Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7212. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 10-May-2018 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\sm6416\2nd Year Lab\SM6416_BNZ_631G_OPT.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------- Benzene Opt ----------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -1.33576 -0.40639 0. C -0.31582 -1.35999 0.00007 C 1.01981 -0.9536 -0.00006 C 1.33573 0.4065 0.00001 C 0.31593 1.35996 0.00006 C -1.01989 0.95352 -0.00006 H -2.37476 -0.72263 -0.00007 H -0.56168 -2.41787 0.00008 H 1.81322 -1.69524 -0.00015 H 2.3748 0.72248 0.00001 H 0.56154 2.41789 0.00002 H -1.81312 1.69536 -0.00006 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3963 estimate D2E/DX2 ! ! R2 R(1,6) 1.3961 estimate D2E/DX2 ! ! R3 R(1,7) 1.0861 estimate D2E/DX2 ! ! R4 R(2,3) 1.3961 estimate D2E/DX2 ! ! R5 R(2,8) 1.0861 estimate D2E/DX2 ! ! R6 R(3,4) 1.3963 estimate D2E/DX2 ! ! R7 R(3,9) 1.0861 estimate D2E/DX2 ! ! R8 R(4,5) 1.3961 estimate D2E/DX2 ! ! R9 R(4,10) 1.0861 estimate D2E/DX2 ! ! R10 R(5,6) 1.3963 estimate D2E/DX2 ! ! R11 R(5,11) 1.0861 estimate D2E/DX2 ! ! R12 R(6,12) 1.0861 estimate D2E/DX2 ! ! A1 A(2,1,6) 119.9982 estimate D2E/DX2 ! ! A2 A(2,1,7) 119.9968 estimate D2E/DX2 ! ! A3 A(6,1,7) 120.005 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.002 estimate D2E/DX2 ! ! A5 A(1,2,8) 119.9911 estimate D2E/DX2 ! ! A6 A(3,2,8) 120.0069 estimate D2E/DX2 ! ! A7 A(2,3,4) 119.9997 estimate D2E/DX2 ! ! A8 A(2,3,9) 120.0083 estimate D2E/DX2 ! ! A9 A(4,3,9) 119.992 estimate D2E/DX2 ! ! A10 A(3,4,5) 119.9982 estimate D2E/DX2 ! ! A11 A(3,4,10) 119.9905 estimate D2E/DX2 ! ! A12 A(5,4,10) 120.0113 estimate D2E/DX2 ! ! A13 A(4,5,6) 120.0023 estimate D2E/DX2 ! ! A14 A(4,5,11) 120.0044 estimate D2E/DX2 ! ! A15 A(6,5,11) 119.9932 estimate D2E/DX2 ! ! A16 A(1,6,5) 119.9996 estimate D2E/DX2 ! ! A17 A(1,6,12) 120.006 estimate D2E/DX2 ! ! A18 A(5,6,12) 119.9944 estimate D2E/DX2 ! ! D1 D(6,1,2,3) -0.0059 estimate D2E/DX2 ! ! D2 D(6,1,2,8) -179.9978 estimate D2E/DX2 ! ! D3 D(7,1,2,3) 179.99 estimate D2E/DX2 ! ! D4 D(7,1,2,8) -0.0019 estimate D2E/DX2 ! ! D5 D(2,1,6,5) -0.0055 estimate D2E/DX2 ! ! D6 D(2,1,6,12) -179.9971 estimate D2E/DX2 ! ! D7 D(7,1,6,5) 179.9986 estimate D2E/DX2 ! ! D8 D(7,1,6,12) 0.007 estimate D2E/DX2 ! ! D9 D(1,2,3,4) 0.0118 estimate D2E/DX2 ! ! D10 D(1,2,3,9) -179.9913 estimate D2E/DX2 ! ! D11 D(8,2,3,4) -179.9963 estimate D2E/DX2 ! ! D12 D(8,2,3,9) 0.0006 estimate D2E/DX2 ! ! D13 D(2,3,4,5) -0.0063 estimate D2E/DX2 ! ! D14 D(2,3,4,10) 179.9942 estimate D2E/DX2 ! ! D15 D(9,3,4,5) 179.9968 estimate D2E/DX2 ! ! D16 D(9,3,4,10) -0.0027 estimate D2E/DX2 ! ! D17 D(3,4,5,6) -0.0051 estimate D2E/DX2 ! ! D18 D(3,4,5,11) -179.9942 estimate D2E/DX2 ! ! D19 D(10,4,5,6) 179.9945 estimate D2E/DX2 ! ! D20 D(10,4,5,11) 0.0054 estimate D2E/DX2 ! ! D21 D(4,5,6,1) 0.011 estimate D2E/DX2 ! ! D22 D(4,5,6,12) -179.9974 estimate D2E/DX2 ! ! D23 D(11,5,6,1) -179.9999 estimate D2E/DX2 ! ! D24 D(11,5,6,12) -0.0083 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.335761 -0.406391 0.000004 2 6 0 -0.315820 -1.359989 0.000067 3 6 0 1.019810 -0.953600 -0.000055 4 6 0 1.335726 0.406504 0.000008 5 6 0 0.315934 1.359960 0.000061 6 6 0 -1.019889 0.953518 -0.000057 7 1 0 -2.374763 -0.722630 -0.000065 8 1 0 -0.561676 -2.417868 0.000078 9 1 0 1.813217 -1.695237 -0.000148 10 1 0 2.374802 0.722479 0.000009 11 1 0 0.561541 2.417890 0.000015 12 1 0 -1.813119 1.695355 -0.000059 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396291 0.000000 3 C 2.418295 1.396087 0.000000 4 C 2.792426 2.418285 1.396312 0.000000 5 C 2.418283 2.792353 2.418264 1.396085 0.000000 6 C 1.396112 2.418270 2.792395 2.418294 1.396287 7 H 1.086063 2.155336 3.402422 3.878488 3.402504 8 H 2.155284 1.086072 2.155268 3.402530 3.878425 9 H 3.402526 2.155270 1.086057 2.155299 3.402365 10 H 3.878482 3.402370 2.155283 1.086057 2.155300 11 H 3.402399 3.878419 3.402493 2.155235 1.086066 12 H 2.155274 3.402504 3.878460 3.402405 2.155309 6 7 8 9 10 6 C 0.000000 7 H 2.155262 0.000000 8 H 3.402382 2.482160 0.000000 9 H 3.878452 4.299435 2.482401 0.000000 10 H 3.402544 4.964545 4.299382 2.482081 0.000000 11 H 2.155297 4.299389 4.964491 4.299361 2.482405 12 H 1.086064 2.482357 4.299385 4.964517 4.299438 11 12 11 H 0.000000 12 H 2.482150 0.000000 Stoichiometry C6H6 Framework group C1[X(C6H6)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.335934 0.405822 -0.000004 2 6 0 -0.316399 1.359854 -0.000067 3 6 0 1.019404 0.954034 0.000055 4 6 0 1.335899 -0.405935 -0.000008 5 6 0 0.316513 -1.359825 -0.000061 6 6 0 -1.019483 -0.953952 0.000057 7 1 0 -2.375071 0.721618 0.000065 8 1 0 -0.562706 2.417629 -0.000078 9 1 0 1.812495 1.696009 0.000148 10 1 0 2.375110 -0.721467 -0.000009 11 1 0 0.562571 -2.417651 -0.000015 12 1 0 -1.812397 -1.696127 0.000059 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6908677 5.6907073 2.8453938 Standard basis: 6-31G(d,p) (6D, 7F) There are 120 symmetry adapted cartesian basis functions of A symmetry. There are 120 symmetry adapted basis functions of A symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.2654267493 Hartrees. NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 5.18D-04 NBF= 120 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 120 ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=27367412. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -232.258204128 A.U. after 10 cycles NFock= 10 Conv=0.90D-08 -V/T= 2.0101 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -10.18793 -10.18766 -10.18766 -10.18711 -10.18711 Alpha occ. eigenvalues -- -10.18684 -0.84678 -0.74005 -0.74005 -0.59740 Alpha occ. eigenvalues -- -0.59740 -0.51795 -0.45822 -0.43854 -0.41657 Alpha occ. eigenvalues -- -0.41656 -0.35998 -0.33962 -0.33960 -0.24691 Alpha occ. eigenvalues -- -0.24691 Alpha virt. eigenvalues -- 0.00267 0.00268 0.09117 0.14516 0.14517 Alpha virt. eigenvalues -- 0.16190 0.18187 0.18188 0.19074 0.30073 Alpha virt. eigenvalues -- 0.30074 0.31820 0.31822 0.46726 0.52700 Alpha virt. eigenvalues -- 0.54834 0.55040 0.56115 0.59184 0.60124 Alpha virt. eigenvalues -- 0.60126 0.60154 0.60154 0.62467 0.62467 Alpha virt. eigenvalues -- 0.66712 0.66713 0.74251 0.81990 0.81990 Alpha virt. eigenvalues -- 0.82632 0.84427 0.84428 0.92466 0.93699 Alpha virt. eigenvalues -- 0.93701 0.95845 1.07892 1.07893 1.12961 Alpha virt. eigenvalues -- 1.12964 1.20179 1.26174 1.30038 1.40666 Alpha virt. eigenvalues -- 1.40667 1.42836 1.42838 1.43162 1.43164 Alpha virt. eigenvalues -- 1.75003 1.75784 1.81489 1.88214 1.92376 Alpha virt. eigenvalues -- 1.92377 1.96914 1.96915 1.97803 1.97804 Alpha virt. eigenvalues -- 2.02383 2.07417 2.07418 2.29653 2.29655 Alpha virt. eigenvalues -- 2.35667 2.35671 2.36699 2.41103 2.41494 Alpha virt. eigenvalues -- 2.41497 2.44331 2.44332 2.49462 2.49465 Alpha virt. eigenvalues -- 2.52597 2.59337 2.60037 2.60038 2.65789 Alpha virt. eigenvalues -- 2.77196 2.81148 2.81151 3.04930 3.04933 Alpha virt. eigenvalues -- 3.19265 3.23528 3.24815 3.24816 3.39479 Alpha virt. eigenvalues -- 3.50924 3.50926 3.95291 4.13047 4.16187 Alpha virt. eigenvalues -- 4.16187 4.43905 4.43905 4.83093 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.803178 0.549449 -0.035801 -0.040520 -0.035802 0.549605 2 C 0.549449 4.803161 0.549616 -0.035802 -0.040525 -0.035803 3 C -0.035801 0.549616 4.803178 0.549443 -0.035802 -0.040522 4 C -0.040520 -0.035802 0.549443 4.803173 0.549614 -0.035802 5 C -0.035802 -0.040525 -0.035802 0.549614 4.803156 0.549453 6 C 0.549605 -0.035803 -0.040522 -0.035802 0.549453 4.803180 7 H 0.368561 -0.042249 0.004828 0.000601 0.004829 -0.042251 8 H -0.042254 0.368559 -0.042252 0.004829 0.000601 0.004829 9 H 0.004828 -0.042250 0.368561 -0.042252 0.004829 0.000601 10 H 0.000601 0.004829 -0.042252 0.368562 -0.042249 0.004828 11 H 0.004829 0.000601 0.004829 -0.042254 0.368559 -0.042253 12 H -0.042251 0.004829 0.000601 0.004829 -0.042250 0.368561 7 8 9 10 11 12 1 C 0.368561 -0.042254 0.004828 0.000601 0.004829 -0.042251 2 C -0.042249 0.368559 -0.042250 0.004829 0.000601 0.004829 3 C 0.004828 -0.042252 0.368561 -0.042252 0.004829 0.000601 4 C 0.000601 0.004829 -0.042252 0.368562 -0.042254 0.004829 5 C 0.004829 0.000601 0.004829 -0.042249 0.368559 -0.042250 6 C -0.042251 0.004829 0.000601 0.004828 -0.042253 0.368561 7 H 0.634528 -0.006454 -0.000189 0.000015 -0.000189 -0.006454 8 H -0.006454 0.634543 -0.006454 -0.000189 0.000015 -0.000189 9 H -0.000189 -0.006454 0.634533 -0.006455 -0.000189 0.000015 10 H 0.000015 -0.000189 -0.006455 0.634529 -0.006454 -0.000189 11 H -0.000189 0.000015 -0.000189 -0.006454 0.634544 -0.006455 12 H -0.006454 -0.000189 0.000015 -0.000189 -0.006455 0.634532 Mulliken charges: 1 1 C -0.084423 2 C -0.084414 3 C -0.084427 4 C -0.084420 5 C -0.084414 6 C -0.084428 7 H 0.084424 8 H 0.084417 9 H 0.084422 10 H 0.084424 11 H 0.084417 12 H 0.084422 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000001 2 C 0.000003 3 C -0.000006 4 C 0.000004 5 C 0.000003 6 C -0.000005 Electronic spatial extent (au): = 458.0731 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0001 Tot= 0.0001 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.4721 YY= -31.4731 ZZ= -38.5313 XY= 0.0001 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.3534 YY= 2.3525 ZZ= -4.7058 XY= 0.0001 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0023 YYY= -0.0017 ZZZ= 0.0001 XYY= -0.0021 XXY= 0.0017 XXZ= 0.0007 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0002 XYZ= 0.0004 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -270.6755 YYYY= -270.6767 ZZZZ= -39.8988 XXXY= 0.0005 XXXZ= -0.0003 YYYX= 0.0005 YYYZ= -0.0003 ZZZX= 0.0001 ZZZY= 0.0000 XXYY= -90.2258 XXZZ= -60.4101 YYZZ= -60.4089 XXYZ= 0.0007 YYXZ= 0.0005 ZZXY= 0.0000 N-N= 2.032654267493D+02 E-N=-9.439024381132D+02 KE= 2.299466471546D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000084930 -0.000050206 -0.000002508 2 6 -0.000088102 0.000053462 -0.000013961 3 6 0.000027748 0.000116170 0.000010750 4 6 -0.000032773 -0.000130551 -0.000000443 5 6 -0.000092433 -0.000011810 -0.000014940 6 6 0.000093420 0.000019276 0.000014775 7 1 -0.000186392 -0.000053395 0.000003523 8 1 -0.000031690 -0.000186802 0.000000222 9 1 0.000136082 -0.000144194 0.000002645 10 1 0.000184585 0.000073470 -0.000001217 11 1 0.000049727 0.000187434 0.000004347 12 1 -0.000145102 0.000127147 -0.000003191 ------------------------------------------------------------------- Cartesian Forces: Max 0.000187434 RMS 0.000091047 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000197976 RMS 0.000081986 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02138 0.02138 0.02139 0.02139 0.02139 Eigenvalues --- 0.02139 0.02139 0.02140 0.02140 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.35271 0.35271 Eigenvalues --- 0.35271 0.35272 0.35272 0.35272 0.41956 Eigenvalues --- 0.41958 0.46240 0.46256 0.46258 0.46274 RFO step: Lambda=-9.51824027D-07 EMin= 2.13825243D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00031348 RMS(Int)= 0.00000002 Iteration 2 RMS(Cart)= 0.00000002 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63861 0.00010 0.00000 0.00021 0.00021 2.63882 R2 2.63827 0.00018 0.00000 0.00039 0.00039 2.63866 R3 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 R4 2.63822 0.00019 0.00000 0.00041 0.00041 2.63864 R5 2.05238 0.00019 0.00000 0.00054 0.00054 2.05292 R6 2.63865 0.00009 0.00000 0.00019 0.00019 2.63884 R7 2.05235 0.00020 0.00000 0.00056 0.00056 2.05291 R8 2.63822 0.00020 0.00000 0.00042 0.00042 2.63864 R9 2.05235 0.00020 0.00000 0.00056 0.00056 2.05291 R10 2.63860 0.00010 0.00000 0.00021 0.00021 2.63881 R11 2.05237 0.00019 0.00000 0.00055 0.00055 2.05292 R12 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 A1 2.09436 0.00001 0.00000 0.00003 0.00003 2.09440 A2 2.09434 0.00000 0.00000 0.00000 0.00000 2.09434 A3 2.09448 -0.00001 0.00000 -0.00004 -0.00004 2.09445 A4 2.09443 -0.00001 0.00000 -0.00003 -0.00003 2.09440 A5 2.09424 0.00002 0.00000 0.00009 0.00009 2.09433 A6 2.09451 -0.00001 0.00000 -0.00006 -0.00006 2.09445 A7 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A8 2.09454 -0.00001 0.00000 -0.00008 -0.00008 2.09446 A9 2.09426 0.00001 0.00000 0.00008 0.00008 2.09433 A10 2.09436 0.00001 0.00000 0.00003 0.00003 2.09440 A11 2.09423 0.00001 0.00000 0.00009 0.00009 2.09432 A12 2.09459 -0.00002 0.00000 -0.00013 -0.00013 2.09447 A13 2.09444 -0.00001 0.00000 -0.00004 -0.00004 2.09440 A14 2.09447 0.00000 0.00000 -0.00002 -0.00002 2.09445 A15 2.09428 0.00001 0.00000 0.00005 0.00005 2.09433 A16 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A17 2.09450 -0.00001 0.00000 -0.00004 -0.00004 2.09446 A18 2.09430 0.00001 0.00000 0.00004 0.00004 2.09434 D1 -0.00010 0.00000 0.00000 0.00014 0.00014 0.00004 D2 -3.14155 0.00000 0.00000 -0.00006 -0.00006 3.14157 D3 3.14142 0.00000 0.00000 0.00021 0.00021 -3.14155 D4 -0.00003 0.00000 0.00000 0.00001 0.00001 -0.00003 D5 -0.00010 0.00000 0.00000 0.00012 0.00012 0.00002 D6 -3.14154 0.00000 0.00000 -0.00005 -0.00005 3.14159 D7 3.14157 0.00000 0.00000 0.00005 0.00005 -3.14157 D8 0.00012 0.00000 0.00000 -0.00012 -0.00012 0.00000 D9 0.00021 -0.00001 0.00000 -0.00028 -0.00028 -0.00007 D10 -3.14144 0.00000 0.00000 -0.00018 -0.00018 3.14157 D11 -3.14153 0.00000 0.00000 -0.00007 -0.00007 3.14159 D12 0.00001 0.00000 0.00000 0.00003 0.00003 0.00004 D13 -0.00011 0.00000 0.00000 0.00015 0.00015 0.00004 D14 3.14149 0.00000 0.00000 0.00012 0.00012 -3.14157 D15 3.14154 0.00000 0.00000 0.00005 0.00005 3.14159 D16 -0.00005 0.00000 0.00000 0.00002 0.00002 -0.00003 D17 -0.00009 0.00000 0.00000 0.00011 0.00011 0.00002 D18 -3.14149 0.00000 0.00000 -0.00012 -0.00012 3.14157 D19 3.14150 0.00000 0.00000 0.00014 0.00014 -3.14155 D20 0.00009 0.00000 0.00000 -0.00009 -0.00009 0.00000 D21 0.00019 -0.00001 0.00000 -0.00024 -0.00024 -0.00005 D22 -3.14155 0.00000 0.00000 -0.00007 -0.00007 3.14157 D23 -3.14159 0.00000 0.00000 -0.00001 -0.00001 3.14158 D24 -0.00014 0.00000 0.00000 0.00016 0.00016 0.00001 Item Value Threshold Converged? Maximum Force 0.000198 0.000450 YES RMS Force 0.000082 0.000300 YES Maximum Displacement 0.000869 0.001800 YES RMS Displacement 0.000313 0.001200 YES Predicted change in Energy=-4.759120D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3963 -DE/DX = 0.0001 ! ! R2 R(1,6) 1.3961 -DE/DX = 0.0002 ! ! R3 R(1,7) 1.0861 -DE/DX = 0.0002 ! ! R4 R(2,3) 1.3961 -DE/DX = 0.0002 ! ! R5 R(2,8) 1.0861 -DE/DX = 0.0002 ! ! R6 R(3,4) 1.3963 -DE/DX = 0.0001 ! ! R7 R(3,9) 1.0861 -DE/DX = 0.0002 ! ! R8 R(4,5) 1.3961 -DE/DX = 0.0002 ! ! R9 R(4,10) 1.0861 -DE/DX = 0.0002 ! ! R10 R(5,6) 1.3963 -DE/DX = 0.0001 ! ! R11 R(5,11) 1.0861 -DE/DX = 0.0002 ! ! R12 R(6,12) 1.0861 -DE/DX = 0.0002 ! ! A1 A(2,1,6) 119.9982 -DE/DX = 0.0 ! ! A2 A(2,1,7) 119.9968 -DE/DX = 0.0 ! ! A3 A(6,1,7) 120.005 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.002 -DE/DX = 0.0 ! ! A5 A(1,2,8) 119.9911 -DE/DX = 0.0 ! ! A6 A(3,2,8) 120.0069 -DE/DX = 0.0 ! ! A7 A(2,3,4) 119.9997 -DE/DX = 0.0 ! ! A8 A(2,3,9) 120.0083 -DE/DX = 0.0 ! ! A9 A(4,3,9) 119.992 -DE/DX = 0.0 ! ! A10 A(3,4,5) 119.9982 -DE/DX = 0.0 ! ! A11 A(3,4,10) 119.9905 -DE/DX = 0.0 ! ! A12 A(5,4,10) 120.0113 -DE/DX = 0.0 ! ! A13 A(4,5,6) 120.0023 -DE/DX = 0.0 ! ! A14 A(4,5,11) 120.0044 -DE/DX = 0.0 ! ! A15 A(6,5,11) 119.9932 -DE/DX = 0.0 ! ! A16 A(1,6,5) 119.9996 -DE/DX = 0.0 ! ! A17 A(1,6,12) 120.006 -DE/DX = 0.0 ! ! A18 A(5,6,12) 119.9944 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) -0.0059 -DE/DX = 0.0 ! ! D2 D(6,1,2,8) 180.0022 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) -180.01 -DE/DX = 0.0 ! ! D4 D(7,1,2,8) -0.0019 -DE/DX = 0.0 ! ! D5 D(2,1,6,5) -0.0055 -DE/DX = 0.0 ! ! D6 D(2,1,6,12) 180.0029 -DE/DX = 0.0 ! ! D7 D(7,1,6,5) -180.0014 -DE/DX = 0.0 ! ! D8 D(7,1,6,12) 0.007 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) 0.0118 -DE/DX = 0.0 ! ! D10 D(1,2,3,9) 180.0087 -DE/DX = 0.0 ! ! D11 D(8,2,3,4) 180.0037 -DE/DX = 0.0 ! ! D12 D(8,2,3,9) 0.0006 -DE/DX = 0.0 ! ! D13 D(2,3,4,5) -0.0063 -DE/DX = 0.0 ! ! D14 D(2,3,4,10) -180.0058 -DE/DX = 0.0 ! ! D15 D(9,3,4,5) 179.9968 -DE/DX = 0.0 ! ! D16 D(9,3,4,10) -0.0027 -DE/DX = 0.0 ! ! D17 D(3,4,5,6) -0.0051 -DE/DX = 0.0 ! ! D18 D(3,4,5,11) 180.0058 -DE/DX = 0.0 ! ! D19 D(10,4,5,6) -180.0055 -DE/DX = 0.0 ! ! D20 D(10,4,5,11) 0.0054 -DE/DX = 0.0 ! ! D21 D(4,5,6,1) 0.011 -DE/DX = 0.0 ! ! D22 D(4,5,6,12) 180.0026 -DE/DX = 0.0 ! ! D23 D(11,5,6,1) 180.0001 -DE/DX = 0.0 ! ! D24 D(11,5,6,12) -0.0083 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.335761 -0.406391 0.000004 2 6 0 -0.315820 -1.359989 0.000067 3 6 0 1.019810 -0.953600 -0.000055 4 6 0 1.335726 0.406504 0.000008 5 6 0 0.315934 1.359960 0.000061 6 6 0 -1.019889 0.953518 -0.000057 7 1 0 -2.374763 -0.722630 -0.000065 8 1 0 -0.561676 -2.417868 0.000078 9 1 0 1.813217 -1.695237 -0.000148 10 1 0 2.374802 0.722479 0.000009 11 1 0 0.561541 2.417890 0.000015 12 1 0 -1.813119 1.695355 -0.000059 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396291 0.000000 3 C 2.418295 1.396087 0.000000 4 C 2.792426 2.418285 1.396312 0.000000 5 C 2.418283 2.792353 2.418264 1.396085 0.000000 6 C 1.396112 2.418270 2.792395 2.418294 1.396287 7 H 1.086063 2.155336 3.402422 3.878488 3.402504 8 H 2.155284 1.086072 2.155268 3.402530 3.878425 9 H 3.402526 2.155270 1.086057 2.155299 3.402365 10 H 3.878482 3.402370 2.155283 1.086057 2.155300 11 H 3.402399 3.878419 3.402493 2.155235 1.086066 12 H 2.155274 3.402504 3.878460 3.402405 2.155309 6 7 8 9 10 6 C 0.000000 7 H 2.155262 0.000000 8 H 3.402382 2.482160 0.000000 9 H 3.878452 4.299435 2.482401 0.000000 10 H 3.402544 4.964545 4.299382 2.482081 0.000000 11 H 2.155297 4.299389 4.964491 4.299361 2.482405 12 H 1.086064 2.482357 4.299385 4.964517 4.299438 11 12 11 H 0.000000 12 H 2.482150 0.000000 Stoichiometry C6H6 Framework group C1[X(C6H6)] Deg. of freedom 30 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.335934 0.405822 -0.000004 2 6 0 -0.316399 1.359854 -0.000067 3 6 0 1.019404 0.954034 0.000055 4 6 0 1.335899 -0.405935 -0.000008 5 6 0 0.316513 -1.359825 -0.000061 6 6 0 -1.019483 -0.953952 0.000057 7 1 0 -2.375071 0.721618 0.000065 8 1 0 -0.562706 2.417629 -0.000078 9 1 0 1.812495 1.696009 0.000148 10 1 0 2.375110 -0.721467 -0.000009 11 1 0 0.562571 -2.417651 -0.000015 12 1 0 -1.812397 -1.696127 0.000059 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6908677 5.6907073 2.8453938 1|1| IMPERIAL COLLEGE-CHWS-126|FOpt|RB3LYP|6-31G(d,p)|C6H6|SM6416|10-M ay-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultr afine||Benzene Opt||0,1|C,-1.335761,-0.406391,0.000004|C,-0.31582,-1.3 59989,0.000067|C,1.01981,-0.9536,-0.000055|C,1.335726,0.406504,0.00000 8|C,0.315934,1.35996,0.000061|C,-1.019889,0.953518,-0.000057|H,-2.3747 63,-0.72263,-0.000065|H,-0.561676,-2.417868,0.000078|H,1.813217,-1.695 237,-0.000148|H,2.374802,0.722479,0.000009|H,0.561541,2.41789,0.000015 |H,-1.813119,1.695355,-0.000059||Version=EM64W-G09RevD.01|State=1-A|HF =-232.2582041|RMSD=9.041e-009|RMSF=9.105e-005|Dipole=0.000004,-0.00000 06,-0.0000407|Quadrupole=1.7496702,1.7489899,-3.4986601,-0.0000723,-0. 0000148,0.0000328|PG=C01 [X(C6H6)]||@ THERE IS SOMETHING FASCINATING ABOUT SCIENCE. ONE GETS SUCH WHOLESALE CONJECTURE OUT OF SUCH TRIFLING INVESTMENTS. -- MARK TWAIN Job cpu time: 0 days 0 hours 0 minutes 56.0 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu May 10 14:16:19 2018.