0.022366 -0.255712 3 17 0 2.949252 0.473854 1.831540 4 17 0 2.966833 -0.954868 -1.647103 5 17 0 -3.434193 -1.557849 -0.363952 6 17 0 -3.007154 1.735374 0.548076 7 35 0 -0.073237 -1.548581 0.538253 8 35 0 0.345159 1.718180 -0.632267 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5400443 0.2765329 0.2299982 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1704.1023881352 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.35D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999550 0.029616 0.001203 0.004573 Ang= 3.44 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.18192881 A.U. after 11 cycles NFock= 11 Conv=0.92D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.004056458 -0.003977295 0.000964598 2 13 -0.005362771 0.008579828 0.012921981 3 17 0.000114847 0.001502985 0.000356381 4 17 0.001562511 -0.000058398 0.000620939 5 17 -0.000949326 -0.006099580 -0.008876493 6 17 -0.002123173 -0.002328947 0.002338701 7 35 0.003476184 0.005028896 -0.000291308 8 35 0.007338186 -0.002647490 -0.008034798 ------------------------------------------------------------------- Cartesian Forces: Max 0.012921981 RMS 0.005012311 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.013092863 RMS 0.004367444 Search for a local minimum. Step number 18 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 16 17 18 DE= -1.66D-03 DEPred=-9.77D-04 R= 1.70D+00 TightC=F SS= 1.41D+00 RLast= 3.32D-01 DXNew= 5.0454D+00 9.9736D-01 Trust test= 1.70D+00 RLast= 3.32D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00487 0.01934 0.02722 0.03560 0.04969 Eigenvalues --- 0.06765 0.07978 0.11961 0.13483 0.13972 Eigenvalues --- 0.15551 0.18462 0.22870 0.23462 0.23692 Eigenvalues --- 0.27459 0.46230 0.77865 RFO step: Lambda=-2.72608645D-03 EMin= 4.87384062D-03 Quartic linear search produced a step of 0.83367. Iteration 1 RMS(Cart)= 0.13936874 RMS(Int)= 0.02340883 Iteration 2 RMS(Cart)= 0.04482978 RMS(Int)= 0.00546274 Iteration 3 RMS(Cart)= 0.00131137 RMS(Int)= 0.00533378 Iteration 4 RMS(Cart)= 0.00000554 RMS(Int)= 0.00533377 Iteration 5 RMS(Cart)= 0.00000015 RMS(Int)= 0.00533377 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.10668 0.00071 0.00292 0.01143 0.01435 4.12102 R2 4.12232 -0.00127 0.00201 -0.00065 0.00136 4.12368 R3 4.70647 0.00406 -0.07247 -0.01184 -0.08116 4.62531 R4 4.63354 0.00035 0.00443 0.02735 0.03532 4.66886 R5 4.14219 0.00069 -0.02392 -0.01883 -0.04275 4.09944 R6 4.12488 0.00138 -0.01897 -0.00159 -0.02056 4.10433 R7 4.81974 -0.00024 0.04331 0.04888 0.08927 4.90901 R8 5.39281 -0.00632 0.03080 -0.02604 0.00165 5.39447 A1 2.08475 0.00201 -0.01684 -0.02127 -0.03719 2.04756 A2 1.94659 -0.00270 0.02209 -0.01343 0.00664 1.95323 A3 1.98215 -0.00171 0.00245 -0.02396 -0.02352 1.95863 A4 1.57095 0.00124 0.00811 -0.01028 0.00247 1.57342 A5 1.81248 0.01106 0.01021 0.00627 0.01149 1.82397 A6 1.64244 -0.00705 0.01152 0.02174 0.05194 1.69439 A7 2.89735 -0.01309 -0.04820 -0.05808 -0.10502 2.79233 A8 1.54856 0.00008 0.04130 0.04131 0.09165 1.64021 A9 1.40294 0.00303 -0.01798 -0.00879 -0.02005 1.38289 A10 1.71040 -0.00328 0.01171 0.00479 0.01023 1.72062 A11 1.59364 -0.00081 -0.00327 0.01299 0.00439 1.59803 A12 3.51754 -0.00146 0.03020 -0.02371 0.00910 3.52664 A13 3.55310 -0.00047 0.01056 -0.03424 -0.02106 3.53205 A14 3.45492 0.00402 0.02173 0.02801 0.06343 3.51835 A15 1.94958 0.00228 -0.00872 0.03163 0.02413 1.97371 A16 1.92019 -0.00123 0.01317 0.03250 0.04538 1.96557 A17 3.83202 -0.00172 0.16097 0.10852 0.26647 4.09850 D1 2.02966 0.00080 0.00355 0.04092 0.04391 2.07357 D2 0.08009 -0.00148 0.01228 0.00929 0.01977 0.09986 D3 1.84931 -0.00003 0.00221 0.02324 0.02640 1.87571 D4 -0.07088 0.00120 -0.01096 -0.00926 -0.01898 -0.08986 D5 2.84561 -0.01125 -0.06160 -0.07861 -0.13956 2.70605 D6 -0.06977 0.00124 -0.01058 -0.00895 -0.01817 -0.08794 D7 -1.11113 -0.00662 -0.06986 -0.15747 -0.21744 -1.32857 D8 2.47983 -0.00138 -0.15928 -0.11483 -0.27602 2.20381 D9 0.07020 -0.00116 0.00961 0.00838 0.01597 0.08617 Item Value Threshold Converged? Maximum Force 0.013093 0.000450 NO RMS Force 0.004367 0.000300 NO Maximum Displacement 0.610241 0.001800 NO RMS Displacement 0.173855 0.001200 NO Predicted change in Energy=-2.112257D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.037393 1.444223 0.000262 2 13 0 2.782141 1.427860 -0.218998 3 17 0 -2.193712 2.013848 1.759277 4 17 0 -2.147493 0.972791 -1.818319 5 17 0 4.158498 2.529768 -1.482895 6 17 0 3.833600 1.208815 1.668771 7 35 0 0.759541 3.038965 -0.467298 8 35 0 0.635151 -0.289193 0.549817 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.825857 0.000000 3 Cl 2.180752 5.386656 0.000000 4 Cl 2.182156 5.202519 3.726275 0.000000 5 Cl 5.511392 2.169331 7.150414 6.504015 0.000000 6 Cl 5.154212 2.171915 6.081509 6.927407 3.432707 7 Br 2.447608 2.597735 3.837994 3.813814 3.583801 8 Br 2.470657 2.854630 3.843079 3.865718 4.948983 6 7 8 6 Cl 0.000000 7 Br 4.166783 0.000000 8 Br 3.704883 3.482332 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.848528 -0.122046 0.043498 2 13 0 -1.953939 0.072169 -0.331613 3 17 0 2.979038 0.576637 1.772506 4 17 0 2.961419 -1.130201 -1.539822 5 17 0 -3.460284 -1.471149 -0.566324 6 17 0 -2.937852 1.620324 0.831292 7 35 0 -0.108653 -1.435986 0.702126 8 35 0 0.370107 1.650929 -0.836829 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5449048 0.2704208 0.2353208 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1703.1799471287 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.33D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999719 0.022866 -0.000880 0.006116 Ang= 2.71 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.18511523 A.U. after 13 cycles NFock= 13 Conv=0.80D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.007332478 -0.004996628 0.002912125 2 13 -0.016020936 0.009737021 0.016191940 3 17 0.001983977 0.000237642 -0.000447828 4 17 0.002264752 -0.000065825 -0.000094455 5 17 0.000555556 -0.005682945 -0.013258609 6 17 -0.002148197 -0.004358786 0.005043860 7 35 0.009054389 0.007527693 -0.002129482 8 35 0.011642936 -0.002398173 -0.008217549 ------------------------------------------------------------------- Cartesian Forces: Max 0.016191940 RMS 0.007415288 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.016098666 RMS 0.006445283 Search for a local minimum. Step number 19 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 18 19 DE= -3.19D-03 DEPred=-2.11D-03 R= 1.51D+00 TightC=F SS= 1.41D+00 RLast= 5.18D-01 DXNew= 5.0454D+00 1.5535D+00 Trust test= 1.51D+00 RLast= 5.18D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00349 0.02091 0.02565 0.03575 0.04901 Eigenvalues --- 0.07669 0.07994 0.12065 0.12928 0.13894 Eigenvalues --- 0.15446 0.18445 0.22509 0.23355 0.23571 Eigenvalues --- 0.26628 0.44107 0.76655 RFO step: Lambda=-5.19069443D-03 EMin= 3.48899414D-03 Quartic linear search produced a step of 0.62633. Iteration 1 RMS(Cart)= 0.16482306 RMS(Int)= 0.02991813 Iteration 2 RMS(Cart)= 0.04936114 RMS(Int)= 0.01135048 Iteration 3 RMS(Cart)= 0.00206485 RMS(Int)= 0.01127907 Iteration 4 RMS(Cart)= 0.00003703 RMS(Int)= 0.01127903 Iteration 5 RMS(Cart)= 0.00000194 RMS(Int)= 0.01127903 Iteration 6 RMS(Cart)= 0.00000004 RMS(Int)= 0.01127903 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.12102 -0.00135 0.00899 0.01200 0.02099 4.14201 R2 4.12368 -0.00106 0.00085 -0.00545 -0.00459 4.11908 R3 4.62531 0.00831 -0.05083 -0.00871 -0.05398 4.57132 R4 4.66886 0.00134 0.02212 0.02747 0.05656 4.72542 R5 4.09944 0.00519 -0.02678 -0.02154 -0.04831 4.05113 R6 4.10433 0.00379 -0.01288 -0.00048 -0.01335 4.09097 R7 4.90901 -0.00426 0.05591 0.04947 0.09982 5.00883 R8 5.39447 -0.01164 0.00104 -0.07398 -0.07867 5.31579 A1 2.04756 0.00489 -0.02329 -0.00681 -0.02778 2.01978 A2 1.95323 -0.00331 0.00416 -0.02020 -0.01968 1.93355 A3 1.95863 -0.00320 -0.01473 -0.02438 -0.04276 1.91587 A4 1.57342 0.00441 0.00154 -0.00095 0.00939 1.58281 A5 1.82397 0.01523 0.00720 0.02056 0.01640 1.84036 A6 1.69439 -0.00847 0.03253 0.02778 0.09803 1.79242 A7 2.79233 -0.01610 -0.06578 -0.10777 -0.17112 2.62122 A8 1.64021 -0.00174 0.05740 0.06982 0.14315 1.78335 A9 1.38289 0.00803 -0.01256 0.00791 0.00663 1.38952 A10 1.72062 -0.00805 0.00641 -0.01513 -0.01929 1.70133 A11 1.59803 -0.00406 0.00275 0.00662 -0.00018 1.59785 A12 3.52664 0.00110 0.00570 -0.02116 -0.01029 3.51635 A13 3.53205 0.00121 -0.01319 -0.02534 -0.03337 3.49867 A14 3.51835 0.00676 0.03973 0.04834 0.11443 3.63278 A15 1.97371 0.00124 0.01512 0.02827 0.04584 2.01955 A16 1.96557 -0.00216 0.02842 0.02196 0.05021 2.01578 A17 4.09850 -0.00414 0.16690 0.07773 0.23864 4.33714 D1 2.07357 -0.00095 0.02750 0.03623 0.06291 2.13648 D2 0.09986 -0.00220 0.01239 0.00796 0.01707 0.11693 D3 1.87571 -0.00040 0.01653 0.01244 0.03082 1.90653 D4 -0.08986 0.00176 -0.01189 -0.00952 -0.01939 -0.10925 D5 2.70605 -0.01420 -0.08741 -0.12689 -0.19989 2.50616 D6 -0.08794 0.00185 -0.01138 -0.00860 -0.01768 -0.10562 D7 -1.32857 -0.00888 -0.13619 -0.16456 -0.27088 -1.59945 D8 2.20381 0.00076 -0.17288 -0.09479 -0.27073 1.93307 D9 0.08617 -0.00159 0.01000 0.00797 0.01515 0.10133 Item Value Threshold Converged? Maximum Force 0.016099 0.000450 NO RMS Force 0.006445 0.000300 NO Maximum Displacement 0.678675 0.001800 NO RMS Displacement 0.198845 0.001200 NO Predicted change in Energy=-4.443962D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.009766 1.460548 0.008396 2 13 0 2.796989 1.369664 -0.207920 3 17 0 -2.221565 1.897633 1.781739 4 17 0 -2.121186 1.101514 -1.831995 5 17 0 4.165593 2.238976 -1.610401 6 17 0 3.749659 1.567954 1.725904 7 35 0 0.771536 3.079136 -0.234285 8 35 0 0.659075 -0.368346 0.359178 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.813978 0.000000 3 Cl 2.191859 5.424332 0.000000 4 Cl 2.179725 5.186325 3.701750 0.000000 5 Cl 5.478210 2.143766 7.240090 6.392692 0.000000 6 Cl 5.060977 2.164850 5.980579 6.880627 3.428439 7 Br 2.419041 2.650556 3.797230 3.851170 3.757550 8 Br 2.500586 2.812997 3.931467 3.832960 4.793019 6 7 8 6 Cl 0.000000 7 Br 3.872367 0.000000 8 Br 3.894728 3.499997 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.821761 -0.142326 0.038503 2 13 0 -1.962397 0.140818 -0.344126 3 17 0 3.038424 0.588209 1.708921 4 17 0 2.906206 -1.193869 -1.532941 5 17 0 -3.452244 -1.303974 -0.881403 6 17 0 -2.870253 1.358903 1.198158 7 35 0 -0.116792 -1.341359 0.848495 8 35 0 0.352563 1.609417 -0.974307 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5433878 0.2630139 0.2449327 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1702.3731240665 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.31D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999981 -0.002319 -0.005062 0.002613 Ang= -0.70 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.19044330 A.U. after 13 cycles NFock= 13 Conv=0.88D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.009968418 -0.004267331 0.005016019 2 13 -0.024840681 0.008441134 0.018935427 3 17 0.004192361 -0.001827044 -0.002027110 4 17 0.002411564 -0.000053605 -0.001225542 5 17 0.002133874 -0.004677976 -0.017414795 6 17 -0.001544349 -0.006137087 0.008080933 7 35 0.012135021 0.007728310 -0.004466999 8 35 0.015480627 0.000793600 -0.006897933 ------------------------------------------------------------------- Cartesian Forces: Max 0.024840681 RMS 0.009512731 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.017452757 RMS 0.008111344 Search for a local minimum. Step number 20 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 19 20 DE= -5.33D-03 DEPred=-4.44D-03 R= 1.20D+00 TightC=F SS= 1.41D+00 RLast= 5.98D-01 DXNew= 5.0454D+00 1.7925D+00 Trust test= 1.20D+00 RLast= 5.98D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00715 0.02061 0.02232 0.03802 0.04870 Eigenvalues --- 0.07990 0.08436 0.10560 0.13021 0.14140 Eigenvalues --- 0.15471 0.18177 0.20541 0.23213 0.23538 Eigenvalues --- 0.25575 0.34673 0.67822 RFO step: Lambda=-1.18912052D-02 EMin= 7.14991031D-03 Quartic linear search produced a step of 0.31152. Iteration 1 RMS(Cart)= 0.13186358 RMS(Int)= 0.02052522 Iteration 2 RMS(Cart)= 0.02824307 RMS(Int)= 0.00987274 Iteration 3 RMS(Cart)= 0.00087179 RMS(Int)= 0.00985483 Iteration 4 RMS(Cart)= 0.00001345 RMS(Int)= 0.00985483 Iteration 5 RMS(Cart)= 0.00000041 RMS(Int)= 0.00985483 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.14201 -0.00432 0.00654 0.01840 0.02493 4.16695 R2 4.11908 -0.00019 -0.00143 -0.01277 -0.01421 4.10488 R3 4.57132 0.01086 -0.01682 0.04143 0.02791 4.59924 R4 4.72542 0.00216 0.01762 0.03265 0.05445 4.77987 R5 4.05113 0.01086 -0.01505 -0.01215 -0.02720 4.02393 R6 4.09097 0.00598 -0.00416 0.01285 0.00869 4.09967 R7 5.00883 -0.00738 0.03110 0.03345 0.06129 5.07011 R8 5.31579 -0.01745 -0.02451 -0.18246 -0.21062 5.10517 A1 2.01978 0.00673 -0.00865 0.02041 0.01327 2.03305 A2 1.93355 -0.00221 -0.00613 -0.05477 -0.06310 1.87045 A3 1.91587 -0.00416 -0.01332 -0.03715 -0.05265 1.86322 A4 1.58281 0.00647 0.00292 0.00506 0.01337 1.59618 A5 1.84036 0.01741 0.00511 0.02646 0.01725 1.85761 A6 1.79242 -0.00751 0.03054 0.05584 0.11816 1.91058 A7 2.62122 -0.01687 -0.05331 -0.17481 -0.23254 2.38868 A8 1.78335 -0.00431 0.04459 0.09325 0.14163 1.92498 A9 1.38952 0.01173 0.00207 0.04303 0.05241 1.44193 A10 1.70133 -0.01135 -0.00601 -0.05042 -0.06160 1.63974 A11 1.59785 -0.00628 -0.00006 0.00373 -0.00325 1.59460 A12 3.51635 0.00426 -0.00321 -0.04970 -0.04972 3.46663 A13 3.49867 0.00231 -0.01040 -0.03209 -0.03927 3.45940 A14 3.63278 0.00990 0.03565 0.08231 0.13541 3.76819 A15 2.01955 -0.00078 0.01428 0.04850 0.06509 2.08465 A16 2.01578 -0.00324 0.01564 0.00746 0.02189 2.03766 A17 4.33714 -0.00873 0.07434 -0.08488 -0.01277 4.32437 D1 2.13648 -0.00397 0.01960 0.03776 0.05615 2.19263 D2 0.11693 -0.00319 0.00532 -0.01074 -0.00894 0.10799 D3 1.90653 -0.00061 0.00960 0.01225 0.02412 1.93065 D4 -0.10925 0.00263 -0.00604 0.00479 0.00223 -0.10702 D5 2.50616 -0.01318 -0.06227 -0.16612 -0.21216 2.29400 D6 -0.10562 0.00272 -0.00551 0.00616 0.00373 -0.10190 D7 -1.59945 -0.00681 -0.08438 -0.18448 -0.23451 -1.83396 D8 1.93307 0.00554 -0.08434 0.04109 -0.04411 1.88896 D9 0.10133 -0.00228 0.00472 -0.00501 -0.00350 0.09783 Item Value Threshold Converged? Maximum Force 0.017453 0.000450 NO RMS Force 0.008111 0.000300 NO Maximum Displacement 0.521289 0.001800 NO RMS Displacement 0.151056 0.001200 NO Predicted change in Energy=-8.561654D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -1.000627 1.455981 0.011133 2 13 0 2.740875 1.415853 -0.133909 3 17 0 -2.261487 1.850639 1.776562 4 17 0 -2.039760 1.134516 -1.869120 5 17 0 4.089392 1.963122 -1.688332 6 17 0 3.802115 1.718193 1.733943 7 35 0 0.719137 3.177300 -0.042757 8 35 0 0.740689 -0.368527 0.203096 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.744527 0.000000 3 Cl 2.205054 5.372389 0.000000 4 Cl 2.172208 5.093582 3.721960 0.000000 5 Cl 5.390146 2.129374 7.235456 6.187551 0.000000 6 Cl 5.109126 2.169450 6.065199 6.888414 3.443034 7 Br 2.433810 2.682988 3.735515 3.888456 3.942178 8 Br 2.529400 2.701542 4.051364 3.779433 4.497544 6 7 8 6 Cl 0.000000 7 Br 3.845830 0.000000 8 Br 4.008769 3.554405 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.821521 -0.061725 -0.053846 2 13 0 -1.910706 0.238014 -0.099908 3 17 0 3.093616 -0.604016 1.663698 4 17 0 2.835547 0.255209 -1.948520 5 17 0 -3.330134 -0.160406 -1.636372 6 17 0 -2.945756 -0.057905 1.783603 7 35 0 -0.013552 -1.659029 -0.121387 8 35 0 0.215088 1.869008 0.245326 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5312758 0.2606171 0.2514800 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1699.6190212911 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.32D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.933685 -0.357681 -0.002391 -0.017043 Ang= -41.97 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.20113075 A.U. after 13 cycles NFock= 13 Conv=0.98D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.009282128 0.000015723 0.007613559 2 13 -0.023273064 0.005836951 0.019108612 3 17 0.005993673 -0.004561867 -0.004660286 4 17 0.001169316 0.000051197 -0.002331000 5 17 0.001831830 -0.003077000 -0.018962638 6 17 -0.003180084 -0.005202543 0.007560226 7 35 0.012601736 0.002084446 -0.004965391 8 35 0.014138720 0.004853093 -0.003363082 ------------------------------------------------------------------- Cartesian Forces: Max 0.023273064 RMS 0.009263587 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.017613831 RMS 0.007718079 Search for a local minimum. Step number 21 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 20 21 DE= -1.07D-02 DEPred=-8.56D-03 R= 1.25D+00 TightC=F SS= 1.41D+00 RLast= 5.37D-01 DXNew= 5.0454D+00 1.6116D+00 Trust test= 1.25D+00 RLast= 5.37D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 1 ITU= 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01137 0.02052 0.02533 0.03895 0.04982 Eigenvalues --- 0.05476 0.08017 0.10634 0.13046 0.14760 Eigenvalues --- 0.15586 0.15943 0.19154 0.23185 0.23565 Eigenvalues --- 0.24608 0.31261 0.60622 RFO step: Lambda=-1.57305344D-02 EMin= 1.13696850D-02 Quartic linear search produced a step of 0.79616. Iteration 1 RMS(Cart)= 0.15081258 RMS(Int)= 0.03813562 Iteration 2 RMS(Cart)= 0.06001277 RMS(Int)= 0.00900695 Iteration 3 RMS(Cart)= 0.00130014 RMS(Int)= 0.00890219 Iteration 4 RMS(Cart)= 0.00001524 RMS(Int)= 0.00890218 Iteration 5 RMS(Cart)= 0.00000025 RMS(Int)= 0.00890218 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.16695 -0.00798 0.01985 -0.01533 0.00452 4.17147 R2 4.10488 0.00145 -0.01131 -0.00017 -0.01148 4.09340 R3 4.59924 0.00824 0.02222 -0.01601 0.00623 4.60547 R4 4.77987 0.00123 0.04335 -0.01788 0.02486 4.80474 R5 4.02393 0.01421 -0.02165 0.09595 0.07430 4.09823 R6 4.09967 0.00423 0.00692 0.02384 0.03076 4.13043 R7 5.07011 -0.01046 0.04879 -0.11935 -0.06965 5.00047 R8 5.10517 -0.01761 -0.16769 -0.17914 -0.34718 4.75799 A1 2.03305 0.00500 0.01057 0.06340 0.07439 2.10745 A2 1.87045 0.00221 -0.05024 0.03045 -0.01878 1.85167 A3 1.86322 -0.00257 -0.04191 0.03559 -0.00530 1.85792 A4 1.59618 0.00425 0.01065 0.03175 0.04065 1.63683 A5 1.85761 0.01710 0.01373 0.07904 0.07760 1.93521 A6 1.91058 -0.00677 0.09407 -0.08933 0.03007 1.94064 A7 2.38868 -0.01350 -0.18513 -0.13207 -0.32832 2.06036 A8 1.92498 -0.00755 0.11276 0.01014 0.11353 2.03851 A9 1.44193 0.01024 0.04173 0.07243 0.11989 1.56182 A10 1.63974 -0.00864 -0.04904 -0.05556 -0.10429 1.53545 A11 1.59460 -0.00535 -0.00259 -0.04067 -0.04867 1.54593 A12 3.46663 0.00645 -0.03959 0.06220 0.02187 3.48850 A13 3.45940 0.00168 -0.03127 0.06734 0.03535 3.49475 A14 3.76819 0.01033 0.10781 -0.01029 0.10767 3.87585 A15 2.08465 -0.00403 0.05182 -0.08334 -0.02970 2.05495 A16 2.03766 -0.00325 0.01743 -0.07357 -0.05939 1.97827 A17 4.32437 -0.00749 -0.01017 -0.13556 -0.13777 4.18660 D1 2.19263 -0.00677 0.04470 -0.12499 -0.08179 2.11084 D2 0.10799 -0.00274 -0.00712 -0.04165 -0.05209 0.05589 D3 1.93065 -0.00073 0.01920 -0.03384 -0.01110 1.91955 D4 -0.10702 0.00252 0.00178 0.03973 0.04829 -0.05872 D5 2.29400 -0.00960 -0.16891 -0.09479 -0.25490 2.03910 D6 -0.10190 0.00235 0.00297 0.03712 0.04557 -0.05632 D7 -1.83396 0.00040 -0.18671 0.05327 -0.09965 -1.93361 D8 1.88896 0.00377 -0.03512 0.11606 0.08376 1.97273 D9 0.09783 -0.00206 -0.00279 -0.03532 -0.04386 0.05397 Item Value Threshold Converged? Maximum Force 0.017614 0.000450 NO RMS Force 0.007718 0.000300 NO Maximum Displacement 0.604772 0.001800 NO RMS Displacement 0.202480 0.001200 NO Predicted change in Energy=-1.440667D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.934640 1.461176 -0.012024 2 13 0 2.598607 1.497888 0.010902 3 17 0 -2.170992 1.701838 1.800799 4 17 0 -1.856113 1.250380 -1.961021 5 17 0 3.805894 1.643090 -1.784815 6 17 0 3.817339 1.817617 1.796922 7 35 0 0.662618 3.301764 0.010346 8 35 0 0.867621 -0.326677 0.129508 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.533512 0.000000 3 Cl 2.207445 5.098470 0.000000 4 Cl 2.166134 4.877937 3.801875 0.000000 5 Cl 5.064439 2.168692 6.970168 5.678345 0.000000 6 Cl 5.097121 2.185727 5.989451 6.828759 3.586005 7 Br 2.437109 2.646133 3.714139 3.799799 3.981707 8 Br 2.542557 2.517820 4.017618 3.778379 4.022196 6 7 8 6 Cl 0.000000 7 Br 3.917501 0.000000 8 Br 4.009875 3.636180 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.767235 0.034924 -0.006798 2 13 0 -1.765575 0.067450 0.055660 3 17 0 2.997695 -1.358371 1.183794 4 17 0 2.692715 1.448650 -1.362159 5 17 0 -2.978123 1.157027 -1.374647 6 17 0 -2.991481 -1.315830 1.222320 7 35 0 0.117458 -1.338124 -1.161126 8 35 0 0.017534 1.333383 1.303599 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5054572 0.2769424 0.2665922 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1716.3113718254 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.30D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.944432 -0.327691 0.019613 -0.016818 Ang= -38.38 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.21559435 A.U. after 13 cycles NFock= 13 Conv=0.49D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.012246682 0.000971303 0.008232277 2 13 0.001477699 0.009196703 0.004705058 3 17 0.005737147 -0.004892947 -0.007077275 4 17 -0.000859903 -0.001028297 -0.001756216 5 17 -0.004674144 -0.002368395 -0.004610232 6 17 -0.006339254 -0.002918949 0.001099742 7 35 0.013287513 -0.000824475 -0.001906381 8 35 0.003617625 0.001865058 0.001313027 ------------------------------------------------------------------- Cartesian Forces: Max 0.013287513 RMS 0.005542296 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.011590469 RMS 0.004696578 Search for a local minimum. Step number 22 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 21 22 DE= -1.45D-02 DEPred=-1.44D-02 R= 1.00D+00 TightC=F SS= 1.41D+00 RLast= 6.56D-01 DXNew= 5.0454D+00 1.9671D+00 Trust test= 1.00D+00 RLast= 6.56D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 1 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01812 0.02099 0.03177 0.03480 0.04649 Eigenvalues --- 0.05729 0.08009 0.11655 0.14962 0.15058 Eigenvalues --- 0.15452 0.15668 0.19089 0.23014 0.23651 Eigenvalues --- 0.23830 0.31838 0.52943 RFO step: Lambda=-4.92049434D-03 EMin= 1.81211309D-02 Quartic linear search produced a step of 0.25455. Iteration 1 RMS(Cart)= 0.09994055 RMS(Int)= 0.00464381 Iteration 2 RMS(Cart)= 0.00406257 RMS(Int)= 0.00133007 Iteration 3 RMS(Cart)= 0.00000576 RMS(Int)= 0.00133007 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00133007 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.17147 -0.00956 0.00115 -0.05043 -0.04928 4.12219 R2 4.09340 0.00205 -0.00292 0.00355 0.00063 4.09403 R3 4.60547 0.00890 0.00159 0.07172 0.07271 4.67818 R4 4.80474 0.00062 0.00633 -0.01920 -0.01366 4.79107 R5 4.09823 0.00106 0.01891 -0.00772 0.01119 4.10942 R6 4.13043 -0.00306 0.00783 -0.02605 -0.01822 4.11220 R7 5.00047 -0.00882 -0.01773 -0.06892 -0.08585 4.91461 R8 4.75799 -0.00414 -0.08838 0.02325 -0.06456 4.69343 A1 2.10745 -0.00014 0.01894 0.05277 0.07073 2.17817 A2 1.85167 0.00682 -0.00478 0.04264 0.03826 1.88993 A3 1.85792 -0.00023 -0.00135 0.04067 0.03973 1.89765 A4 1.63683 -0.00220 0.01035 -0.01526 -0.00635 1.63048 A5 1.93521 0.01159 0.01975 0.04670 0.06403 1.99924 A6 1.94064 -0.00438 0.00765 -0.06751 -0.05803 1.88262 A7 2.06036 -0.00366 -0.08357 0.00926 -0.07721 1.98315 A8 2.03851 -0.00729 0.02890 -0.05382 -0.02904 2.00947 A9 1.56182 0.00259 0.03052 0.00631 0.03785 1.59967 A10 1.53545 -0.00047 -0.02655 0.00603 -0.02046 1.51499 A11 1.54593 0.00010 -0.01239 0.00460 -0.00869 1.53724 A12 3.48850 0.00461 0.00557 0.02738 0.03191 3.52041 A13 3.49475 -0.00243 0.00900 0.02541 0.03338 3.52813 A14 3.87585 0.00721 0.02741 -0.02081 0.00600 3.88186 A15 2.05495 -0.00558 -0.00756 -0.12218 -0.13016 1.92479 A16 1.97827 0.00089 -0.01512 -0.01802 -0.03377 1.94451 A17 4.18660 -0.00326 -0.03507 -0.04876 -0.08127 4.10533 D1 2.11084 -0.00583 -0.02082 -0.13691 -0.15802 1.95282 D2 0.05589 -0.00025 -0.01326 -0.01473 -0.02786 0.02803 D3 1.91955 0.00120 -0.00283 -0.00146 -0.00437 1.91518 D4 -0.05872 0.00031 0.01229 0.01657 0.02940 -0.02933 D5 2.03910 -0.00362 -0.06488 0.01376 -0.05176 1.98733 D6 -0.05632 0.00018 0.01160 0.01529 0.02774 -0.02858 D7 -1.93361 0.00432 -0.02537 0.05868 0.03564 -1.89797 D8 1.97273 -0.00138 0.02132 0.03653 0.05769 2.03042 D9 0.05397 -0.00008 -0.01116 -0.01358 -0.02609 0.02788 Item Value Threshold Converged? Maximum Force 0.011590 0.000450 NO RMS Force 0.004697 0.000300 NO Maximum Displacement 0.276988 0.001800 NO RMS Displacement 0.100496 0.001200 NO Predicted change in Energy=-3.506556D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.927735 1.484265 -0.050126 2 13 0 2.558949 1.543173 0.065844 3 17 0 -2.024416 1.575159 1.833326 4 17 0 -1.841865 1.297543 -2.005395 5 17 0 3.685058 1.579021 -1.794138 6 17 0 3.765967 1.797629 1.858524 7 35 0 0.696858 3.351698 -0.093845 8 35 0 0.877518 -0.281411 0.176425 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.489110 0.000000 3 Cl 2.181367 4.912459 0.000000 4 Cl 2.166466 4.870065 3.853074 0.000000 5 Cl 4.932385 2.174613 6.764363 5.538117 0.000000 6 Cl 5.076611 2.176084 5.794710 6.828451 3.660093 7 Br 2.475586 2.600701 3.778282 3.784005 3.868168 8 Br 2.535326 2.483655 3.822747 3.827334 3.902128 6 7 8 6 Cl 0.000000 7 Br 3.955541 0.000000 8 Br 3.936369 3.647624 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.766531 0.007379 -0.002622 2 13 0 -1.721947 -0.018187 0.058675 3 17 0 2.804495 -1.860577 -0.440496 4 17 0 2.742744 1.884877 0.461689 5 17 0 -2.794474 1.847921 0.368946 6 17 0 -2.988448 -1.717625 -0.434507 7 35 0 0.078777 0.391447 -1.772510 8 35 0 0.019138 -0.462523 1.773240 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4961309 0.2837259 0.2786300 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1728.1169984200 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.27D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.869736 -0.493271 0.001582 0.015523 Ang= -59.14 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. DSYEVD-2 returned Info= 249 IAlg= 4 N= 124 NDim= 124 NE2= 13741163 trying DSYEV. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.21967850 A.U. after 11 cycles NFock= 11 Conv=0.49D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.004924238 0.000817471 0.003556235 2 13 0.004970671 0.007891837 -0.001138925 3 17 0.000608466 -0.001214677 -0.003257026 4 17 -0.001237273 -0.001022295 -0.000157791 5 17 -0.003080338 -0.001523645 -0.001644587 6 17 -0.004458027 -0.000975978 0.001408978 7 35 0.007409552 -0.002587625 0.000945237 8 35 0.000711186 -0.001385088 0.000287878 ------------------------------------------------------------------- Cartesian Forces: Max 0.007891837 RMS 0.003183473 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.007351326 RMS 0.002658575 Search for a local minimum. Step number 23 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 22 23 DE= -4.08D-03 DEPred=-3.51D-03 R= 1.16D+00 TightC=F SS= 1.41D+00 RLast= 3.26D-01 DXNew= 5.0454D+00 9.7856D-01 Trust test= 1.16D+00 RLast= 3.26D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 0 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01892 0.02095 0.03336 0.03965 0.04473 Eigenvalues --- 0.05795 0.08013 0.11261 0.13134 0.14913 Eigenvalues --- 0.15714 0.15935 0.18538 0.22522 0.23261 Eigenvalues --- 0.23850 0.31504 0.48402 RFO step: Lambda=-1.17889604D-03 EMin= 1.89239295D-02 Quartic linear search produced a step of 0.33966. Iteration 1 RMS(Cart)= 0.04308848 RMS(Int)= 0.00082696 Iteration 2 RMS(Cart)= 0.00086363 RMS(Int)= 0.00036371 Iteration 3 RMS(Cart)= 0.00000030 RMS(Int)= 0.00036371 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.12219 -0.00317 -0.01674 -0.00897 -0.02571 4.09648 R2 4.09403 0.00075 0.00021 0.00436 0.00458 4.09861 R3 4.67818 0.00425 0.02470 0.01024 0.03475 4.71293 R4 4.79107 0.00163 -0.00464 0.02450 0.01969 4.81076 R5 4.10942 -0.00021 0.00380 -0.00398 -0.00018 4.10925 R6 4.11220 -0.00143 -0.00619 -0.00470 -0.01089 4.10132 R7 4.91461 -0.00582 -0.02916 -0.02701 -0.05600 4.85861 R8 4.69343 0.00107 -0.02193 0.01375 -0.00800 4.68543 A1 2.17817 -0.00304 0.02402 -0.02460 -0.00170 2.17648 A2 1.88993 0.00339 0.01299 -0.00172 0.01094 1.90087 A3 1.89765 0.00013 0.01349 -0.00940 0.00381 1.90146 A4 1.63048 -0.00243 -0.00216 -0.01251 -0.01477 1.61571 A5 1.99924 0.00735 0.02175 0.03889 0.06053 2.05977 A6 1.88262 -0.00164 -0.01971 -0.00663 -0.02665 1.85597 A7 1.98315 -0.00112 -0.02623 -0.01904 -0.04587 1.93728 A8 2.00947 -0.00434 -0.00986 0.01493 0.00432 2.01379 A9 1.59967 -0.00003 0.01286 -0.00151 0.01137 1.61104 A10 1.51499 0.00167 -0.00695 0.01256 0.00543 1.52042 A11 1.53724 0.00078 -0.00295 0.00142 -0.00161 1.53563 A12 3.52041 0.00096 0.01084 -0.01423 -0.00383 3.51658 A13 3.52813 -0.00231 0.01134 -0.02191 -0.01095 3.51718 A14 3.88186 0.00572 0.00204 0.03226 0.03387 3.91573 A15 1.92479 -0.00067 -0.04421 0.00446 -0.04020 1.88459 A16 1.94451 0.00171 -0.01147 0.03886 0.02709 1.97159 A17 4.10533 -0.00128 -0.02761 0.03153 0.00437 4.10970 D1 1.95282 -0.00050 -0.05367 0.00506 -0.04894 1.90389 D2 0.02803 0.00017 -0.00946 0.00060 -0.00874 0.01929 D3 1.91518 0.00158 -0.00148 0.03846 0.03642 1.95160 D4 -0.02933 -0.00013 0.00999 -0.00040 0.00933 -0.01999 D5 1.98733 -0.00168 -0.01758 -0.02280 -0.04057 1.94677 D6 -0.02858 -0.00018 0.00942 -0.00070 0.00877 -0.01980 D7 -1.89797 0.00223 0.01211 0.01236 0.02396 -1.87400 D8 2.03042 -0.00321 0.01960 -0.04316 -0.02359 2.00682 D9 0.02788 0.00019 -0.00886 0.00062 -0.00849 0.01939 Item Value Threshold Converged? Maximum Force 0.007351 0.000450 NO RMS Force 0.002659 0.000300 NO Maximum Displacement 0.108983 0.001800 NO RMS Displacement 0.043038 0.001200 NO Predicted change in Energy=-9.093780D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.920097 1.504892 -0.068381 2 13 0 2.566829 1.548415 0.086402 3 17 0 -1.974792 1.539014 1.825202 4 17 0 -1.869747 1.296516 -2.007149 5 17 0 3.627387 1.551753 -1.811951 6 17 0 3.724696 1.822419 1.901497 7 35 0 0.749242 3.357559 -0.097339 8 35 0 0.886816 -0.273490 0.162335 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.490631 0.000000 3 Cl 2.167764 4.863109 0.000000 4 Cl 2.168889 4.912191 3.841452 0.000000 5 Cl 4.870508 2.174520 6.679330 5.506517 0.000000 6 Cl 5.055229 2.170323 5.707039 6.844843 3.724570 7 Br 2.493975 2.571067 3.797846 3.841143 3.805857 8 Br 2.545743 2.479424 3.773473 3.843205 3.839277 6 7 8 6 Cl 0.000000 7 Br 3.899400 0.000000 8 Br 3.933329 3.642921 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.764809 -0.004135 -0.044071 2 13 0 -1.723739 -0.004879 0.076504 3 17 0 2.730880 -1.941093 -0.162823 4 17 0 2.809068 1.886505 0.153622 5 17 0 -2.697208 1.937856 0.158211 6 17 0 -2.973322 -1.761531 -0.174535 7 35 0 0.013215 0.135398 -1.813918 8 35 0 0.034956 -0.191180 1.814269 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4936791 0.2864579 0.2825518 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.4424978363 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.997330 0.072285 -0.007285 0.007450 Ang= 8.38 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22080197 A.U. after 10 cycles NFock= 10 Conv=0.98D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.001000627 -0.000376261 0.000265461 2 13 0.004270246 0.006215854 -0.002898267 3 17 -0.001663520 0.000148583 0.000076052 4 17 -0.000227788 -0.000024874 0.000731630 5 17 -0.001134407 -0.001264887 -0.000473168 6 17 -0.002589506 -0.001144324 0.001318395 7 35 0.002528188 -0.002087064 0.000724242 8 35 -0.000182586 -0.001467028 0.000255656 ------------------------------------------------------------------- Cartesian Forces: Max 0.006215854 RMS 0.002002653 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003965286 RMS 0.001626461 Search for a local minimum. Step number 24 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 22 23 24 DE= -1.12D-03 DEPred=-9.09D-04 R= 1.24D+00 TightC=F SS= 1.41D+00 RLast= 1.52D-01 DXNew= 5.0454D+00 4.5567D-01 Trust test= 1.24D+00 RLast= 1.52D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 1 ITU= 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01993 0.02080 0.03256 0.04310 0.05102 Eigenvalues --- 0.05710 0.07975 0.08330 0.12436 0.14638 Eigenvalues --- 0.15941 0.16826 0.18214 0.22535 0.23288 Eigenvalues --- 0.24214 0.31118 0.45728 RFO step: Lambda=-5.00723799D-04 EMin= 1.99344353D-02 Quartic linear search produced a step of 0.34517. Iteration 1 RMS(Cart)= 0.02698094 RMS(Int)= 0.00036242 Iteration 2 RMS(Cart)= 0.00034193 RMS(Int)= 0.00009921 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00009921 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09648 0.00088 -0.00887 -0.00313 -0.01201 4.08447 R2 4.09861 -0.00055 0.00158 -0.00182 -0.00024 4.09837 R3 4.71293 0.00150 0.01199 0.02709 0.03908 4.75201 R4 4.81076 0.00107 0.00680 -0.00659 0.00020 4.81096 R5 4.10925 -0.00014 -0.00006 0.00199 0.00193 4.11118 R6 4.10132 -0.00042 -0.00376 0.00005 -0.00371 4.09761 R7 4.85861 -0.00260 -0.01933 -0.02609 -0.04542 4.81320 R8 4.68543 0.00187 -0.00276 0.03080 0.02805 4.71348 A1 2.17648 -0.00242 -0.00059 -0.00413 -0.00499 2.17148 A2 1.90087 0.00150 0.00378 0.00205 0.00570 1.90656 A3 1.90146 0.00063 0.00132 0.00146 0.00266 1.90412 A4 1.61571 -0.00158 -0.00510 -0.01253 -0.01756 1.59816 A5 2.05977 0.00385 0.02089 0.00850 0.02950 2.08926 A6 1.85597 0.00012 -0.00920 -0.01153 -0.02076 1.83520 A7 1.93728 0.00037 -0.01583 0.02182 0.00589 1.94317 A8 2.01379 -0.00388 0.00149 -0.03365 -0.03213 1.98166 A9 1.61104 -0.00083 0.00392 -0.00889 -0.00511 1.60593 A10 1.52042 0.00161 0.00188 0.01313 0.01497 1.53539 A11 1.53563 0.00080 -0.00056 0.00853 0.00797 1.54360 A12 3.51658 -0.00008 -0.00132 -0.01048 -0.01186 3.50472 A13 3.51718 -0.00095 -0.00378 -0.01107 -0.01490 3.50228 A14 3.91573 0.00397 0.01169 -0.00303 0.00873 3.92447 A15 1.88459 0.00152 -0.01387 0.02050 0.00655 1.89114 A16 1.97159 -0.00005 0.00935 -0.01612 -0.00681 1.96478 A17 4.10970 -0.00219 0.00151 -0.02562 -0.02399 4.08571 D1 1.90389 0.00150 -0.01689 0.01452 -0.00249 1.90140 D2 0.01929 -0.00002 -0.00302 -0.00598 -0.00904 0.01026 D3 1.95160 -0.00001 0.01257 -0.00969 0.00271 1.95431 D4 -0.01999 0.00004 0.00322 0.00643 0.00952 -0.01047 D5 1.94677 0.00015 -0.01400 0.02444 0.01058 1.95735 D6 -0.01980 0.00002 0.00303 0.00630 0.00933 -0.01047 D7 -1.87400 0.00014 0.00827 0.00647 0.01465 -1.85935 D8 2.00682 -0.00203 -0.00814 0.00539 -0.00256 2.00427 D9 0.01939 -0.00002 -0.00293 -0.00602 -0.00905 0.01034 Item Value Threshold Converged? Maximum Force 0.003965 0.000450 NO RMS Force 0.001626 0.000300 NO Maximum Displacement 0.067558 0.001800 NO RMS Displacement 0.026920 0.001200 NO Predicted change in Energy=-3.361243D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.927757 1.496886 -0.063762 2 13 0 2.583884 1.561743 0.083052 3 17 0 -1.979651 1.557996 1.823425 4 17 0 -1.888139 1.277564 -1.995884 5 17 0 3.627715 1.587503 -1.825543 6 17 0 3.705858 1.789357 1.924561 7 35 0 0.776722 3.344801 -0.122505 8 35 0 0.891701 -0.268772 0.167273 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.515307 0.000000 3 Cl 2.161410 4.884134 0.000000 4 Cl 2.168762 4.939810 3.830684 0.000000 5 Cl 4.885121 2.175541 6.690171 5.527180 0.000000 6 Cl 5.050679 2.168360 5.691113 6.850155 3.756345 7 Br 2.514654 2.547034 3.817972 3.858044 3.757205 8 Br 2.545851 2.494266 3.784784 3.846806 3.860420 6 7 8 6 Cl 0.000000 7 Br 3.897399 0.000000 8 Br 3.904284 3.626996 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.775618 -0.001768 -0.046519 2 13 0 -1.737769 -0.016714 0.068666 3 17 0 2.739439 -1.877413 -0.520542 4 17 0 2.829583 1.821115 0.472889 5 17 0 -2.697076 1.896077 0.461022 6 17 0 -2.949421 -1.743721 -0.432467 7 35 0 -0.017413 0.461580 -1.747646 8 35 0 0.040985 -0.501372 1.748697 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4946230 0.2860860 0.2822444 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.2677371910 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.996287 -0.086050 -0.002616 -0.000853 Ang= -9.88 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22120834 A.U. after 10 cycles NFock= 10 Conv=0.66D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.002150889 -0.000087584 -0.001402365 2 13 0.002653851 0.004195352 -0.003497489 3 17 -0.002212262 0.000377518 0.001675556 4 17 -0.000068146 0.000221114 0.000649589 5 17 -0.000439766 -0.001830792 0.000297164 6 17 -0.001665489 -0.000777825 0.001127472 7 35 -0.000484284 -0.001226623 0.001210672 8 35 0.000065208 -0.000871161 -0.000060599 ------------------------------------------------------------------- Cartesian Forces: Max 0.004195352 RMS 0.001633654 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003653881 RMS 0.001221087 Search for a local minimum. Step number 25 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 22 23 24 25 DE= -4.06D-04 DEPred=-3.36D-04 R= 1.21D+00 TightC=F SS= 1.41D+00 RLast= 9.69D-02 DXNew= 5.0454D+00 2.9062D-01 Trust test= 1.21D+00 RLast= 9.69D-02 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 0 ITU= 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01979 0.02357 0.03176 0.03837 0.05263 Eigenvalues --- 0.05556 0.06759 0.08115 0.12312 0.14677 Eigenvalues --- 0.15822 0.17088 0.18263 0.22686 0.23724 Eigenvalues --- 0.24524 0.30061 0.43195 RFO step: Lambda=-4.30284864D-04 EMin= 1.97935865D-02 Quartic linear search produced a step of 0.42849. Iteration 1 RMS(Cart)= 0.02663540 RMS(Int)= 0.00040473 Iteration 2 RMS(Cart)= 0.00039941 RMS(Int)= 0.00014374 Iteration 3 RMS(Cart)= 0.00000011 RMS(Int)= 0.00014374 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.08447 0.00255 -0.00515 0.00215 -0.00300 4.08148 R2 4.09837 -0.00057 -0.00010 -0.00285 -0.00295 4.09542 R3 4.75201 -0.00030 0.01674 0.01792 0.03473 4.78674 R4 4.81096 0.00045 0.00009 0.00303 0.00319 4.81416 R5 4.11118 -0.00049 0.00083 -0.01105 -0.01022 4.10096 R6 4.09761 0.00001 -0.00159 -0.00295 -0.00454 4.09307 R7 4.81320 -0.00069 -0.01946 -0.01200 -0.03154 4.78166 R8 4.71348 0.00064 0.01202 -0.00951 0.00244 4.71592 A1 2.17148 -0.00149 -0.00214 -0.00645 -0.00854 2.16294 A2 1.90656 0.00053 0.00244 -0.00463 -0.00223 1.90434 A3 1.90412 0.00040 0.00114 -0.00784 -0.00673 1.89739 A4 1.59816 -0.00027 -0.00752 -0.00683 -0.01425 1.58391 A5 2.08926 0.00188 0.01264 0.02396 0.03662 2.12588 A6 1.83520 0.00178 -0.00890 0.02659 0.01760 1.85281 A7 1.94317 -0.00029 0.00252 -0.04077 -0.03805 1.90512 A8 1.98166 -0.00245 -0.01377 0.01406 0.00065 1.98231 A9 1.60593 -0.00022 -0.00219 0.00232 0.00010 1.60604 A10 1.53539 0.00046 0.00641 0.00107 0.00737 1.54276 A11 1.54360 0.00004 0.00342 0.00354 0.00688 1.55048 A12 3.50472 0.00026 -0.00508 -0.01146 -0.01648 3.48824 A13 3.50228 0.00013 -0.00638 -0.01467 -0.02098 3.48129 A14 3.92447 0.00365 0.00374 0.05056 0.05422 3.97869 A15 1.89114 0.00147 0.00281 0.02137 0.02416 1.91530 A16 1.96478 -0.00016 -0.00292 -0.00022 -0.00303 1.96175 A17 4.08571 -0.00177 -0.01028 0.00127 -0.00949 4.07622 D1 1.90140 0.00163 -0.00107 0.01662 0.01560 1.91699 D2 0.01026 0.00016 -0.00387 -0.00475 -0.00857 0.00169 D3 1.95431 -0.00032 0.00116 0.00463 0.00573 1.96004 D4 -0.01047 -0.00016 0.00408 0.00486 0.00876 -0.00171 D5 1.95735 -0.00027 0.00453 -0.03312 -0.02851 1.92883 D6 -0.01047 -0.00017 0.00400 0.00482 0.00875 -0.00172 D7 -1.85935 -0.00163 0.00628 -0.02815 -0.02180 -1.88115 D8 2.00427 -0.00153 -0.00110 -0.03534 -0.03683 1.96743 D9 0.01034 0.00016 -0.00388 -0.00473 -0.00863 0.00171 Item Value Threshold Converged? Maximum Force 0.003654 0.000450 NO RMS Force 0.001221 0.000300 NO Maximum Displacement 0.071695 0.001800 NO RMS Displacement 0.026631 0.001200 NO Predicted change in Energy=-2.453505D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.927654 1.488241 -0.055500 2 13 0 2.598583 1.574200 0.077767 3 17 0 -1.990807 1.558759 1.823215 4 17 0 -1.893184 1.281961 -1.984739 5 17 0 3.617230 1.552526 -1.838313 6 17 0 3.676694 1.813394 1.941057 7 35 0 0.797529 3.342378 -0.102202 8 35 0 0.911942 -0.264383 0.129333 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.529801 0.000000 3 Cl 2.159824 4.910125 0.000000 4 Cl 2.167202 4.951294 3.819249 0.000000 5 Cl 4.882471 2.170132 6.697530 5.518995 0.000000 6 Cl 5.029114 2.165961 5.674443 6.835045 3.788829 7 Br 2.533033 2.530343 3.829275 3.876751 3.764088 8 Br 2.547541 2.495558 3.823484 3.837866 3.806754 6 7 8 6 Cl 0.000000 7 Br 3.847374 0.000000 8 Br 3.904274 3.615995 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.779710 -0.020926 -0.033867 2 13 0 -1.748788 0.003943 0.058768 3 17 0 2.760524 -1.937469 0.138482 4 17 0 2.832248 1.868602 -0.170291 5 17 0 -2.686179 1.947818 -0.169528 6 17 0 -2.912671 -1.820064 0.157561 7 35 0 -0.035069 -0.173424 -1.794430 8 35 0 0.026536 0.151130 1.806444 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4947952 0.2857433 0.2837702 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1733.3992895446 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.985015 0.172460 -0.000075 -0.001602 Ang= 19.86 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22146900 A.U. after 10 cycles NFock= 10 Conv=0.75D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.004295826 0.000513726 -0.001711188 2 13 0.001184292 0.003259844 -0.002768442 3 17 -0.001844710 0.000101069 0.002068307 4 17 -0.000193989 0.000398796 0.000112025 5 17 0.001097222 -0.001033803 -0.000469707 6 17 -0.000503837 -0.001080841 0.001155466 7 35 -0.002636505 -0.000896198 0.000534833 8 35 -0.001398300 -0.001262592 0.001078707 ------------------------------------------------------------------- Cartesian Forces: Max 0.004295826 RMS 0.001673864 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002914293 RMS 0.001156146 Search for a local minimum. Step number 26 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 22 23 24 25 26 DE= -2.61D-04 DEPred=-2.45D-04 R= 1.06D+00 TightC=F SS= 1.41D+00 RLast= 1.16D-01 DXNew= 5.0454D+00 3.4783D-01 Trust test= 1.06D+00 RLast= 1.16D-01 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 ITU= 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01953 0.02580 0.03408 0.03723 0.04510 Eigenvalues --- 0.05373 0.06307 0.08354 0.12409 0.14776 Eigenvalues --- 0.15691 0.17447 0.18761 0.22774 0.23430 Eigenvalues --- 0.24037 0.28896 0.42124 RFO step: Lambda=-2.67064837D-04 EMin= 1.95321364D-02 Quartic linear search produced a step of -0.00738. Iteration 1 RMS(Cart)= 0.01659996 RMS(Int)= 0.00013468 Iteration 2 RMS(Cart)= 0.00015964 RMS(Int)= 0.00002727 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00002727 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.08148 0.00271 0.00002 0.00599 0.00601 4.08749 R2 4.09542 -0.00005 0.00002 -0.00083 -0.00081 4.09461 R3 4.78674 -0.00179 -0.00026 0.00541 0.00515 4.79189 R4 4.81416 -0.00041 -0.00002 -0.01528 -0.01531 4.79884 R5 4.10096 0.00094 0.00008 0.00323 0.00330 4.10426 R6 4.09307 0.00062 0.00003 0.00305 0.00309 4.09616 R7 4.78166 0.00068 0.00023 -0.01548 -0.01523 4.76642 R8 4.71592 0.00142 -0.00002 0.03127 0.03125 4.74717 A1 2.16294 -0.00058 0.00006 -0.00544 -0.00545 2.15749 A2 1.90434 0.00017 0.00002 0.00429 0.00428 1.90862 A3 1.89739 0.00038 0.00005 0.00262 0.00264 1.90003 A4 1.58391 0.00071 0.00011 -0.00215 -0.00204 1.58186 A5 2.12588 0.00021 -0.00027 0.00570 0.00544 2.13132 A6 1.85281 0.00180 -0.00013 0.00647 0.00636 1.85917 A7 1.90512 0.00118 0.00028 0.01239 0.01267 1.91779 A8 1.98231 -0.00291 0.00000 -0.02300 -0.02302 1.95929 A9 1.60604 -0.00021 0.00000 -0.00772 -0.00771 1.59832 A10 1.54276 -0.00003 -0.00005 0.00753 0.00749 1.55025 A11 1.55048 -0.00047 -0.00005 0.00234 0.00227 1.55275 A12 3.48824 0.00088 0.00012 0.00214 0.00224 3.49048 A13 3.48129 0.00109 0.00015 0.00047 0.00060 3.48190 A14 3.97869 0.00201 -0.00040 0.01217 0.01181 3.99049 A15 1.91530 0.00052 -0.00018 0.01436 0.01417 1.92948 A16 1.96175 -0.00019 0.00002 -0.01220 -0.01221 1.94954 A17 4.07622 -0.00216 0.00007 -0.01753 -0.01740 4.05882 D1 1.91699 0.00088 -0.00012 0.01113 0.01097 1.92797 D2 0.00169 0.00036 0.00006 -0.00323 -0.00320 -0.00151 D3 1.96004 -0.00056 -0.00004 -0.00891 -0.00898 1.95106 D4 -0.00171 -0.00036 -0.00006 0.00329 0.00323 0.00152 D5 1.92883 0.00108 0.00021 0.01479 0.01500 1.94383 D6 -0.00172 -0.00036 -0.00006 0.00331 0.00325 0.00153 D7 -1.88115 -0.00166 0.00016 -0.00914 -0.00898 -1.89013 D8 1.96743 -0.00021 0.00027 -0.00707 -0.00673 1.96071 D9 0.00171 0.00036 0.00006 -0.00328 -0.00324 -0.00152 Item Value Threshold Converged? Maximum Force 0.002914 0.000450 NO RMS Force 0.001156 0.000300 NO Maximum Displacement 0.048587 0.001800 NO RMS Displacement 0.016612 0.001200 NO Predicted change in Energy=-1.337795D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.929061 1.478294 -0.046002 2 13 0 2.607275 1.584234 0.064555 3 17 0 -2.002763 1.569490 1.829483 4 17 0 -1.897496 1.281440 -1.974287 5 17 0 3.642941 1.566985 -1.844414 6 17 0 3.662115 1.798908 1.945961 7 35 0 0.798695 3.333012 -0.116336 8 35 0 0.908630 -0.265287 0.131657 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.539650 0.000000 3 Cl 2.163006 4.936359 0.000000 4 Cl 2.166772 4.953940 3.816113 0.000000 5 Cl 4.913792 2.171881 6.735837 5.549311 0.000000 6 Cl 5.014938 2.167593 5.670718 6.822418 3.797513 7 Br 2.535758 2.522283 3.839842 3.863985 3.767604 8 Br 2.539438 2.512096 3.837347 3.834280 3.839080 6 7 8 6 Cl 0.000000 7 Br 3.847820 0.000000 8 Br 3.890281 3.608510 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.780879 -0.013360 -0.026814 2 13 0 -1.757967 -0.004132 0.048026 3 17 0 2.786969 -1.927972 -0.052127 4 17 0 2.820293 1.887635 0.000315 5 17 0 -2.728787 1.937988 -0.004350 6 17 0 -2.883015 -1.856381 0.004416 7 35 0 -0.036330 0.004581 -1.795287 8 35 0 0.030025 -0.018130 1.812542 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4953410 0.2844999 0.2833245 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.2356860536 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.998916 -0.046363 -0.000515 -0.004153 Ang= -5.34 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22166792 A.U. after 10 cycles NFock= 10 Conv=0.80D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.003699372 0.000670897 -0.001051080 2 13 0.000656846 0.001909995 -0.002364275 3 17 -0.001073591 0.000040860 0.001267965 4 17 -0.000354179 0.000232986 -0.000156613 5 17 0.000544919 -0.001240457 0.000274407 6 17 -0.000496416 -0.000882049 0.000588845 7 35 -0.002714549 -0.000071174 0.000722296 8 35 -0.000262401 -0.000661059 0.000718455 ------------------------------------------------------------------- Cartesian Forces: Max 0.003699372 RMS 0.001292213 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002031276 RMS 0.000931382 Search for a local minimum. Step number 27 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 22 23 24 25 26 27 DE= -1.99D-04 DEPred=-1.34D-04 R= 1.49D+00 TightC=F SS= 1.41D+00 RLast= 6.21D-02 DXNew= 5.0454D+00 1.8635D-01 Trust test= 1.49D+00 RLast= 6.21D-02 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 ITU= 1 0 1 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.01841 0.02364 0.03455 0.03981 0.04517 Eigenvalues --- 0.05418 0.06804 0.08843 0.12200 0.13700 Eigenvalues --- 0.15282 0.16452 0.18878 0.22617 0.22766 Eigenvalues --- 0.24829 0.28136 0.38905 RFO step: Lambda=-1.86456408D-04 EMin= 1.84083699D-02 Quartic linear search produced a step of 0.56705. Iteration 1 RMS(Cart)= 0.01592736 RMS(Int)= 0.00017332 Iteration 2 RMS(Cart)= 0.00020994 RMS(Int)= 0.00005187 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00005187 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.08749 0.00164 0.00341 0.00663 0.01004 4.09753 R2 4.09461 0.00028 -0.00046 -0.00064 -0.00110 4.09350 R3 4.79189 -0.00156 0.00292 -0.00398 -0.00106 4.79082 R4 4.79884 -0.00022 -0.00868 -0.00729 -0.01599 4.78286 R5 4.10426 0.00003 0.00187 -0.00517 -0.00329 4.10097 R6 4.09616 0.00018 0.00175 0.00079 0.00254 4.09870 R7 4.76642 0.00109 -0.00864 0.00430 -0.00433 4.76209 R8 4.74717 0.00000 0.01772 0.00064 0.01836 4.76554 A1 2.15749 -0.00021 -0.00309 -0.00400 -0.00722 2.15027 A2 1.90862 -0.00017 0.00243 -0.00433 -0.00195 1.90666 A3 1.90003 0.00016 0.00150 -0.00200 -0.00055 1.89948 A4 1.58186 0.00103 -0.00116 0.00341 0.00227 1.58413 A5 2.13132 -0.00005 0.00309 0.00045 0.00345 2.13477 A6 1.85917 0.00187 0.00361 0.02362 0.02723 1.88640 A7 1.91779 0.00025 0.00718 -0.01119 -0.00404 1.91374 A8 1.95929 -0.00203 -0.01305 -0.00350 -0.01663 1.94265 A9 1.59832 0.00043 -0.00437 -0.00002 -0.00437 1.59395 A10 1.55025 -0.00070 0.00425 -0.00241 0.00183 1.55208 A11 1.55275 -0.00076 0.00128 -0.00097 0.00027 1.55302 A12 3.49048 0.00086 0.00127 -0.00092 0.00031 3.49079 A13 3.48190 0.00119 0.00034 0.00141 0.00172 3.48361 A14 3.99049 0.00182 0.00669 0.02408 0.03068 4.02117 A15 1.92948 0.00018 0.00804 0.01063 0.01863 1.94810 A16 1.94954 0.00013 -0.00692 0.00105 -0.00590 1.94364 A17 4.05882 -0.00174 -0.00987 -0.01341 -0.02332 4.03550 D1 1.92797 0.00053 0.00622 0.01137 0.01754 1.94551 D2 -0.00151 0.00035 -0.00181 0.00073 -0.00109 -0.00260 D3 1.95106 -0.00022 -0.00509 0.00032 -0.00483 1.94623 D4 0.00152 -0.00035 0.00183 -0.00073 0.00108 0.00259 D5 1.94383 0.00032 0.00850 -0.00911 -0.00067 1.94316 D6 0.00153 -0.00035 0.00184 -0.00074 0.00108 0.00261 D7 -1.89013 -0.00186 -0.00509 -0.02296 -0.02800 -1.91814 D8 1.96071 0.00005 -0.00382 -0.00827 -0.01224 1.94846 D9 -0.00152 0.00035 -0.00184 0.00074 -0.00109 -0.00261 Item Value Threshold Converged? Maximum Force 0.002031 0.000450 NO RMS Force 0.000931 0.000300 NO Maximum Displacement 0.048052 0.001800 NO RMS Displacement 0.015920 0.001200 NO Predicted change in Energy=-1.459788D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.925725 1.469538 -0.037381 2 13 0 2.611810 1.599268 0.048961 3 17 0 -2.011573 1.573822 1.836562 4 17 0 -1.899186 1.284580 -1.963655 5 17 0 3.668369 1.552591 -1.846033 6 17 0 3.643062 1.796589 1.946821 7 35 0 0.790830 3.333643 -0.113297 8 35 0 0.912748 -0.262955 0.118638 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.540965 0.000000 3 Cl 2.168318 4.956999 0.000000 4 Cl 2.166187 4.949620 3.812865 0.000000 5 Cl 4.937997 2.170137 6.769320 5.575243 0.000000 6 Cl 4.991776 2.168938 5.660096 6.802242 3.800779 7 Br 2.535194 2.519990 3.840883 3.854695 3.801940 8 Br 2.530979 2.521813 3.857028 3.825935 3.840519 6 7 8 6 Cl 0.000000 7 Br 3.839511 0.000000 8 Br 3.877963 3.606130 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.777264 -0.008126 -0.010611 2 13 0 -1.763497 -0.002859 0.027041 3 17 0 2.811077 -1.910202 0.111621 4 17 0 2.804935 1.893674 -0.149968 5 17 0 -2.770278 1.910833 -0.156461 6 17 0 -2.848771 -1.876550 0.152553 7 35 0 -0.023303 -0.148570 -1.789781 8 35 0 0.019665 0.144026 1.804202 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4955651 0.2842105 0.2827684 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1731.6652561578 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999107 0.041986 0.001588 -0.004379 Ang= 4.84 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22185248 A.U. after 10 cycles NFock= 10 Conv=0.77D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.002382924 0.000839382 0.000263846 2 13 0.000033724 0.000934786 -0.001080100 3 17 -0.000047728 -0.000248643 0.000013506 4 17 -0.000553960 0.000164011 -0.000535285 5 17 0.000344065 -0.000683324 0.000029229 6 17 -0.000399518 -0.000709155 0.000195192 7 35 -0.001831152 0.000204901 0.000255710 8 35 0.000071647 -0.000501957 0.000857901 ------------------------------------------------------------------- Cartesian Forces: Max 0.002382924 RMS 0.000788433 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001649392 RMS 0.000665765 Search for a local minimum. Step number 28 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 DE= -1.85D-04 DEPred=-1.46D-04 R= 1.26D+00 TightC=F SS= 1.41D+00 RLast= 7.07D-02 DXNew= 5.0454D+00 2.1219D-01 Trust test= 1.26D+00 RLast= 7.07D-02 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 ITU= 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01841 0.02379 0.03440 0.04286 0.04665 Eigenvalues --- 0.05348 0.06565 0.08732 0.09714 0.12883 Eigenvalues --- 0.15502 0.16176 0.18670 0.22750 0.22792 Eigenvalues --- 0.26191 0.27963 0.37722 En-DIIS/RFO-DIIS IScMMF= 0 using points: 28 27 RFO step: Lambda=-4.48116539D-05. DidBck=F Rises=F RFO-DIIS coefs: 1.76646 -0.76646 Iteration 1 RMS(Cart)= 0.01566312 RMS(Int)= 0.00020214 Iteration 2 RMS(Cart)= 0.00021952 RMS(Int)= 0.00009988 Iteration 3 RMS(Cart)= 0.00000002 RMS(Int)= 0.00009988 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09753 0.00002 0.00769 -0.00223 0.00546 4.10299 R2 4.09350 0.00071 -0.00085 0.00253 0.00168 4.09518 R3 4.79082 -0.00105 -0.00082 -0.00821 -0.00901 4.78181 R4 4.78286 -0.00006 -0.01225 -0.00495 -0.01720 4.76566 R5 4.10097 0.00016 -0.00252 0.00150 -0.00102 4.09994 R6 4.09870 -0.00008 0.00195 -0.00091 0.00104 4.09974 R7 4.76209 0.00075 -0.00332 -0.00328 -0.00661 4.75548 R8 4.76554 -0.00037 0.01407 0.00471 0.01878 4.78431 A1 2.15027 -0.00001 -0.00553 0.00068 -0.00494 2.14533 A2 1.90666 -0.00004 -0.00150 0.00348 0.00194 1.90860 A3 1.89948 0.00020 -0.00042 0.00661 0.00614 1.90563 A4 1.58413 0.00097 0.00174 0.00569 0.00746 1.59159 A5 2.13477 0.00006 0.00264 0.00021 0.00266 2.13743 A6 1.88640 0.00094 0.02087 -0.00023 0.02062 1.90702 A7 1.91374 0.00018 -0.00310 0.00221 -0.00100 1.91274 A8 1.94265 -0.00165 -0.01275 -0.01049 -0.02340 1.91925 A9 1.59395 0.00066 -0.00335 0.00262 -0.00072 1.59323 A10 1.55208 -0.00083 0.00141 -0.00300 -0.00161 1.55047 A11 1.55302 -0.00080 0.00021 -0.00532 -0.00514 1.54787 A12 3.49079 0.00093 0.00024 0.00917 0.00940 3.50019 A13 3.48361 0.00117 0.00132 0.01230 0.01360 3.49722 A14 4.02117 0.00100 0.02352 -0.00001 0.02328 4.04445 A15 1.94810 -0.00038 0.01428 -0.00663 0.00760 1.95570 A16 1.94364 0.00021 -0.00453 -0.00375 -0.00829 1.93535 A17 4.03550 -0.00117 -0.01788 -0.01020 -0.02819 4.00731 D1 1.94551 -0.00011 0.01344 -0.00774 0.00569 1.95120 D2 -0.00260 0.00027 -0.00083 -0.00111 -0.00191 -0.00451 D3 1.94623 -0.00005 -0.00370 -0.00265 -0.00640 1.93983 D4 0.00259 -0.00027 0.00083 0.00110 0.00189 0.00448 D5 1.94316 0.00030 -0.00051 0.00436 0.00376 1.94692 D6 0.00261 -0.00027 0.00083 0.00111 0.00188 0.00449 D7 -1.91814 -0.00102 -0.02146 -0.00222 -0.02358 -1.94172 D8 1.94846 0.00033 -0.00938 0.00554 -0.00423 1.94424 D9 -0.00261 0.00027 -0.00083 -0.00111 -0.00189 -0.00450 Item Value Threshold Converged? Maximum Force 0.001649 0.000450 NO RMS Force 0.000666 0.000300 NO Maximum Displacement 0.047349 0.001800 NO RMS Displacement 0.015725 0.001200 NO Predicted change in Energy=-8.412069D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.917578 1.463015 -0.031271 2 13 0 2.610746 1.615989 0.035530 3 17 0 -2.005739 1.570451 1.844497 4 17 0 -1.900716 1.293873 -1.955083 5 17 0 3.689115 1.541527 -1.845620 6 17 0 3.618006 1.788529 1.949254 7 35 0 0.781033 3.336299 -0.123883 8 35 0 0.915468 -0.262607 0.117192 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.532271 0.000000 3 Cl 2.171207 4.958464 0.000000 4 Cl 2.167076 4.941618 3.811080 0.000000 5 Cl 4.951732 2.169596 6.785953 5.596384 0.000000 6 Cl 4.959835 2.169489 5.628946 6.778260 3.803569 7 Br 2.530425 2.516492 3.841723 3.836218 3.826556 8 Br 2.521878 2.531750 3.857088 3.827250 3.847161 6 7 8 6 Cl 0.000000 7 Br 3.839519 0.000000 8 Br 3.855816 3.609476 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.768372 -0.002347 0.002472 2 13 0 -1.763897 -0.005042 0.003410 3 17 0 2.816653 -1.903217 0.046525 4 17 0 2.792643 1.905975 -0.070973 5 17 0 -2.803734 1.897545 -0.074376 6 17 0 -2.812229 -1.903141 0.073422 7 35 0 -0.008147 -0.065898 -1.798359 8 35 0 0.009722 0.070021 1.808513 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4949947 0.2844756 0.2832371 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.0607056689 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999774 -0.020904 0.001673 -0.003391 Ang= -2.43 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22195602 A.U. after 10 cycles NFock= 10 Conv=0.91D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.000561006 0.000562515 0.000685743 2 13 -0.000020211 -0.000356249 -0.000273974 3 17 0.000456384 -0.000258910 -0.000623771 4 17 -0.000513674 -0.000023083 -0.000473044 5 17 0.000008331 -0.000267072 0.000050175 6 17 -0.000241405 -0.000249289 -0.000022895 7 35 -0.000783315 0.000728179 0.000159034 8 35 0.000532884 -0.000136091 0.000498732 ------------------------------------------------------------------- Cartesian Forces: Max 0.000783315 RMS 0.000426788 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000780838 RMS 0.000401671 Search for a local minimum. Step number 29 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 DE= -1.04D-04 DEPred=-8.41D-05 R= 1.23D+00 TightC=F SS= 1.41D+00 RLast= 6.60D-02 DXNew= 5.0454D+00 1.9792D-01 Trust test= 1.23D+00 RLast= 6.60D-02 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 ITU= 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01838 0.02456 0.03472 0.04227 0.04820 Eigenvalues --- 0.05722 0.06306 0.07455 0.08893 0.12863 Eigenvalues --- 0.15680 0.16041 0.18114 0.22745 0.22989 Eigenvalues --- 0.25748 0.27979 0.36057 En-DIIS/RFO-DIIS IScMMF= 0 using points: 29 28 27 RFO step: Lambda=-1.35432349D-05. DidBck=F Rises=F RFO-DIIS coefs: 1.45294 -0.69346 0.24052 Iteration 1 RMS(Cart)= 0.00723966 RMS(Int)= 0.00002817 Iteration 2 RMS(Cart)= 0.00002593 RMS(Int)= 0.00001300 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001300 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.10299 -0.00078 0.00006 -0.00139 -0.00133 4.10166 R2 4.09518 0.00066 0.00103 0.00117 0.00220 4.09738 R3 4.78181 -0.00013 -0.00383 -0.00145 -0.00527 4.77654 R4 4.76566 0.00023 -0.00395 0.00298 -0.00096 4.76470 R5 4.09994 -0.00003 0.00033 -0.00169 -0.00136 4.09858 R6 4.09974 -0.00015 -0.00014 -0.00044 -0.00057 4.09916 R7 4.75548 0.00068 -0.00195 0.00699 0.00503 4.76051 R8 4.78431 -0.00067 0.00409 -0.00562 -0.00154 4.78278 A1 2.14533 -0.00001 -0.00050 0.00001 -0.00044 2.14489 A2 1.90860 0.00001 0.00135 -0.00174 -0.00038 1.90822 A3 1.90563 0.00011 0.00291 0.00065 0.00358 1.90921 A4 1.59159 0.00052 0.00283 0.00182 0.00465 1.59625 A5 2.13743 0.00012 0.00038 -0.00133 -0.00095 2.13648 A6 1.90702 0.00030 0.00279 0.00447 0.00727 1.91429 A7 1.91274 -0.00007 0.00052 -0.00394 -0.00344 1.90930 A8 1.91925 -0.00067 -0.00660 0.00264 -0.00396 1.91529 A9 1.59323 0.00054 0.00072 0.00187 0.00257 1.59580 A10 1.55047 -0.00063 -0.00117 -0.00267 -0.00384 1.54663 A11 1.54787 -0.00042 -0.00239 -0.00099 -0.00338 1.54450 A12 3.50019 0.00052 0.00418 0.00008 0.00428 3.50447 A13 3.49722 0.00063 0.00575 0.00247 0.00824 3.50545 A14 4.04445 0.00043 0.00317 0.00314 0.00632 4.05077 A15 1.95570 -0.00049 -0.00104 -0.00489 -0.00591 1.94979 A16 1.93535 0.00040 -0.00233 0.00593 0.00361 1.93896 A17 4.00731 -0.00030 -0.00716 0.00059 -0.00656 4.00074 D1 1.95120 -0.00029 -0.00164 -0.00295 -0.00458 1.94662 D2 -0.00451 0.00019 -0.00060 0.00193 0.00133 -0.00318 D3 1.93983 0.00021 -0.00174 0.00402 0.00229 1.94212 D4 0.00448 -0.00019 0.00059 -0.00191 -0.00131 0.00316 D5 1.94692 -0.00001 0.00186 -0.00471 -0.00283 1.94409 D6 0.00449 -0.00019 0.00059 -0.00192 -0.00132 0.00317 D7 -1.94172 -0.00033 -0.00395 -0.00297 -0.00691 -1.94863 D8 1.94424 0.00018 0.00103 0.00011 0.00116 1.94539 D9 -0.00450 0.00019 -0.00060 0.00193 0.00133 -0.00317 Item Value Threshold Converged? Maximum Force 0.000781 0.000450 NO RMS Force 0.000402 0.000300 NO Maximum Displacement 0.020121 0.001800 NO RMS Displacement 0.007246 0.001200 NO Predicted change in Energy=-1.875230D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.913671 1.465272 -0.033717 2 13 0 2.607525 1.620033 0.033918 3 17 0 -1.995092 1.562691 1.845679 4 17 0 -1.904470 1.297649 -1.955040 5 17 0 3.691818 1.531384 -1.842374 6 17 0 3.610811 1.789149 1.949689 7 35 0 0.776296 3.342667 -0.125027 8 35 0 0.917115 -0.261768 0.117488 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.525245 0.000000 3 Cl 2.170504 4.946701 0.000000 4 Cl 2.168239 4.941456 3.811026 0.000000 5 Cl 4.948348 2.168875 6.778175 5.602300 0.000000 6 Cl 4.950731 2.169184 5.611439 6.775456 3.801676 7 Br 2.527636 2.519153 3.838305 3.836347 3.838007 8 Br 2.521370 2.530937 3.846588 3.832557 3.841279 6 7 8 6 Cl 0.000000 7 Br 3.840878 0.000000 8 Br 3.849574 3.615328 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.764084 -0.001224 0.003494 2 13 0 -1.761154 -0.002611 -0.002982 3 17 0 2.804587 -1.905408 0.053777 4 17 0 2.797343 1.903793 -0.063942 5 17 0 -2.804953 1.897671 -0.061553 6 17 0 -2.806844 -1.901967 0.062907 7 35 0 -0.001269 -0.059774 -1.804555 8 35 0 0.004973 0.064070 1.808645 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4943080 0.2849706 0.2834596 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.2785515664 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999998 -0.001603 0.000879 0.000351 Ang= -0.21 deg. ExpMin= 6.39D-02 ExpMax= 6.10D+03 ExpMxC= 6.10D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -7438.22198457 A.U. after 9 cycles NFock= 9 Conv=0.85D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.000060263 0.000237365 0.000403432 2 13 -0.000005069 -0.000509359 -0.000023606 3 17 0.000222870 -0.000136460 -0.000412409 4 17 -0.000272900 -0.000005033 -0.000184857 5 17 -0.000005338 -0.000020731 -0.000161921 6 17 -0.000180636 -0.000077442 0.000068664 7 35 -0.000252218 0.000468051 0.000020770 8 35 0.000433027 0.000043609 0.000289928 ------------------------------------------------------------------- Cartesian Forces: Max 0.000509359 RMS 0.000246341 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000474483 RMS 0.000211706 Search for a local minimum. Step number 30 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 30 DE= -2.85D-05 DEPred=-1.88D-05 R= 1.52D+00 TightC=F SS= 1.41D+00 RLast= 2.28D-02 DXNew= 5.0454D+00 6.8498D-02 Trust test= 1.52D+00 RLast= 2.28D-02 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 ITU= 1 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01902 0.02532 0.03458 0.04124 0.04637 Eigenvalues --- 0.05137 0.05726 0.07480 0.08851 0.12866 Eigenvalues --- 0.15188 0.15734 0.17594 0.22578 0.22843 Eigenvalues --- 0.23347 0.28116 0.33963 En-DIIS/RFO-DIIS IScMMF= 0 using points: 30 29 28 27 RFO step: Lambda=-4.11221784D-06. DidBck=F Rises=F RFO-DIIS coefs: 1.59354 -0.58714 -0.14194 0.13553 Iteration 1 RMS(Cart)= 0.00430740 RMS(Int)= 0.00002300 Iteration 2 RMS(Cart)= 0.00000945 RMS(Int)= 0.00002163 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00002163 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.10166 -0.00047 -0.00211 -0.00033 -0.00244 4.09922 R2 4.09738 0.00029 0.00146 0.00034 0.00181 4.09919 R3 4.77654 0.00008 -0.00304 -0.00018 -0.00322 4.77332 R4 4.76470 0.00022 0.00149 0.00112 0.00260 4.76730 R5 4.09858 0.00014 -0.00037 0.00093 0.00056 4.09914 R6 4.09916 -0.00003 -0.00068 0.00035 -0.00033 4.09883 R7 4.76051 0.00035 0.00353 -0.00029 0.00324 4.76375 R8 4.78278 -0.00047 -0.00328 -0.00088 -0.00415 4.77862 A1 2.14489 -0.00013 0.00068 -0.00187 -0.00115 2.14373 A2 1.90822 0.00009 0.00005 0.00026 0.00033 1.90855 A3 1.90921 0.00012 0.00224 0.00075 0.00300 1.91221 A4 1.59625 0.00015 0.00250 -0.00012 0.00237 1.59862 A5 2.13648 0.00028 -0.00102 0.00211 0.00113 2.13761 A6 1.91429 -0.00006 0.00076 -0.00051 0.00025 1.91454 A7 1.90930 0.00006 -0.00150 -0.00022 -0.00169 1.90761 A8 1.91529 -0.00041 -0.00025 -0.00100 -0.00121 1.91408 A9 1.59580 0.00024 0.00211 0.00033 0.00244 1.59824 A10 1.54663 -0.00026 -0.00254 -0.00003 -0.00257 1.54407 A11 1.54450 -0.00012 -0.00207 -0.00018 -0.00224 1.54226 A12 3.50447 0.00024 0.00256 0.00014 0.00270 3.50717 A13 3.50545 0.00027 0.00474 0.00063 0.00538 3.51083 A14 4.05077 0.00022 -0.00026 0.00160 0.00139 4.05216 A15 1.94979 -0.00021 -0.00598 0.00046 -0.00551 1.94429 A16 1.93896 0.00020 0.00289 0.00122 0.00412 1.94308 A17 4.00074 -0.00002 -0.00091 0.00040 -0.00049 4.00026 D1 1.94662 -0.00012 -0.00506 0.00081 -0.00425 1.94237 D2 -0.00318 0.00009 0.00092 0.00035 0.00126 -0.00192 D3 1.94212 0.00011 0.00197 0.00088 0.00286 1.94499 D4 0.00316 -0.00009 -0.00091 -0.00034 -0.00125 0.00191 D5 1.94409 0.00006 -0.00156 -0.00053 -0.00207 1.94202 D6 0.00317 -0.00009 -0.00092 -0.00034 -0.00125 0.00191 D7 -1.94863 0.00005 -0.00046 0.00080 0.00032 -1.94831 D8 1.94539 -0.00002 0.00232 -0.00105 0.00136 1.94675 D9 -0.00317 0.00009 0.00092 0.00034 0.00126 -0.00192 Item Value Threshold Converged? Maximum Force 0.000474 0.000450 NO RMS Force 0.000212 0.000300 YES Maximum Displacement 0.013546 0.001800 NO RMS Displacement 0.004310 0.001200 NO Predicted change in Energy=-6.436678D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.910902 1.467908 -0.036382 2 13 0 2.605692 1.620269 0.034817 3 17 0 -1.987923 1.557742 1.844424 4 17 0 -1.907902 1.299420 -1.955500 5 17 0 3.689682 1.527376 -1.841785 6 17 0 3.607317 1.789798 1.951222 7 35 0 0.775474 3.346329 -0.125794 8 35 0 0.918895 -0.261764 0.119615 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.520614 0.000000 3 Cl 2.169211 4.937600 0.000000 4 Cl 2.169196 4.943363 3.809535 0.000000 5 Cl 4.942509 2.169170 6.769362 5.603378 0.000000 6 Cl 4.946564 2.169009 5.601069 6.776474 3.802966 7 Br 2.525931 2.520868 3.836297 3.839033 3.840029 8 Br 2.522748 2.528739 3.838641 3.838513 3.837365 6 7 8 6 Cl 0.000000 7 Br 3.841370 0.000000 8 Br 3.845946 3.619272 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.761357 -0.001259 0.002084 2 13 0 -1.759251 -0.000619 -0.003977 3 17 0 2.794821 -1.908168 0.035657 4 17 0 2.803740 1.900630 -0.038744 5 17 0 -2.799636 1.902538 -0.033858 6 17 0 -2.806241 -1.899785 0.035760 7 35 0 0.000530 -0.035272 -1.808623 8 35 0 0.002241 0.038293 1.809902 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4937781 0.2853199 0.2836592 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.4417548345 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999977 -0.006698 0.000360 0.000776 Ang= -0.77 deg. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -7438.22199340 A.U. after 7 cycles NFock= 7 Conv=0.79D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000090743 -0.000017327 -0.000005694 2 13 0.000173621 -0.000475046 -0.000098989 3 17 -0.000045259 -0.000026827 -0.000045669 4 17 -0.000024500 0.000016001 0.000056114 5 17 -0.000032627 0.000067033 -0.000084738 6 17 -0.000127287 -0.000003873 0.000089943 7 35 -0.000090863 0.000287734 -0.000029675 8 35 0.000237658 0.000152305 0.000118707 ------------------------------------------------------------------- Cartesian Forces: Max 0.000475046 RMS 0.000145169 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000259006 RMS 0.000112198 Search for a local minimum. Step number 31 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 30 31 DE= -8.83D-06 DEPred=-6.44D-06 R= 1.37D+00 TightC=F SS= 1.41D+00 RLast= 1.48D-02 DXNew= 5.0454D+00 4.4329D-02 Trust test= 1.37D+00 RLast= 1.48D-02 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 ITU= 0 1 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01878 0.02424 0.03449 0.04217 0.04421 Eigenvalues --- 0.05189 0.05605 0.07709 0.08935 0.12744 Eigenvalues --- 0.13821 0.15870 0.17389 0.20398 0.22821 Eigenvalues --- 0.23696 0.29294 0.32875 En-DIIS/RFO-DIIS IScMMF= 0 using points: 31 30 29 28 27 RFO step: Lambda=-9.19292746D-07. DidBck=F Rises=F RFO-DIIS coefs: 1.55372 -0.77364 0.19159 0.07802 -0.04970 Iteration 1 RMS(Cart)= 0.00109233 RMS(Int)= 0.00000579 Iteration 2 RMS(Cart)= 0.00000080 RMS(Int)= 0.00000576 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09922 -0.00002 -0.00072 -0.00003 -0.00075 4.09847 R2 4.09919 -0.00004 0.00042 -0.00018 0.00024 4.09943 R3 4.77332 0.00012 -0.00042 0.00044 0.00002 4.77333 R4 4.76730 0.00011 0.00135 0.00015 0.00149 4.76879 R5 4.09914 0.00005 0.00047 -0.00056 -0.00009 4.09905 R6 4.09883 0.00002 0.00004 -0.00016 -0.00012 4.09871 R7 4.76375 0.00026 0.00066 0.00173 0.00239 4.76614 R8 4.77862 -0.00026 -0.00158 -0.00063 -0.00221 4.77641 A1 2.14373 -0.00013 -0.00076 -0.00027 -0.00104 2.14270 A2 1.90855 0.00010 0.00011 0.00018 0.00028 1.90884 A3 1.91221 0.00007 0.00067 0.00038 0.00105 1.91327 A4 1.59862 -0.00004 0.00019 -0.00014 0.00006 1.59868 A5 2.13761 0.00024 0.00093 0.00014 0.00106 2.13867 A6 1.91454 -0.00011 -0.00069 -0.00027 -0.00096 1.91358 A7 1.90761 0.00015 -0.00035 0.00131 0.00095 1.90856 A8 1.91408 -0.00024 0.00004 -0.00085 -0.00082 1.91325 A9 1.59824 0.00001 0.00059 -0.00025 0.00035 1.59859 A10 1.54407 -0.00004 -0.00044 -0.00008 -0.00052 1.54354 A11 1.54226 0.00007 -0.00034 0.00046 0.00012 1.54238 A12 3.50717 0.00006 0.00031 0.00004 0.00034 3.50752 A13 3.51083 0.00002 0.00087 0.00025 0.00111 3.51194 A14 4.05216 0.00013 0.00024 -0.00014 0.00010 4.05225 A15 1.94429 0.00000 -0.00104 -0.00002 -0.00106 1.94322 A16 1.94308 0.00002 0.00143 -0.00012 0.00131 1.94438 A17 4.00026 0.00006 0.00081 0.00045 0.00126 4.00151 D1 1.94237 0.00003 -0.00063 0.00044 -0.00020 1.94217 D2 -0.00192 0.00003 0.00041 0.00046 0.00087 -0.00105 D3 1.94499 -0.00001 0.00102 -0.00057 0.00044 1.94543 D4 0.00191 -0.00003 -0.00040 -0.00046 -0.00086 0.00105 D5 1.94202 0.00011 -0.00066 0.00081 0.00014 1.94216 D6 0.00191 -0.00003 -0.00040 -0.00046 -0.00086 0.00105 D7 -1.94831 0.00013 0.00098 0.00063 0.00160 -1.94670 D8 1.94675 -0.00013 0.00001 0.00003 0.00001 1.94676 D9 -0.00192 0.00003 0.00040 0.00046 0.00086 -0.00105 Item Value Threshold Converged? Maximum Force 0.000259 0.000450 YES RMS Force 0.000112 0.000300 YES Maximum Displacement 0.002910 0.001800 NO RMS Displacement 0.001092 0.001200 YES Predicted change in Energy=-1.007017D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.910466 1.468556 -0.036942 2 13 0 2.606136 1.619290 0.034743 3 17 0 -1.987524 1.557243 1.843441 4 17 0 -1.909211 1.299251 -1.955223 5 17 0 3.689242 1.527936 -1.842391 6 17 0 3.606500 1.789249 1.951695 7 35 0 0.775820 3.347094 -0.125861 8 35 0 0.919836 -0.261543 0.121155 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.520560 0.000000 3 Cl 2.168815 4.937302 0.000000 4 Cl 2.169323 4.944770 3.808220 0.000000 5 Cl 4.941709 2.169123 6.768448 5.604258 0.000000 6 Cl 4.945756 2.168945 5.599879 6.776960 3.803974 7 Br 2.525940 2.522133 3.836377 3.840524 3.839771 8 Br 2.523537 2.527569 3.837576 3.840694 3.837624 6 7 8 6 Cl 0.000000 7 Br 3.841337 0.000000 8 Br 3.843799 3.619947 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.761033 -0.000953 0.001708 2 13 0 -1.759524 0.000136 -0.003109 3 17 0 2.794181 -1.907788 0.020326 4 17 0 2.805586 1.900180 -0.022039 5 17 0 -2.798670 1.904087 -0.018572 6 17 0 -2.805692 -1.899685 0.019945 7 35 0 0.000495 -0.019722 -1.809513 8 35 0 0.001176 0.021583 1.810198 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4937056 0.2853315 0.2836445 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.3817703105 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999991 -0.004297 0.000079 0.000108 Ang= -0.49 deg. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -7438.22199579 A.U. after 7 cycles NFock= 7 Conv=0.30D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000034999 -0.000007406 -0.000093317 2 13 0.000126073 -0.000333895 -0.000082895 3 17 -0.000102244 -0.000010206 0.000076398 4 17 0.000044981 0.000009200 0.000076536 5 17 -0.000017153 0.000050780 -0.000077114 6 17 -0.000084370 0.000009772 0.000090444 7 35 -0.000070486 0.000151851 -0.000035057 8 35 0.000138199 0.000129903 0.000045005 ------------------------------------------------------------------- Cartesian Forces: Max 0.000333895 RMS 0.000104097 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000184141 RMS 0.000082717 Search for a local minimum. Step number 32 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 30 31 32 DE= -2.39D-06 DEPred=-1.01D-06 R= 2.37D+00 TightC=F SS= 1.41D+00 RLast= 5.60D-03 DXNew= 5.0454D+00 1.6805D-02 Trust test= 2.37D+00 RLast= 5.60D-03 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ITU= 0 0 1 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01733 0.02417 0.03282 0.04196 0.04893 Eigenvalues --- 0.05477 0.05598 0.07325 0.08004 0.08986 Eigenvalues --- 0.13126 0.15843 0.16736 0.18243 0.22964 Eigenvalues --- 0.23717 0.27637 0.30639 En-DIIS/RFO-DIIS IScMMF= 0 using points: 32 31 30 29 28 RFO step: Lambda=-7.42954265D-07. DidBck=F Rises=F RFO-DIIS coefs: 2.61200 -1.73974 0.01609 0.15088 -0.03924 Iteration 1 RMS(Cart)= 0.00174213 RMS(Int)= 0.00000447 Iteration 2 RMS(Cart)= 0.00000252 RMS(Int)= 0.00000398 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000398 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09847 0.00012 -0.00053 0.00067 0.00014 4.09861 R2 4.09943 -0.00009 -0.00002 -0.00015 -0.00017 4.09926 R3 4.77333 0.00005 0.00067 -0.00113 -0.00046 4.77288 R4 4.76879 0.00005 0.00150 0.00033 0.00183 4.77063 R5 4.09905 0.00006 -0.00010 0.00023 0.00013 4.09918 R6 4.09871 0.00004 -0.00005 0.00022 0.00017 4.09888 R7 4.76614 0.00017 0.00262 0.00097 0.00359 4.76973 R8 4.77641 -0.00017 -0.00213 -0.00104 -0.00317 4.77325 A1 2.14270 -0.00006 -0.00167 -0.00016 -0.00183 2.14087 A2 1.90884 0.00009 0.00053 0.00070 0.00124 1.91008 A3 1.91327 0.00000 0.00115 -0.00041 0.00074 1.91401 A4 1.59868 -0.00004 -0.00044 0.00027 -0.00016 1.59852 A5 2.13867 0.00018 0.00177 0.00055 0.00232 2.14099 A6 1.91358 -0.00009 -0.00159 -0.00007 -0.00166 1.91192 A7 1.90856 0.00011 0.00210 -0.00028 0.00181 1.91037 A8 1.91325 -0.00015 -0.00165 0.00067 -0.00099 1.91227 A9 1.59859 -0.00002 -0.00007 0.00012 0.00004 1.59863 A10 1.54354 0.00000 -0.00015 -0.00025 -0.00040 1.54315 A11 1.54238 0.00006 0.00065 -0.00014 0.00051 1.54289 A12 3.50752 0.00005 0.00010 0.00098 0.00108 3.50859 A13 3.51194 -0.00004 0.00072 -0.00014 0.00058 3.51252 A14 4.05225 0.00010 0.00019 0.00048 0.00066 4.05291 A15 1.94322 0.00003 -0.00005 0.00016 0.00010 1.94333 A16 1.94438 -0.00003 0.00085 -0.00020 0.00066 1.94504 A17 4.00151 0.00005 0.00171 0.00126 0.00297 4.00449 D1 1.94217 0.00004 0.00096 0.00033 0.00129 1.94346 D2 -0.00105 0.00001 0.00101 0.00017 0.00118 0.00013 D3 1.94543 -0.00004 -0.00016 -0.00037 -0.00052 1.94491 D4 0.00105 -0.00001 -0.00101 -0.00017 -0.00118 -0.00013 D5 1.94216 0.00008 0.00095 -0.00044 0.00050 1.94266 D6 0.00105 -0.00001 -0.00101 -0.00017 -0.00118 -0.00013 D7 -1.94670 0.00010 0.00239 0.00025 0.00264 -1.94406 D8 1.94676 -0.00012 -0.00044 -0.00086 -0.00132 1.94544 D9 -0.00105 0.00001 0.00101 0.00017 0.00118 0.00013 Item Value Threshold Converged? Maximum Force 0.000184 0.000450 YES RMS Force 0.000083 0.000300 YES Maximum Displacement 0.004006 0.001800 NO RMS Displacement 0.001742 0.001200 NO Predicted change in Energy=-1.268336D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.909789 1.469265 -0.036728 2 13 0 2.607389 1.617170 0.034074 3 17 0 -1.989517 1.556927 1.842256 4 17 0 -1.909262 1.299393 -1.954478 5 17 0 3.688459 1.529132 -1.844471 6 17 0 3.605246 1.789189 1.952250 7 35 0 0.776626 3.347366 -0.125538 8 35 0 0.921183 -0.261366 0.123250 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.520998 0.000000 3 Cl 2.168889 4.940111 0.000000 4 Cl 2.169233 4.945246 3.806305 0.000000 5 Cl 4.941194 2.169191 6.769944 5.603513 0.000000 6 Cl 4.944080 2.169035 5.600663 6.775857 3.806526 7 Br 2.525697 2.524034 3.837894 3.840991 3.839203 8 Br 2.524506 2.525893 3.838404 3.842440 3.838701 6 7 8 6 Cl 0.000000 7 Br 3.840080 0.000000 8 Br 3.841121 3.620185 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.760522 -0.000211 0.001248 2 13 0 -1.760475 0.000558 -0.001091 3 17 0 2.797197 -1.905305 0.002267 4 17 0 2.805028 1.900988 -0.003381 5 17 0 -2.798484 1.905270 -0.001652 6 17 0 -2.803464 -1.901252 0.001363 7 35 0 0.000033 -0.002204 -1.809779 8 35 0 -0.000184 0.002220 1.810403 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4936318 0.2853075 0.2836284 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.2893083403 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999988 -0.004913 0.000066 -0.000212 Ang= -0.56 deg. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -7438.22199785 A.U. after 7 cycles NFock= 7 Conv=0.39D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000020641 0.000051559 -0.000038852 2 13 0.000051778 -0.000081979 -0.000049534 3 17 -0.000052229 -0.000010705 0.000088358 4 17 0.000076503 -0.000019262 0.000022578 5 17 -0.000006894 0.000010132 -0.000008102 6 17 -0.000023557 -0.000003688 0.000032306 7 35 -0.000042417 0.000002167 -0.000026337 8 35 0.000017457 0.000051777 -0.000020418 ------------------------------------------------------------------- Cartesian Forces: Max 0.000088358 RMS 0.000041613 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000102220 RMS 0.000041246 Search for a local minimum. Step number 33 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 30 31 32 33 DE= -2.06D-06 DEPred=-1.27D-06 R= 1.62D+00 TightC=F SS= 1.41D+00 RLast= 8.52D-03 DXNew= 5.0454D+00 2.5557D-02 Trust test= 1.62D+00 RLast= 8.52D-03 DXMaxT set to 3.00D+00 ITU= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ITU= 1 0 0 1 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01682 0.02418 0.03336 0.04101 0.04674 Eigenvalues --- 0.05352 0.05509 0.06427 0.07482 0.08929 Eigenvalues --- 0.13117 0.15796 0.16636 0.17872 0.23085 Eigenvalues --- 0.23275 0.25118 0.30690 En-DIIS/RFO-DIIS IScMMF= 0 using points: 33 32 31 30 29 RFO step: Lambda=-1.50930800D-07. DidBck=F Rises=F RFO-DIIS coefs: 1.41556 -0.61910 0.08570 0.16740 -0.04955 Iteration 1 RMS(Cart)= 0.00080543 RMS(Int)= 0.00000067 Iteration 2 RMS(Cart)= 0.00000036 RMS(Int)= 0.00000061 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09861 0.00010 0.00043 0.00002 0.00045 4.09906 R2 4.09926 -0.00005 -0.00022 -0.00004 -0.00026 4.09900 R3 4.77288 -0.00002 -0.00008 -0.00007 -0.00014 4.77273 R4 4.77063 -0.00001 0.00010 0.00013 0.00024 4.77086 R5 4.09918 0.00000 -0.00006 -0.00003 -0.00009 4.09909 R6 4.09888 0.00002 0.00011 0.00001 0.00012 4.09900 R7 4.76973 0.00005 0.00087 0.00029 0.00116 4.77090 R8 4.77325 -0.00004 -0.00045 -0.00053 -0.00098 4.77227 A1 2.14087 0.00005 -0.00043 0.00039 -0.00004 2.14083 A2 1.91008 0.00005 0.00040 0.00035 0.00075 1.91083 A3 1.91401 -0.00009 -0.00008 -0.00055 -0.00064 1.91337 A4 1.59852 -0.00001 -0.00013 -0.00006 -0.00019 1.59833 A5 2.14099 0.00005 0.00057 -0.00001 0.00056 2.14155 A6 1.91192 -0.00002 -0.00016 -0.00020 -0.00036 1.91155 A7 1.91037 0.00004 0.00059 0.00014 0.00073 1.91110 A8 1.91227 -0.00005 -0.00030 -0.00016 -0.00045 1.91181 A9 1.59863 -0.00002 -0.00021 0.00000 -0.00021 1.59842 A10 1.54315 0.00000 0.00005 -0.00003 0.00002 1.54317 A11 1.54289 0.00002 0.00029 0.00009 0.00038 1.54327 A12 3.50859 0.00004 0.00027 0.00029 0.00056 3.50915 A13 3.51252 -0.00010 -0.00021 -0.00062 -0.00083 3.51170 A14 4.05291 0.00003 0.00040 -0.00021 0.00019 4.05310 A15 1.94333 0.00000 0.00062 -0.00022 0.00040 1.94373 A16 1.94504 -0.00003 -0.00030 -0.00015 -0.00045 1.94459 A17 4.00449 0.00000 0.00071 -0.00011 0.00060 4.00508 D1 1.94346 0.00000 0.00085 -0.00022 0.00063 1.94409 D2 0.00013 0.00000 0.00023 0.00000 0.00023 0.00036 D3 1.94491 -0.00004 -0.00053 -0.00015 -0.00068 1.94423 D4 -0.00013 0.00000 -0.00023 0.00000 -0.00023 -0.00036 D5 1.94266 0.00003 0.00029 0.00012 0.00040 1.94307 D6 -0.00013 0.00000 -0.00023 0.00000 -0.00023 -0.00036 D7 -1.94406 0.00002 0.00039 0.00019 0.00058 -1.94348 D8 1.94544 -0.00003 -0.00065 0.00021 -0.00044 1.94500 D9 0.00013 0.00000 0.00023 0.00000 0.00023 0.00036 Item Value Threshold Converged? Maximum Force 0.000102 0.000450 YES RMS Force 0.000041 0.000300 YES Maximum Displacement 0.002609 0.001800 NO RMS Displacement 0.000805 0.001200 YES Predicted change in Energy=-2.113744D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.909871 1.469651 -0.036188 2 13 0 2.607780 1.616624 0.033605 3 17 0 -1.990898 1.556919 1.842345 4 17 0 -1.908106 1.298997 -1.954358 5 17 0 3.688308 1.529619 -1.845245 6 17 0 3.605077 1.788739 1.952136 7 35 0 0.776729 3.347463 -0.125480 8 35 0 0.921315 -0.260934 0.123802 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.521411 0.000000 3 Cl 2.169129 4.941958 0.000000 4 Cl 2.169095 4.944301 3.806353 0.000000 5 Cl 4.941612 2.169144 6.771444 5.602227 0.000000 6 Cl 4.943683 2.169098 5.601851 6.774639 3.807121 7 Br 2.525622 2.524651 3.839029 3.840487 3.839198 8 Br 2.524632 2.525376 3.839136 3.841583 3.839202 6 7 8 6 Cl 0.000000 7 Br 3.840008 0.000000 8 Br 3.840123 3.619886 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.760599 0.000046 0.000947 2 13 0 -1.760812 0.000385 -0.000500 3 17 0 2.799417 -1.904150 -0.003151 4 17 0 2.803091 1.902197 0.002532 5 17 0 -2.799136 1.904868 0.003295 6 17 0 -2.802434 -1.902245 -0.003555 7 35 0 -0.000059 0.002958 -1.809810 8 35 0 -0.000317 -0.003444 1.810070 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4936314 0.2852905 0.2836389 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.2821644393 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999999 -0.001442 0.000003 -0.000220 Ang= -0.17 deg. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -7438.22199823 A.U. after 6 cycles NFock= 6 Conv=0.61D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000017774 0.000071822 0.000036284 2 13 0.000014839 -0.000008465 -0.000016117 3 17 -0.000000067 -0.000009446 0.000023355 4 17 0.000042169 -0.000021050 -0.000017429 5 17 0.000001199 -0.000001451 -0.000004705 6 17 -0.000012067 -0.000001680 0.000008363 7 35 -0.000028469 -0.000027121 -0.000008608 8 35 0.000000170 -0.000002609 -0.000021144 ------------------------------------------------------------------- Cartesian Forces: Max 0.000071822 RMS 0.000023112 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000080845 RMS 0.000024567 Search for a local minimum. Step number 34 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 30 31 32 33 34 DE= -3.78D-07 DEPred=-2.11D-07 R= 1.79D+00 Trust test= 1.79D+00 RLast= 2.93D-03 DXMaxT set to 3.00D+00 ITU= 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ITU= 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01667 0.02375 0.02994 0.04005 0.04269 Eigenvalues --- 0.04999 0.05672 0.06079 0.08002 0.09073 Eigenvalues --- 0.12230 0.13821 0.15981 0.18409 0.22280 Eigenvalues --- 0.23291 0.23909 0.30177 En-DIIS/RFO-DIIS IScMMF= 0 using points: 34 33 32 31 30 RFO step: Lambda=-6.54570270D-08. DidBck=F Rises=F RFO-DIIS coefs: 2.00517 -1.05631 -0.24118 0.37848 -0.08616 Iteration 1 RMS(Cart)= 0.00072857 RMS(Int)= 0.00000053 Iteration 2 RMS(Cart)= 0.00000037 RMS(Int)= 0.00000042 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09906 0.00002 0.00046 -0.00023 0.00023 4.09929 R2 4.09900 0.00000 -0.00017 0.00010 -0.00006 4.09893 R3 4.77273 -0.00004 -0.00040 -0.00027 -0.00067 4.77206 R4 4.77086 0.00000 -0.00007 0.00043 0.00036 4.77122 R5 4.09909 0.00000 -0.00002 -0.00004 -0.00007 4.09902 R6 4.09900 0.00000 0.00012 -0.00010 0.00002 4.09902 R7 4.77090 0.00001 0.00057 0.00017 0.00074 4.77164 R8 4.77227 0.00000 -0.00053 0.00002 -0.00052 4.77175 A1 2.14083 0.00006 0.00026 0.00022 0.00048 2.14130 A2 1.91083 0.00002 0.00064 0.00015 0.00078 1.91161 A3 1.91337 -0.00008 -0.00073 -0.00033 -0.00106 1.91231 A4 1.59833 0.00001 0.00000 0.00000 0.00001 1.59834 A5 2.14155 0.00002 0.00023 0.00007 0.00030 2.14185 A6 1.91155 0.00000 0.00002 -0.00008 -0.00005 1.91150 A7 1.91110 0.00001 0.00021 0.00010 0.00031 1.91141 A8 1.91181 -0.00002 -0.00027 0.00019 -0.00008 1.91173 A9 1.59842 0.00000 -0.00010 0.00000 -0.00011 1.59831 A10 1.54317 -0.00001 -0.00003 0.00006 0.00003 1.54319 A11 1.54327 -0.00001 0.00013 -0.00006 0.00007 1.54334 A12 3.50915 0.00003 0.00064 0.00015 0.00079 3.50994 A13 3.51170 -0.00007 -0.00072 -0.00033 -0.00105 3.51064 A14 4.05310 0.00002 0.00025 0.00000 0.00025 4.05335 A15 1.94373 -0.00001 0.00023 -0.00004 0.00020 1.94393 A16 1.94459 -0.00002 -0.00051 -0.00009 -0.00061 1.94399 A17 4.00508 0.00000 0.00004 0.00048 0.00052 4.00561 D1 1.94409 -0.00001 0.00026 -0.00005 0.00021 1.94431 D2 0.00036 0.00000 0.00003 -0.00001 0.00002 0.00038 D3 1.94423 -0.00002 -0.00054 -0.00008 -0.00062 1.94360 D4 -0.00036 0.00000 -0.00003 0.00001 -0.00002 -0.00038 D5 1.94307 0.00001 0.00016 0.00010 0.00026 1.94333 D6 -0.00036 0.00000 -0.00003 0.00001 -0.00002 -0.00038 D7 -1.94348 0.00000 0.00001 0.00006 0.00007 -1.94341 D8 1.94500 -0.00001 -0.00026 -0.00030 -0.00057 1.94443 D9 0.00036 0.00000 0.00003 -0.00001 0.00002 0.00038 Item Value Threshold Converged? Maximum Force 0.000081 0.000450 YES RMS Force 0.000025 0.000300 YES Maximum Displacement 0.002978 0.001800 NO RMS Displacement 0.000729 0.001200 YES Predicted change in Energy=-1.085397D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.909952 1.470262 -0.035576 2 13 0 2.607831 1.616238 0.033231 3 17 0 -1.991684 1.556584 1.842734 4 17 0 -1.906531 1.298808 -1.954498 5 17 0 3.688055 1.529569 -1.845768 6 17 0 3.604808 1.788786 1.951900 7 35 0 0.776656 3.347563 -0.125344 8 35 0 0.921151 -0.260732 0.123937 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.521483 0.000000 3 Cl 2.169249 4.943015 0.000000 4 Cl 2.169061 4.942802 3.806924 0.000000 5 Cl 4.941860 2.169109 6.772386 5.600398 0.000000 6 Cl 4.943134 2.169107 5.602371 6.773099 3.807415 7 Br 2.525266 2.525041 3.839875 3.839622 3.839428 8 Br 2.524822 2.525101 3.839468 3.840292 3.839359 6 7 8 6 Cl 0.000000 7 Br 3.839683 0.000000 8 Br 3.839790 3.619781 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.760619 0.000115 0.000337 2 13 0 -1.760864 0.000115 -0.000045 3 17 0 2.800937 -1.903401 -0.002974 4 17 0 2.800752 1.903519 0.002768 5 17 0 -2.799646 1.904308 0.003506 6 17 0 -2.801434 -1.903100 -0.003568 7 35 0 -0.000087 0.002909 -1.809876 8 35 0 -0.000118 -0.003638 1.809899 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4935903 0.2853122 0.2836835 Standard basis: 3-21G (6D, 7F) There are 124 symmetry adapted cartesian basis functions of A symmetry. There are 124 symmetry adapted basis functions of A symmetry. 124 basis functions, 276 primitive gaussians, 124 cartesian basis functions 82 alpha electrons 82 beta electrons nuclear repulsion energy 1732.3167616873 Hartrees. NAtoms= 8 NActive= 8 NUniq= 8 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 124 RedAO= T EigKep= 4.26D-03 NBF= 124 NBsUse= 124 1.00D-06 EigRej= -1.00D+00 NBFU= 124 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 -0.000019 -0.000017 -0.000202 Ang= -0.02 deg. Keep R1 ints in memory in canonical form, NReq=31078215. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -7438.22199842 A.U. after 6 cycles NFock= 6 Conv=0.39D-08 -V/T= 1.9993 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000021237 0.000040720 0.000052088 2 13 -0.000010435 0.000014916 -0.000003678 3 17 0.000024397 -0.000000908 -0.000020077 4 17 0.000007228 -0.000013246 -0.000023572 5 17 0.000005674 -0.000002058 -0.000004624 6 17 -0.000001779 -0.000003072 0.000003294 7 35 -0.000007231 -0.000019104 0.000004139 8 35 0.000003382 -0.000017248 -0.000007569 ------------------------------------------------------------------- Cartesian Forces: Max 0.000052088 RMS 0.000018064 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000036672 RMS 0.000012953 Search for a local minimum. Step number 35 out of a maximum of 44 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 22 23 24 25 26 27 28 29 30 31 32 33 34 35 DE= -1.90D-07 DEPred=-1.09D-07 R= 1.75D+00 Trust test= 1.75D+00 RLast= 2.64D-03 DXMaxT set to 3.00D+00 ITU= 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ITU= 1 1 1 0 0 1 1 1 1 0 1 0 1 1 0 Eigenvalues --- 0.01685 0.02310 0.03107 0.03776 0.04209 Eigenvalues --- 0.04822 0.05703 0.05826 0.07405 0.08879 Eigenvalues --- 0.09817 0.13488 0.15965 0.17930 0.22635 Eigenvalues --- 0.23250 0.25246 0.29527 En-DIIS/RFO-DIIS IScMMF= 0 using points: 35 34 33 32 31 RFO step: Lambda=-1.58649620D-08. DidBck=F Rises=F RFO-DIIS coefs: 1.56826 -0.70398 0.01739 0.25254 -0.13421 Iteration 1 RMS(Cart)= 0.00029559 RMS(Int)= 0.00000012 Iteration 2 RMS(Cart)= 0.00000008 RMS(Int)= 0.00000009 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09929 -0.00003 -0.00005 -0.00008 -0.00013 4.09916 R2 4.09893 0.00002 0.00005 0.00004 0.00010 4.09903 R3 4.77206 -0.00002 -0.00031 -0.00003 -0.00034 4.77172 R4 4.77122 0.00001 0.00016 0.00012 0.00028 4.77150 R5 4.09902 0.00001 -0.00005 0.00008 0.00003 4.09905 R6 4.09902 0.00000 -0.00004 0.00006 0.00001 4.09903 R7 4.77164 -0.00001 0.00016 -0.00010 0.00005 4.77169 R8 4.77175 0.00000 -0.00008 -0.00005 -0.00013 4.77162 A1 2.14130 0.00003 0.00035 0.00001 0.00036 2.14166 A2 1.91161 -0.00001 0.00024 -0.00009 0.00014 1.91175 A3 1.91231 -0.00004 -0.00046 -0.00016 -0.00062 1.91169 A4 1.59834 0.00001 0.00006 -0.00004 0.00002 1.59835 A5 2.14185 0.00000 -0.00003 0.00001 -0.00002 2.14183 A6 1.91150 0.00000 0.00009 -0.00003 0.00005 1.91155 A7 1.91141 0.00000 -0.00001 0.00007 0.00007 1.91148 A8 1.91173 -0.00001 0.00002 -0.00011 -0.00009 1.91165 A9 1.59831 0.00001 0.00001 0.00001 0.00002 1.59833 A10 1.54319 -0.00001 -0.00001 0.00004 0.00002 1.54322 A11 1.54334 -0.00001 -0.00006 -0.00001 -0.00006 1.54328 A12 3.50994 0.00000 0.00029 -0.00013 0.00016 3.51010 A13 3.51064 -0.00003 -0.00041 -0.00020 -0.00060 3.51004 A14 4.05335 0.00000 0.00005 -0.00002 0.00004 4.05339 A15 1.94393 -0.00001 -0.00010 0.00014 0.00004 1.94396 A16 1.94399 0.00000 -0.00019 0.00008 -0.00010 1.94388 A17 4.00561 0.00000 0.00003 -0.00004 0.00000 4.00560 D1 1.94431 0.00000 -0.00014 0.00009 -0.00006 1.94425 D2 0.00038 0.00000 -0.00005 -0.00005 -0.00009 0.00029 D3 1.94360 0.00000 -0.00014 0.00013 -0.00001 1.94359 D4 -0.00038 0.00000 0.00005 0.00005 0.00009 -0.00029 D5 1.94333 0.00000 0.00005 0.00013 0.00018 1.94351 D6 -0.00038 0.00000 0.00005 0.00005 0.00009 -0.00029 D7 -1.94341 -0.00001 -0.00014 -0.00003 -0.00017 -1.94358 D8 1.94443 0.00000 -0.00010 -0.00002 -0.00013 1.94431 D9 0.00038 0.00000 -0.00005 -0.00005 -0.00009 0.00029 Item Value Threshold Converged? Maximum Force 0.000037 0.000450 YES RMS Force 0.000013 0.000300 YES Maximum Displacement 0.000987 0.001800 YES RMS Displacement 0.000296 0.001200 YES Predicted change in Energy=-2.344066D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,3) 2.1692 -DE/DX = 0.0 ! ! R2 R(1,4) 2.1691 -DE/DX = 0.0 ! ! R3 R(1,7) 2.5253 -DE/DX = 0.0 ! ! R4 R(1,8) 2.5248 -DE/DX = 0.0 ! ! R5 R(2,5) 2.1691 -DE/DX = 0.0 ! ! R6 R(2,6) 2.1691 -DE/DX = 0.0 ! ! R7 R(2,7) 2.525 -DE/DX = 0.0 ! ! R8 R(2,8) 2.5251 -DE/DX = 0.0 ! ! A1 A(3,1,4) 122.6876 -DE/DX = 0.0 ! ! A2 A(3,1,7) 109.5271 -DE/DX = 0.0 ! ! A3 A(4,1,8) 109.5672 -DE/DX = 0.0 ! ! A4 A(7,1,8) 91.5779 -DE/DX = 0.0 ! ! A5 A(5,2,6) 122.7192 -DE/DX = 0.0 ! ! A6 A(5,2,7) 109.5209 -DE/DX = 0.0 ! ! A7 A(5,2,8) 109.5157 -DE/DX = 0.0 ! ! A8 A(6,2,8) 109.5342 -DE/DX = 0.0 ! ! A9 A(7,2,8) 91.5766 -DE/DX = 0.0 ! ! A10 A(1,7,2) 88.4185 -DE/DX = 0.0 ! ! A11 A(1,8,2) 88.427 -DE/DX = 0.0 ! ! A12 L(3,1,8,7,-1) 201.105 -DE/DX = 0.0 ! ! A13 L(4,1,7,8,-1) 201.1451 -DE/DX = 0.0 ! ! A14 L(6,2,7,5,-1) 232.2401 -DE/DX = 0.0 ! ! A15 L(3,1,8,7,-2) 111.3788 -DE/DX = 0.0 ! ! A16 L(4,1,7,8,-2) 111.3821 -DE/DX = 0.0 ! ! A17 L(6,2,7,5,-2) 229.5044 -DE/DX = 0.0 ! ! D1 D(3,1,7,2) 111.4006 -DE/DX = 0.0 ! ! D2 D(8,1,7,2) 0.0218 -DE/DX = 0.0 ! ! D3 D(4,1,8,2) 111.3604 -DE/DX = 0.0 ! ! D4 D(7,1,8,2) -0.0218 -DE/DX = 0.0 ! ! D5 D(5,2,7,1) 111.3446 -DE/DX = 0.0 ! ! D6 D(8,2,7,1) -0.0218 -DE/DX = 0.0 ! ! D7 D(5,2,8,1) -111.3493 -DE/DX = 0.0 ! ! D8 D(6,2,8,1) 111.4077 -DE/DX = 0.0 ! ! D9 D(7,2,8,1) 0.0218 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.909952 1.470262 -0.035576 2 13 0 2.607831 1.616238 0.033231 3 17 0 -1.991684 1.556584 1.842734 4 17 0 -1.906531 1.298808 -1.954498 5 17 0 3.688055 1.529569 -1.845768 6 17 0 3.604808 1.788786 1.951900 7 35 0 0.776656 3.347563 -0.125344 8 35 0 0.921151 -0.260732 0.123937 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Al 0.000000 2 Al 3.521483 0.000000 3 Cl 2.169249 4.943015 0.000000 4 Cl 2.169061 4.942802 3.806924 0.000000 5 Cl 4.941860 2.169109 6.772386 5.600398 0.000000 6 Cl 4.943134 2.169107 5.602371 6.773099 3.807415 7 Br 2.525266 2.525041 3.839875 3.839622 3.839428 8 Br 2.524822 2.525101 3.839468 3.840292 3.839359 6 7 8 6 Cl 0.000000 7 Br 3.839683 0.000000 8 Br 3.839790 3.619781 0.000000 Stoichiometry Al2Br2Cl4 Framework group C1[X(Al2Br2Cl4)] Deg. of freedom 18 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 1.760619 0.000115 0.000337 2 13 0 -1.760864 0.000115 -0.000045 3 17 0 2.800937 -1.903401 -0.002974 4 17 0 2.800752 1.903519 0.002768 5 17 0 -2.799646 1.904308 0.003506 6 17 0 -2.801434 -1.903100 -0.003568 7 35 0 -0.000087 0.002909 -1.809876 8 35 0 -0.000118 -0.003638 1.809899 --------------------------------------------------------------------- Rotational constants (GHZ): 0.4935903 0.2853122 0.2836835 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -479.62449-479.62444-100.84554-100.84553-100.84546 Alpha occ. eigenvalues -- -100.84536 -62.17728 -62.17721 -55.79784 -55.79759 Alpha occ. eigenvalues -- -55.77987 -55.77977 -55.77931 -55.77915 -55.77761 Alpha occ. eigenvalues -- -55.77727 -9.41274 -9.41265 -9.41240 -9.41204 Alpha occ. eigenvalues -- -8.69492 -8.69486 -7.18218 -7.18217 -7.18215 Alpha occ. eigenvalues -- -7.18212 -7.17509 -7.17508 -7.17504 -7.17487 Alpha occ. eigenvalues -- -7.17479 -7.17474 -7.17474 -7.17471 -6.48237 Alpha occ. eigenvalues -- -6.48232 -6.48095 -6.48090 -6.47390 -6.47385 Alpha occ. eigenvalues -- -4.25832 -4.25792 -2.80738 -2.80717 -2.80669 Alpha occ. eigenvalues -- -2.80658 -2.80649 -2.80644 -2.57700 -2.57657 Alpha occ. eigenvalues -- -2.57639 -2.57633 -2.57108 -2.57072 -2.56997 Alpha occ. eigenvalues -- -2.56972 -2.56849 -2.56837 -0.87149 -0.85184 Alpha occ. eigenvalues -- -0.84567 -0.84421 -0.84186 -0.84181 -0.50624 Alpha occ. eigenvalues -- -0.49565 -0.43926 -0.43075 -0.42403 -0.40958 Alpha occ. eigenvalues -- -0.40847 -0.38960 -0.37242 -0.37234 -0.36156 Alpha occ. eigenvalues -- -0.35923 -0.35715 -0.35220 -0.35195 -0.34840 Alpha occ. eigenvalues -- -0.34546 -0.34340 Alpha virt. eigenvalues -- -0.10604 -0.09639 -0.06085 -0.00991 -0.00591 Alpha virt. eigenvalues -- 0.00102 0.01485 0.02727 0.12505 0.14903 Alpha virt. eigenvalues -- 0.15652 0.17117 0.18070 0.19422 0.20614 Alpha virt. eigenvalues -- 0.27209 0.49959 0.51498 0.52638 0.53807 Alpha virt. eigenvalues -- 0.55651 0.55705 0.55737 0.57566 0.62492 Alpha virt. eigenvalues -- 0.62505 0.64477 0.64832 0.64858 0.67318 Alpha virt. eigenvalues -- 0.68253 0.71428 0.74830 0.75701 0.75851 Alpha virt. eigenvalues -- 0.75985 0.79082 0.79428 0.95085 1.04874 Alpha virt. eigenvalues -- 24.26325 25.25449 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 Al 11.408506 -0.076829 0.248720 0.248732 -0.001991 -0.001996 2 Al -0.076829 11.408528 -0.001996 -0.001998 0.248671 0.248718 3 Cl 0.248720 -0.001996 17.148592 -0.016407 -0.000001 0.000011 4 Cl 0.248732 -0.001998 -0.016407 17.148476 0.000011 -0.000001 5 Cl -0.001991 0.248671 -0.000001 0.000011 17.148582 -0.016382 6 Cl -0.001996 0.248718 0.000011 -0.000001 -0.016382 17.148485 7 Br 0.146287 0.146326 -0.016940 -0.016950 -0.016963 -0.016950 8 Br 0.146274 0.146266 -0.016958 -0.016928 -0.016962 -0.016942 7 8 1 Al 0.146287 0.146274 2 Al 0.146326 0.146266 3 Cl -0.016940 -0.016958 4 Cl -0.016950 -0.016928 5 Cl -0.016963 -0.016962 6 Cl -0.016950 -0.016942 7 Br 35.007123 -0.039552 8 Br -0.039552 35.007158 Mulliken charges: 1 1 Al 0.882296 2 Al 0.882312 3 Cl -0.345021 4 Cl -0.344937 5 Cl -0.344966 6 Cl -0.344945 7 Br -0.192382 8 Br -0.192356 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Al 0.882296 2 Al 0.882312 3 Cl -0.345021 4 Cl -0.344937 5 Cl -0.344966 6 Cl -0.344945 7 Br -0.192382 8 Br -0.192356 Electronic spatial extent (au): = 4168.9583 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0028 Y= -0.0002 Z= 0.0023 Tot= 0.0037 Quadrupole moment (field-independent basis, Debye-Ang): XX= -131.0079 YY= -130.5063 ZZ= -111.8470 XY= 0.0038 XZ= 0.0031 YZ= -0.0313 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -6.5542 YY= -6.0526 ZZ= 12.6067 XY= 0.0038 XZ= 0.0031 YZ= -0.0313 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0433 YYY= -0.0329 ZZZ= 0.0039 XYY= -0.0011 XXY= 0.0110 XXZ= 0.0075 XZZ= -0.0030 YZZ= -0.0066 YYZ= 0.0001 XYZ= 0.0088 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -3268.8167 YYYY= -1319.3722 ZZZZ= -841.1788 XXXY= -0.0085 XXXZ= 0.0114 YYYX= 0.0412 YYYZ= -0.3614 ZZZX= -0.0022 ZZZY= -0.3572 XXYY= -838.4098 XXZZ= -632.1066 YYZZ= -359.4853 XXYZ= -0.3345 YYXZ= -0.0042 ZZXY= 0.0026 N-N= 1.732316761687D+03 E-N=-2.124223196391D+04 KE= 7.443349522782D+03 1\1\GINC-CX1-15-34-2\FOpt\RB3LYP\3-21G\Al2Br2Cl4\SCAN-USER-1\25-Jan-20 14\0\\# opt b3lyp/3-21g geom=connectivity\\Al2Cl4Br2_1\\0,1\Al,-0.9099 522441,1.4702617999,-0.0355757689\Al,2.6078310977,1.6162384585,0.03323 12471\Cl,-1.9916842663,1.556584229,1.8427339716\Cl,-1.9065307127,1.298 8076097,-1.954497787\Cl,3.6880547045,1.5295686365,-1.8457684944\Cl,3.6 048081275,1.7887860994,1.9518995855\Br,0.7766562503,3.3475629077,-0.12 53435873\Br,0.9211509631,-0.2607323306,0.1239370735\\Version=ES64L-G09 RevD.01\State=1-A\HF=-7438.2219984\RMSD=3.946e-09\RMSF=1.806e-05\Dipol e=0.0011478,-0.0008509,0.0001721\Quadrupole=-4.8502949,9.2847635,-4.43 44686,-0.5648397,0.0334011,-0.9507068\PG=C01 [X(Al2Br2Cl4)]\\@ Where a calculator on the ENIAC is equipped with 18,000 vacuum tubes and weighs 30 tons, computers inthe future may have only 1,000 vacuum tubes and weigh only 1 1/2 tons. ---Popular Mechanics, March 1949 Job cpu time: 0 days 0 hours 18 minutes 14.3 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Sat Jan 25 14:59:32 2014.