Entering Link 1 = C:\G03W\l1.exe PID= 4484. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 14-Mar-2011 ****************************************** %chk=H:\Computational Work 2\yz908_Fe3Ni2_VIB.chk ------------------------------------- # freq rb3lyp/3-21g geom=connectivity ------------------------------------- 1/10=4,30=1,38=1,57=2/1,3; 2/17=6,18=5,40=1/2; 3/5=5,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4/7=1/1; 5/5=2,38=5/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; -------------------- Vibrations of Fe3Ni2 -------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Fe 0.02366 -0.10884 0.96695 Fe -0.20452 1.56939 -0.48428 Fe 0.20458 -1.44637 -0.59868 Ni -2.09855 -0.14432 0.05345 Ni 2.07652 0.13115 0.05427 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 26 0 0.023662 -0.108835 0.966951 2 26 0 -0.204516 1.569390 -0.484283 3 26 0 0.204581 -1.446375 -0.598676 4 28 0 -2.098551 -0.144318 0.053454 5 28 0 2.076519 0.131151 0.054269 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Fe 0.000000 2 Fe 2.230377 0.000000 3 Fe 2.067107 3.045534 0.000000 4 Ni 2.310742 2.610234 2.724893 0.000000 5 Ni 2.259381 2.749853 2.533589 4.184148 0.000000 Stoichiometry Fe3Ni2 Framework group C1[X(Fe3Ni2)] Deg. of freedom 9 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 26 0 0.023662 -0.108835 0.966951 2 26 0 -0.204516 1.569390 -0.484283 3 26 0 0.204581 -1.446375 -0.598676 4 28 0 -2.098551 -0.144318 0.053454 5 28 0 2.076519 0.131151 0.054269 --------------------------------------------------------------------- Rotational constants (GHZ): 1.4715099 0.8486980 0.6586321 Standard basis: 3-21G (6D, 7F) There are 145 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 145 basis functions, 285 primitive gaussians, 145 cartesian basis functions 67 alpha electrons 67 beta electrons nuclear repulsion energy 1468.3953184673 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 145 RedAO= T NBF= 145 NBsUse= 145 1.00D-06 NBFU= 145 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.64D-02 ExpMax= 3.85D+03 ExpMxC= 3.85D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. EnCoef did 13 forward-backward iterations EnCoef did 16 forward-backward iterations EnCoef did 17 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 22 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 16 forward-backward iterations Restarting incremental Fock formation. EnCoef did 100 forward-backward iterations Matrix for removal 6 Erem= -6740.84140693223 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 8 Erem= -6747.20953202793 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 4 Erem= -6747.64336564028 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 3 Erem= -6748.30517902003 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 3 Erem= -6749.89470754411 Crem= 0.000D+00 EnCoef did 14 forward-backward iterations Matrix for removal 3 Erem= -6764.38506566990 Crem= 0.000D+00 EnCoef did 9 forward-backward iterations Matrix for removal 4 Erem= -6765.50724468270 Crem= 0.000D+00 EnCoef did 3 forward-backward iterations Matrix for removal 3 Erem= -6766.03823451676 Crem= 0.000D+00 EnCoef did 5 forward-backward iterations Matrix for removal 3 Erem= -6767.10432017412 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 4 Erem= -6769.33102608700 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 1 Erem= -6770.00300293724 Crem= 0.000D+00 EnCoef did 4 forward-backward iterations Matrix for removal 2 Erem= -6770.33596636247 Crem= 0.000D+00 EnCoef did 12 forward-backward iterations Matrix for removal 5 Erem= -6771.14326060839 Crem= 0.000D+00 EnCoef did 4 forward-backward iterations Matrix for removal 7 Erem= -6771.35838058199 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 1 Erem= -6771.56235369684 Crem= 0.000D+00 Matrix for removal 5 Erem= -6771.62882901537 Crem= 0.000D+00 Matrix for removal 3 Erem= -6771.96568455904 Crem= 0.000D+00 Matrix for removal 2 Erem= -6772.06482523457 Crem= 0.000D+00 Matrix for removal 3 Erem= -6773.18559739928 Crem= 0.000D+00 Matrix for removal 1 Erem= -6773.28844804417 Crem= 0.000D+00 Restarting incremental Fock formation. Matrix for removal 2 Erem= -6773.67148065610 Crem= 0.000D+00 Matrix for removal 9 Erem= -6773.85342732522 Crem= 0.000D+00 Matrix for removal 7 Erem= -6773.88974898688 Crem= 0.000D+00 Matrix for removal 2 Erem= -6773.93248318619 Crem= 0.000D+00 Matrix for removal 1 Erem= -6773.98591323552 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.12250348250 Crem= 0.000D+00 Matrix for removal 7 Erem= -6774.23294331559 Crem= 0.000D+00 Matrix for removal 6 Erem= -6774.25453017698 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.25870362880 Crem= 0.000D+00 Matrix for removal 3 Erem= -6774.26810548378 Crem= 0.000D+00 Matrix for removal 3 Erem= -6774.27288385897 Crem= 0.000D+00 Matrix for removal 2 Erem= -6774.28527129156 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.31262310203 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.35218576602 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.36644047402 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37082460879 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37306372327 Crem= 0.000D+00 Restarting incremental Fock formation. Matrix for removal 1 Erem= -6774.37423132784 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37573234758 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37668398742 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37741769449 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37846707321 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37898471663 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37908958953 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37939190073 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37973359288 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.38009791510 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38013288002 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38056512809 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Restarting incremental Fock formation. Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 17 Erem= -6774.38191192767 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 17 Erem= -6774.38195993084 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38191555673 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38191724270 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38194250438 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38193145232 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38180584642 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38184584860 Crem= 0.000D+00 Restarting incremental Fock formation. Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38186692130 Crem= 0.000D+00 Matrix for removal 18 Erem= -6774.38177205230 Crem= 0.000D+00 Matrix for removal 18 Erem= -6774.38177339310 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 18 Erem= -6774.38186790732 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38178249970 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38175888437 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38189571048 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 18 Erem= -6774.38190183601 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38190846430 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38182287924 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38194686594 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 18 Erem= -6774.38197076814 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38192751334 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38185707394 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38189299892 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38196620922 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38196889700 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38185651190 Crem= 0.000D+00 Matrix for removal 18 Erem= -6774.38197357315 Crem= 0.000D+00 Restarting incremental Fock formation. Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 18 Erem= -6774.38198472512 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38196826007 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38198079650 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38194988053 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38192468340 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38199347645 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38200655301 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38190357868 Crem= 0.000D+00 Matrix for removal 18 Erem= -6774.38200887830 Crem= 0.000D+00 >>>>>>>>>> Convergence criterion not met. SCF Done: E(RB+HF-LYP) = -6774.38204306 A.U. after 129 cycles Convg = 0.4326D-03 -V/T = 2.0039 S**2 = 0.0000 Convergence failure -- run terminated. Error termination via Lnk1e in C:\G03W\l502.exe at Mon Mar 14 22:19:22 2011. Job cpu time: 0 days 0 hours 10 minutes 35.0 seconds. File lengths (MBytes): RWF= 21 Int= 0 D2E= 0 Chk= 5 Scr= 1