Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 12924. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 24-Jan-2018 ****************************************** %nprocshared=1 Will use up to 1 processors via shared memory. %chk=\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt=noeigen freq pm6 geom=connectivity integral=grid=ultrafine pop=f ull gfprint ---------------------------------------------------------------------- 1/11=1,14=-1,18=20,19=15,26=1,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=2,16=1,24=100,25=1,41=3900000,71=1,75=-5/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=3,28=1/1; 7//1,2,3,16; 1/11=1,14=-1,18=20,19=15,26=1/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=2,16=1,25=1,41=3900000,71=1,75=-5,135=20/1,2,3; 4/5=5,16=3,35=1/1; 5/5=2,35=1,38=5/2; 7//1,2,3,16; 1/11=1,14=-1,18=20,19=15,26=1/3(-5); 2/9=110/2; 6/7=3,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 S -2.10526 -1.25387 0. O -0.63566 -1.25387 0. O -2.59583 0.13144 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4696 estimate D2E/DX2 ! ! R2 R(1,3) 1.4696 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.5 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -2.105263 -1.253870 0.000000 2 8 0 -0.635663 -1.253870 0.000000 3 8 0 -2.595826 0.131436 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.469600 0.000000 3 O 1.469600 2.400273 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.424086 2 8 0 0.000000 1.200136 -0.424086 3 8 0 0.000000 -1.200136 -0.424086 --------------------------------------------------------------------- Rotational constants (GHZ): 43.9326513 10.9684191 8.7770917 Standard basis: VSTO-6G (5D, 7F) AO basis set (Overlap normalization): Atom S1 Shell 1 SPD 6 bf 1 - 9 0.000000000000 0.000000000000 0.801406934613 0.1312982083D+02 -0.9737395526D-02 -0.8104943356D-02 0.6633434386D-02 0.3780719926D+01 -0.7265876782D-01 -0.1715478915D-01 0.5958177963D-01 0.1487051804D+01 -0.1716155198D+00 0.7369785762D-01 0.2401949582D+00 0.6796332161D+00 0.1289776243D+00 0.3965149986D+00 0.4648114679D+00 0.3382303503D+00 0.7288614510D+00 0.4978084880D+00 0.3434092326D+00 0.1737022754D+00 0.3013317422D+00 0.1174825823D+00 0.5389056980D-01 Atom O2 Shell 2 SP 6 bf 10 - 13 0.000000000000 2.267929174583 -0.801406931826 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 Atom O3 Shell 3 SP 6 bf 14 - 17 0.000000000000 -2.267929174583 -0.801406931826 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.1364498187 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Nonelectrostatic core Hamiltonian diagonalized for initial guess. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B2) (B1) (A1) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A2) (B1) (A1) (A1) (B2) The electronic state of the initial guess is 1-A1. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 1 I= 8 J= 2 Cut=1.00D-07 Err=1.72D-03 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.841697256676E-01 A.U. after 14 cycles NFock= 13 Conv=0.36D-08 -V/T= 0.9887 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (B2) (B1) (A1) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (A2) (B1) (A1) (B2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -1.19211 -1.06570 -0.76064 -0.56229 -0.55305 Alpha occ. eigenvalues -- -0.52889 -0.43871 -0.43053 -0.38397 Alpha virt. eigenvalues -- -0.04775 0.02522 0.03526 0.20936 0.22360 Alpha virt. eigenvalues -- 0.22710 0.23622 0.27154 Molecular Orbital Coefficients: 1 2 3 4 5 (A1)--O (B2)--O (A1)--O (B2)--O (B1)--O Eigenvalues -- -1.19211 -1.06570 -0.76064 -0.56229 -0.55305 1 1 S 1S 0.60720 0.00000 0.56087 0.00000 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 0.61476 3 1PY 0.00000 0.44000 0.00000 0.40932 0.00000 4 1PZ -0.28629 0.00000 0.09922 0.00000 0.00000 5 1D 0 -0.00653 0.00000 -0.00235 0.00000 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 -0.07050 7 1D-1 0.00000 -0.10577 0.00000 -0.10400 0.00000 8 1D+2 -0.07312 0.00000 0.00536 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.45052 0.60427 -0.50812 -0.32268 0.00000 11 1PX 0.00000 0.00000 0.00000 0.00000 0.55547 12 1PY -0.23110 -0.12169 -0.22167 -0.33836 0.00000 13 1PZ 0.12493 0.13289 0.17450 0.43842 0.00000 14 3 O 1S 0.45052 -0.60427 -0.50812 0.32268 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.55547 16 1PY 0.23110 -0.12169 0.22167 -0.33836 0.00000 17 1PZ 0.12493 -0.13289 0.17450 -0.43842 0.00000 6 7 8 9 10 (A1)--O (A2)--O (B2)--O (A1)--O (B1)--V Eigenvalues -- -0.52889 -0.43871 -0.43053 -0.38397 -0.04775 1 1 S 1S 0.22570 0.00000 0.00000 -0.45022 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 0.78558 3 1PY 0.00000 0.00000 0.10344 0.00000 0.00000 4 1PZ 0.50796 0.00000 0.00000 -0.37290 0.00000 5 1D 0 -0.11299 0.00000 0.00000 -0.14444 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.14352 7 1D-1 0.00000 0.00000 0.19993 0.00000 0.00000 8 1D+2 -0.06496 0.00000 0.00000 -0.26120 0.00000 9 1D-2 0.00000 0.19854 0.00000 0.00000 0.00000 10 2 O 1S 0.11743 0.00000 0.00245 -0.04992 0.00000 11 1PX 0.00000 0.69303 0.00000 0.00000 -0.42560 12 1PY 0.42612 0.00000 0.55624 -0.13704 0.00000 13 1PZ 0.37637 0.00000 0.40651 0.51314 0.00000 14 3 O 1S 0.11743 0.00000 -0.00245 -0.04992 0.00000 15 1PX 0.00000 -0.69303 0.00000 0.00000 -0.42560 16 1PY -0.42612 0.00000 0.55624 0.13704 0.00000 17 1PZ 0.37637 0.00000 -0.40651 0.51314 0.00000 11 12 13 14 15 (A1)--V (B2)--V (A1)--V (A2)--V (B1)--V Eigenvalues -- 0.02522 0.03526 0.20936 0.22360 0.22710 1 1 S 1S -0.21763 0.00000 -0.09487 0.00000 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 -0.07031 3 1PY 0.00000 0.74713 0.00000 0.00000 0.00000 4 1PZ 0.70147 0.00000 0.00375 0.00000 0.00000 5 1D 0 0.13993 0.00000 0.65936 0.00000 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.98713 7 1D-1 0.00000 0.40331 0.00000 0.00000 0.00000 8 1D+2 -0.25110 0.00000 0.67434 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.98009 0.00000 10 2 O 1S 0.13318 -0.14406 0.04290 0.00000 0.00000 11 1PX 0.00000 0.00000 0.00000 -0.14039 0.10155 12 1PY -0.41342 0.09980 -0.04191 0.00000 0.00000 13 1PZ 0.01774 -0.32993 0.21715 0.00000 0.00000 14 3 O 1S 0.13318 0.14406 0.04290 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.14039 0.10155 16 1PY 0.41342 0.09980 0.04191 0.00000 0.00000 17 1PZ 0.01774 0.32993 0.21715 0.00000 0.00000 16 17 (A1)--V (B2)--V Eigenvalues -- 0.23622 0.27154 1 1 S 1S 0.08212 0.00000 2 1PX 0.00000 0.00000 3 1PY 0.00000 -0.26449 4 1PZ -0.13798 0.00000 5 1D 0 0.71554 0.00000 6 1D+1 0.00000 0.00000 7 1D-1 0.00000 0.88055 8 1D+2 -0.63592 0.00000 9 1D-2 0.00000 0.00000 10 2 O 1S -0.05467 0.09990 11 1PX 0.00000 0.00000 12 1PY 0.15626 -0.22659 13 1PZ -0.03884 0.12656 14 3 O 1S -0.05467 -0.09990 15 1PX 0.00000 0.00000 16 1PY -0.15626 -0.22659 17 1PZ -0.03884 -0.12656 Density Matrix: 1 2 3 4 5 1 1 S 1S 1.87379 2 1PX 0.00000 0.75585 3 1PY 0.00000 0.00000 0.74367 4 1PZ 0.32869 0.00000 0.00000 0.97776 5 1D 0 0.06849 0.00000 0.00000 -0.00380 0.06736 6 1D+1 0.00000 -0.08668 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 -0.13686 0.00000 0.00000 8 1D+2 0.12309 0.00000 0.00000 0.17174 0.09107 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.07509 0.00000 0.26810 -0.20226 -0.01562 11 1PX 0.00000 0.68296 0.00000 0.00000 0.00000 12 1PY -0.21356 0.00000 -0.26900 0.62345 -0.05265 13 1PZ 0.05530 0.00000 0.55995 -0.03724 -0.23574 14 3 O 1S 0.07509 0.00000 -0.26810 -0.20226 -0.01562 15 1PX 0.00000 0.68296 0.00000 0.00000 0.00000 16 1PY 0.21356 0.00000 -0.26900 -0.62345 0.05265 17 1PZ 0.05530 0.00000 -0.55995 -0.03724 -0.23574 6 7 8 9 10 6 1D+1 0.00994 7 1D-1 0.00000 0.12396 8 1D+2 0.00000 0.00000 0.15564 9 1D-2 0.00000 0.00000 0.00000 0.07884 10 2 O 1S 0.00000 -0.05973 -0.06051 0.00000 1.89340 11 1PX -0.07832 0.00000 0.00000 0.27519 0.00000 12 1PY 0.00000 0.31854 0.04765 0.00000 0.20483 13 1PZ 0.00000 0.04325 -0.33336 0.00000 -0.14795 14 3 O 1S 0.00000 0.05973 -0.06051 0.00000 0.01633 15 1PX -0.07832 0.00000 0.00000 -0.27519 0.00000 16 1PY 0.00000 0.31854 -0.04765 0.00000 -0.05678 17 1PZ 0.00000 -0.04325 -0.33336 0.00000 0.09274 11 12 13 14 15 11 1PX 1.57769 12 1PY 0.00000 1.48321 13 1PZ 0.00000 0.16822 1.65230 14 3 O 1S 0.00000 0.05678 0.09274 1.89340 15 1PX -0.34348 0.00000 0.00000 0.00000 1.57769 16 1PY 0.00000 0.27158 0.07820 -0.20483 0.00000 17 1PZ 0.00000 -0.07820 0.15178 -0.14795 0.00000 16 17 16 1PY 1.48321 17 1PZ -0.16822 1.65230 Full Mulliken population analysis: 1 2 3 4 5 1 1 S 1S 1.87379 2 1PX 0.00000 0.75585 3 1PY 0.00000 0.00000 0.74367 4 1PZ 0.00000 0.00000 0.00000 0.97776 5 1D 0 0.00000 0.00000 0.00000 0.00000 0.06736 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 0.00000 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1D+1 0.00994 7 1D-1 0.00000 0.12396 8 1D+2 0.00000 0.00000 0.15564 9 1D-2 0.00000 0.00000 0.00000 0.07884 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 1.89340 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 13 14 15 11 1PX 1.57769 12 1PY 0.00000 1.48321 13 1PZ 0.00000 0.00000 1.65230 14 3 O 1S 0.00000 0.00000 0.00000 1.89340 15 1PX 0.00000 0.00000 0.00000 0.00000 1.57769 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 17 16 1PY 1.48321 17 1PZ 0.00000 1.65230 Gross orbital populations: 1 1 1 S 1S 1.87379 2 1PX 0.75585 3 1PY 0.74367 4 1PZ 0.97776 5 1D 0 0.06736 6 1D+1 0.00994 7 1D-1 0.12396 8 1D+2 0.15564 9 1D-2 0.07884 10 2 O 1S 1.89340 11 1PX 1.57769 12 1PY 1.48321 13 1PZ 1.65230 14 3 O 1S 1.89340 15 1PX 1.57769 16 1PY 1.48321 17 1PZ 1.65230 Condensed to atoms (all electrons): 1 2 3 1 S 4.786808 0.000000 0.000000 2 O 0.000000 6.606596 0.000000 3 O 0.000000 0.000000 6.606596 Mulliken charges: 1 1 S 1.213192 2 O -0.606596 3 O -0.606596 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.213192 2 O -0.606596 3 O -0.606596 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 4.3135 Tot= 4.3135 N-N= 5.413644981872D+01 E-N=-8.913864862564D+01 KE=-7.470802705965D+00 Symmetry A1 KE=-3.811121811436D+00 Symmetry A2 KE=-4.198893208529D-01 Symmetry B1 KE=-6.377214889991D-01 Symmetry B2 KE=-2.602070084677D+00 Orbital energies and kinetic energies (alpha): 1 2 1 (A1)--O -1.192108 -0.837004 2 (B2)--O -1.065703 -0.773269 3 (A1)--O -0.760638 -0.554369 4 (B2)--O -0.562294 -0.328813 5 (B1)--O -0.553048 -0.318861 6 (A1)--O -0.528892 -0.312210 7 (A2)--O -0.438712 -0.209945 8 (B2)--O -0.430533 -0.198953 9 (A1)--O -0.383965 -0.201979 10 (B1)--V -0.047751 -0.085851 11 (A1)--V 0.025220 -0.015730 12 (B2)--V 0.035261 -0.025306 13 (A1)--V 0.209357 -0.021423 14 (A2)--V 0.223603 -0.050070 15 (B1)--V 0.227097 -0.057313 16 (A1)--V 0.236222 -0.032997 17 (B2)--V 0.271540 0.038174 Total kinetic energy from orbitals=-7.470802705965D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.040143723 0.056802055 0.000000000 2 8 -0.029545453 -0.021705755 0.000000000 3 8 -0.010598270 -0.035096300 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.056802055 RMS 0.028917774 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.060279953 RMS 0.042345957 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 A1 R1 0.87694 R2 0.00000 0.87694 A1 0.00000 0.00000 0.25000 ITU= 0 Eigenvalues --- 0.25000 0.87694 0.87694 RFO step: Lambda=-1.56351771D-02 EMin= 2.50000000D-01 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.15897708 RMS(Int)= 0.01851225 Iteration 2 RMS(Cart)= 0.01796449 RMS(Int)= 0.00019416 Iteration 3 RMS(Cart)= 0.00022728 RMS(Int)= 0.00000001 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.79D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.77714 -0.02955 0.00000 -0.03310 -0.03310 2.74404 R2 2.77714 -0.02955 0.00000 -0.03310 -0.03310 2.74404 A1 1.91114 0.06028 0.00000 0.22693 0.22693 2.13806 Item Value Threshold Converged? Maximum Force 0.060280 0.000450 NO RMS Force 0.042346 0.000300 NO Maximum Displacement 0.167033 0.001800 NO RMS Displacement 0.174555 0.001200 NO Predicted change in Energy=-8.237292D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -2.047641 -1.172337 0.000000 2 8 0 -0.604895 -1.336743 0.000000 3 8 0 -2.684216 0.132776 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.452084 0.000000 3 O 1.452084 2.546185 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.349207 2 8 0 0.000000 1.273093 -0.349207 3 8 0 0.000000 -1.273093 -0.349207 --------------------------------------------------------------------- Rotational constants (GHZ): 64.7933327 9.7473205 8.4727106 Standard basis: VSTO-6G (5D, 7F) There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 53.9743342341 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B2) (B1) (A1) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (A2) (B1) (A1) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 1 I= 8 J= 2 Cut=1.00D-07 Err=4.06D-03 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.949325013730E-01 A.U. after 13 cycles NFock= 12 Conv=0.78D-08 -V/T= 0.9874 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.023974623 0.033923307 0.000000000 2 8 -0.030120010 -0.004146730 0.000000000 3 8 0.006145387 -0.029776578 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.033923307 RMS 0.019928745 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.029456840 RMS 0.026847627 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -1.08D-02 DEPred=-8.24D-03 R= 1.31D+00 TightC=F SS= 1.41D+00 RLast= 2.32D-01 DXNew= 5.0454D-01 6.9512D-01 Trust test= 1.31D+00 RLast= 2.32D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 R1 0.81999 R2 -0.05695 0.81999 A1 0.11091 0.11091 0.20694 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.16574 0.80423 0.87694 RFO step: Lambda=-3.01067560D-03 EMin= 1.65744414D-01 Quartic linear search produced a step of 1.57475. Iteration 1 RMS(Cart)= 0.14070933 RMS(Int)= 0.08759960 Iteration 2 RMS(Cart)= 0.10393647 RMS(Int)= 0.00617626 Iteration 3 RMS(Cart)= 0.00608425 RMS(Int)= 0.00000086 Iteration 4 RMS(Cart)= 0.00000099 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.07D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.74404 -0.02946 -0.05213 -0.04427 -0.09639 2.64765 R2 2.74404 -0.02946 -0.05213 -0.04427 -0.09639 2.64765 A1 2.13806 0.02066 0.35735 -0.00041 0.35694 2.49500 Item Value Threshold Converged? Maximum Force 0.029457 0.000450 NO RMS Force 0.026848 0.000300 NO Maximum Displacement 0.260603 0.001800 NO RMS Displacement 0.241295 0.001200 NO Predicted change in Energy=-4.143552D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -1.950180 -1.034432 0.000000 2 8 0 -0.608387 -1.437667 0.000000 3 8 0 -2.778186 0.095795 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.401074 0.000000 3 O 1.401074 2.656979 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.222555 2 8 0 0.000000 1.328489 -0.222555 3 8 0 0.000000 -1.328489 -0.222555 --------------------------------------------------------------------- Rotational constants (GHZ): 159.5218126 8.9513631 8.4757568 Standard basis: VSTO-6G (5D, 7F) There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2243427220 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B2) (B1) (A1) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 2 I= 9 J= 1 Cut=1.00D-07 Err=2.29D-03 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.100020331553 A.U. after 14 cycles NFock= 13 Conv=0.35D-08 -V/T= 0.9869 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.001243203 -0.001759091 0.000000000 2 8 -0.000101546 0.001390616 0.000000000 3 8 0.001344749 0.000368476 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.001759091 RMS 0.000973436 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003448696 RMS 0.002032115 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -5.09D-03 DEPred=-4.14D-04 R= 1.23D+01 TightC=F SS= 1.41D+00 RLast= 3.82D-01 DXNew= 8.4853D-01 1.1463D+00 Trust test= 1.23D+01 RLast= 3.82D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 A1 R1 0.83346 R2 -0.04348 0.83346 A1 0.13221 0.13221 0.13896 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.08908 0.83986 0.87694 RFO step: Lambda=-3.68724957D-05 EMin= 8.90840062D-02 Quartic linear search produced a step of -0.11599. Iteration 1 RMS(Cart)= 0.03195259 RMS(Int)= 0.00064843 Iteration 2 RMS(Cart)= 0.00069435 RMS(Int)= 0.00000005 Iteration 3 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.97D-16 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.64765 -0.00050 0.01118 -0.00318 0.00800 2.65565 R2 2.64765 -0.00050 0.01118 -0.00318 0.00800 2.65565 A1 2.49500 -0.00345 -0.04140 -0.00763 -0.04903 2.44597 Item Value Threshold Converged? Maximum Force 0.003449 0.000450 NO RMS Force 0.002032 0.000300 NO Maximum Displacement 0.034852 0.001800 NO RMS Displacement 0.032227 0.001200 NO Predicted change in Energy=-4.725486D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -1.963214 -1.052875 0.000000 2 8 0 -0.607855 -1.424216 0.000000 3 8 0 -2.765684 0.100787 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.405309 0.000000 3 O 1.405309 2.642321 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.239493 2 8 0 0.000000 1.321160 -0.239493 3 8 0 0.000000 -1.321160 -0.239493 --------------------------------------------------------------------- Rotational constants (GHZ): 137.7556912 9.0509508 8.4929399 Standard basis: VSTO-6G (5D, 7F) There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2130005498 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 1 I= 8 J= 2 Cut=1.00D-07 Err=4.87D-04 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.100121391011 A.U. after 12 cycles NFock= 11 Conv=0.75D-08 -V/T= 0.9869 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000227795 0.000322323 0.000000000 2 8 -0.001838714 0.001057818 0.000000000 3 8 0.001610919 -0.001380141 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.001838714 RMS 0.001008601 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002052879 RMS 0.001865686 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 3 4 DE= -1.01D-04 DEPred=-4.73D-05 R= 2.14D+00 TightC=F SS= 1.41D+00 RLast= 5.03D-02 DXNew= 1.4270D+00 1.5096D-01 Trust test= 2.14D+00 RLast= 5.03D-02 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 A1 R1 0.85173 R2 -0.02521 0.85173 A1 0.10319 0.10319 0.07508 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.04774 0.85386 0.87694 RFO step: Lambda=-1.55128675D-05 EMin= 4.77355191D-02 Quartic linear search produced a step of 0.26049. Iteration 1 RMS(Cart)= 0.01166775 RMS(Int)= 0.00007488 Iteration 2 RMS(Cart)= 0.00007122 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.27D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65565 -0.00205 0.00208 -0.00251 -0.00043 2.65522 R2 2.65565 -0.00205 0.00208 -0.00251 -0.00043 2.65522 A1 2.44597 -0.00142 -0.01277 -0.00385 -0.01662 2.42935 Item Value Threshold Converged? Maximum Force 0.002053 0.000450 NO RMS Force 0.001866 0.000300 NO Maximum Displacement 0.011196 0.001800 NO RMS Displacement 0.011693 0.001200 NO Predicted change in Energy=-1.335317D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -1.967401 -1.058800 0.000000 2 8 0 -0.609221 -1.418808 0.000000 3 8 0 -2.760130 0.101304 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.405084 0.000000 3 O 1.405084 2.633847 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.244935 2 8 0 0.000000 1.316924 -0.244935 3 8 0 0.000000 -1.316924 -0.244935 --------------------------------------------------------------------- Rotational constants (GHZ): 131.7029680 9.1092797 8.5199916 Standard basis: VSTO-6G (5D, 7F) There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2321055630 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 1 I= 8 J= 2 Cut=1.00D-07 Err=2.08D-04 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.100136456927 A.U. after 11 cycles NFock= 10 Conv=0.53D-08 -V/T= 0.9869 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000243726 0.000344864 0.000000000 2 8 -0.000791364 0.000300725 0.000000000 3 8 0.000547638 -0.000645589 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000791364 RMS 0.000423178 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000841999 RMS 0.000700577 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 2 3 4 5 DE= -1.51D-05 DEPred=-1.34D-05 R= 1.13D+00 TightC=F SS= 1.41D+00 RLast= 1.66D-02 DXNew= 1.4270D+00 4.9889D-02 Trust test= 1.13D+00 RLast= 1.66D-02 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 A1 R1 0.70685 R2 -0.17010 0.70685 A1 0.05912 0.05912 0.06831 ITU= 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.05384 0.55123 0.87694 RFO step: Lambda=-1.71815314D-06 EMin= 5.38380441D-02 Quartic linear search produced a step of 0.21389. Iteration 1 RMS(Cart)= 0.00141288 RMS(Int)= 0.00000026 Iteration 2 RMS(Cart)= 0.00000026 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 6.28D-16 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65522 -0.00084 -0.00009 -0.00140 -0.00149 2.65373 R2 2.65522 -0.00084 -0.00009 -0.00140 -0.00149 2.65373 A1 2.42935 -0.00023 -0.00355 0.00286 -0.00069 2.42866 Item Value Threshold Converged? Maximum Force 0.000842 0.000450 NO RMS Force 0.000701 0.000300 NO Maximum Displacement 0.001470 0.001800 YES RMS Displacement 0.001413 0.001200 NO Predicted change in Energy=-1.340809D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -1.967471 -1.058898 0.000000 2 8 0 -0.609929 -1.418234 0.000000 3 8 0 -2.759352 0.100828 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.404294 0.000000 3 O 1.404294 2.632028 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245025 2 8 0 0.000000 1.316014 -0.245025 3 8 0 0.000000 -1.316014 -0.245025 --------------------------------------------------------------------- Rotational constants (GHZ): 131.6057740 9.1218775 8.5306032 Standard basis: VSTO-6G (5D, 7F) There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2432932161 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Fock symm off for IB=2 I1= 1 I= 8 J= 2 Cut=1.00D-07 Err=1.15D-05 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RPM6) = -0.100137766990 A.U. after 9 cycles NFock= 8 Conv=0.85D-08 -V/T= 0.9869 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.000011188 -0.000015830 0.000000000 2 8 0.000020367 -0.000002525 0.000000000 3 8 -0.000009179 0.000018356 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000020367 RMS 0.000011634 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000020335 RMS 0.000017137 Search for a local minimum. Step number 6 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 3 4 5 6 DE= -1.31D-06 DEPred=-1.34D-06 R= 9.77D-01 TightC=F SS= 1.41D+00 RLast= 2.22D-03 DXNew= 1.4270D+00 6.6623D-03 Trust test= 9.77D-01 RLast= 2.22D-03 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 A1 R1 0.71350 R2 -0.16344 0.71350 A1 0.06018 0.06018 0.06714 ITU= 1 1 1 1 Eigenvalues --- 0.05258 0.56462 0.87694 En-DIIS/RFO-DIIS IScMMF= 0 using points: 6 5 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.97964 0.02036 Iteration 1 RMS(Cart)= 0.00014283 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.95D-16 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65373 0.00002 0.00003 0.00003 0.00006 2.65379 R2 2.65373 0.00002 0.00003 0.00003 0.00006 2.65379 A1 2.42866 -0.00001 0.00001 -0.00023 -0.00022 2.42844 Item Value Threshold Converged? Maximum Force 0.000020 0.000450 YES RMS Force 0.000017 0.000300 YES Maximum Displacement 0.000160 0.001800 YES RMS Displacement 0.000143 0.001200 YES Predicted change in Energy=-2.042092D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 -DE/DX = 0.0 ! ! R2 R(1,3) 1.4043 -DE/DX = 0.0 ! ! A1 A(2,1,3) 139.1519 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -1.967471 -1.058898 0.000000 2 8 0 -0.609929 -1.418234 0.000000 3 8 0 -2.759352 0.100828 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.404294 0.000000 3 O 1.404294 2.632028 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245025 2 8 0 0.000000 1.316014 -0.245025 3 8 0 0.000000 -1.316014 -0.245025 --------------------------------------------------------------------- Rotational constants (GHZ): 131.6057740 9.1218775 8.5306032 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -1.19678 -1.12967 -0.74430 -0.56855 -0.55395 Alpha occ. eigenvalues -- -0.54777 -0.44872 -0.44786 -0.36033 Alpha virt. eigenvalues -- -0.02177 0.00739 0.10700 0.30013 0.30768 Alpha virt. eigenvalues -- 0.31071 0.32317 0.34857 Molecular Orbital Coefficients: 1 2 3 4 5 (A1)--O (B2)--O (A1)--O (B1)--O (A1)--O Eigenvalues -- -1.19678 -1.12967 -0.74430 -0.56855 -0.55395 1 1 S 1S 0.63683 0.00000 -0.51942 0.00000 0.11756 2 1PX 0.00000 0.00000 0.00000 0.61599 0.00000 3 1PY 0.00000 0.49625 0.00000 0.00000 0.00000 4 1PZ -0.20230 0.00000 -0.06810 0.00000 0.55907 5 1D 0 -0.04935 0.00000 -0.00739 0.00000 -0.09114 6 1D+1 0.00000 0.00000 0.00000 -0.04433 0.00000 7 1D-1 0.00000 -0.07500 0.00000 0.00000 0.00000 8 1D+2 -0.11162 0.00000 -0.02022 0.00000 -0.07428 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.44939 0.58457 0.52152 0.00000 0.08587 11 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 12 1PY -0.25183 -0.16149 0.27727 0.00000 0.23204 13 1PZ 0.06282 0.07906 -0.11699 0.00000 0.51835 14 3 O 1S 0.44939 -0.58457 0.52152 0.00000 0.08587 15 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 16 1PY 0.25183 -0.16149 -0.27727 0.00000 -0.23204 17 1PZ 0.06282 -0.07906 -0.11699 0.00000 0.51835 6 7 8 9 10 (B2)--O (A2)--O (B2)--O (A1)--O (B1)--V Eigenvalues -- -0.54777 -0.44872 -0.44786 -0.36033 -0.02177 1 1 S 1S 0.00000 0.00000 0.00000 0.51207 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 0.78695 3 1PY -0.36998 0.00000 0.07139 0.00000 0.00000 4 1PZ 0.00000 0.00000 0.00000 0.29413 0.00000 5 1D 0 0.00000 0.00000 0.00000 0.18712 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.07985 7 1D-1 0.05394 0.00000 0.20718 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.33062 0.00000 9 1D-2 0.00000 0.21126 0.00000 0.00000 0.00000 10 2 O 1S 0.33367 0.00000 0.00258 0.00912 0.00000 11 1PX 0.00000 0.69115 0.00000 0.00000 -0.43263 12 1PY 0.48703 0.00000 0.35928 0.36844 0.00000 13 1PZ -0.28561 0.00000 0.58898 -0.34299 0.00000 14 3 O 1S -0.33367 0.00000 -0.00258 0.00912 0.00000 15 1PX 0.00000 -0.69115 0.00000 0.00000 -0.43263 16 1PY 0.48703 0.00000 0.35928 -0.36844 0.00000 17 1PZ 0.28561 0.00000 -0.58898 -0.34299 0.00000 11 12 13 14 15 (A1)--V (B2)--V (A1)--V (B1)--V (A1)--V Eigenvalues -- 0.00739 0.10700 0.30013 0.30768 0.31071 1 1 S 1S -0.15772 0.00000 -0.12914 0.00000 -0.08400 2 1PX 0.00000 0.00000 0.00000 -0.03567 0.00000 3 1PY 0.00000 0.75969 0.00000 0.00000 0.00000 4 1PZ 0.74316 0.00000 0.00817 0.00000 0.05495 5 1D 0 0.01342 0.00000 0.79661 0.00000 -0.56517 6 1D+1 0.00000 0.00000 0.00000 0.99582 0.00000 7 1D-1 0.00000 0.28398 0.00000 0.00000 0.00000 8 1D+2 -0.17072 0.00000 0.46949 0.00000 0.78914 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.09693 -0.19815 0.07820 0.00000 0.05563 11 1PX 0.00000 0.00000 0.00000 0.05945 0.00000 12 1PY -0.35146 0.25985 -0.16546 0.00000 -0.13863 13 1PZ -0.25267 -0.25362 0.17502 0.00000 0.03959 14 3 O 1S 0.09693 0.19815 0.07820 0.00000 0.05563 15 1PX 0.00000 0.00000 0.00000 0.05945 0.00000 16 1PY 0.35146 0.25985 0.16546 0.00000 0.13863 17 1PZ -0.25267 0.25362 0.17502 0.00000 0.03959 16 17 (A2)--V (B2)--V Eigenvalues -- 0.32317 0.34857 1 1 S 1S 0.00000 0.00000 2 1PX 0.00000 0.00000 3 1PY 0.00000 -0.18608 4 1PZ 0.00000 0.00000 5 1D 0 0.00000 0.00000 6 1D+1 0.00000 0.00000 7 1D-1 0.00000 0.93161 8 1D+2 0.00000 0.00000 9 1D-2 0.97743 0.00000 10 2 O 1S 0.00000 0.08757 11 1PX -0.14938 0.00000 12 1PY 0.00000 -0.20031 13 1PZ 0.00000 -0.03077 14 3 O 1S 0.00000 -0.08757 15 1PX 0.14938 0.00000 16 1PY 0.00000 -0.20031 17 1PZ 0.00000 0.03077 Density Matrix: 1 2 3 4 5 1 1 S 1S 1.90278 2 1PX 0.00000 0.75888 3 1PY 0.00000 0.00000 0.77648 4 1PZ 0.24577 0.00000 0.00000 0.88927 5 1D 0 0.11504 0.00000 0.00000 0.02914 0.09162 6 1D+1 0.00000 -0.05462 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 -0.08477 0.00000 0.00000 8 1D+2 0.19998 0.00000 0.00000 0.15935 0.14859 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.06012 0.00000 0.33366 -0.15147 -0.06431 11 1PX 0.00000 0.68516 0.00000 0.00000 0.00000 12 1PY -0.17689 0.00000 -0.46936 0.54031 0.11634 13 1PZ -0.02785 0.00000 0.37390 0.36833 -0.22732 14 3 O 1S 0.06012 0.00000 -0.33366 -0.15147 -0.06431 15 1PX 0.00000 0.68516 0.00000 0.00000 0.00000 16 1PY 0.17689 0.00000 -0.46936 -0.54031 -0.11634 17 1PZ -0.02785 0.00000 -0.37390 0.36833 -0.22732 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25538 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 -0.05062 -0.12814 0.00000 1.86892 11 1PX -0.04931 0.00000 0.00000 0.29202 0.00000 12 1PY 0.00000 0.22563 0.25416 0.00000 0.24750 13 1PZ 0.00000 0.20138 -0.31309 0.00000 -0.07792 14 3 O 1S 0.00000 0.05062 -0.12814 0.00000 0.05665 15 1PX -0.04931 0.00000 0.00000 -0.29202 0.00000 16 1PY 0.00000 0.22563 -0.25416 0.00000 0.02862 17 1PZ 0.00000 -0.20138 -0.31309 0.00000 0.11233 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44448 13 1PZ 0.00000 0.01077 1.67737 14 3 O 1S 0.00000 -0.02862 0.11233 1.86892 15 1PX -0.33677 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.12494 0.22819 -0.24750 0.00000 17 1PZ 0.00000 -0.22819 -0.06154 -0.07792 0.00000 16 17 16 1PY 1.44448 17 1PZ -0.01077 1.67737 Full Mulliken population analysis: 1 2 3 4 5 1 1 S 1S 1.90278 2 1PX 0.00000 0.75888 3 1PY 0.00000 0.00000 0.77648 4 1PZ 0.00000 0.00000 0.00000 0.88927 5 1D 0 0.00000 0.00000 0.00000 0.00000 0.09162 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 0.00000 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25538 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 1.86892 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44448 13 1PZ 0.00000 0.00000 1.67737 14 3 O 1S 0.00000 0.00000 0.00000 1.86892 15 1PX 0.00000 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 17 16 1PY 1.44448 17 1PZ 0.00000 1.67737 Gross orbital populations: 1 1 1 S 1S 1.90278 2 1PX 0.75888 3 1PY 0.77648 4 1PZ 0.88927 5 1D 0 0.09162 6 1D+1 0.00393 7 1D-1 0.10292 8 1D+2 0.25538 9 1D-2 0.08926 10 2 O 1S 1.86892 11 1PX 1.57397 12 1PY 1.44448 13 1PZ 1.67737 14 3 O 1S 1.86892 15 1PX 1.57397 16 1PY 1.44448 17 1PZ 1.67737 Condensed to atoms (all electrons): 1 2 3 1 S 4.870521 0.000000 0.000000 2 O 0.000000 6.564739 0.000000 3 O 0.000000 0.000000 6.564739 Mulliken charges: 1 1 S 1.129479 2 O -0.564739 3 O -0.564739 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.129479 2 O -0.564739 3 O -0.564739 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 1.9402 Tot= 1.9402 N-N= 5.424329321609D+01 E-N=-8.904558014989D+01 KE=-7.645419574114D+00 Symmetry A1 KE=-3.813711344432D+00 Symmetry A2 KE=-4.432043393615D-01 Symmetry B1 KE=-6.627341897633D-01 Symmetry B2 KE=-2.725769700557D+00 Orbital energies and kinetic energies (alpha): 1 2 1 (A1)--O -1.196781 -0.852152 2 (B2)--O -1.129673 -0.830170 3 (A1)--O -0.744297 -0.538163 4 (B1)--O -0.568553 -0.331367 5 (A1)--O -0.553950 -0.325299 6 (B2)--O -0.547770 -0.313891 7 (A2)--O -0.448717 -0.221602 8 (B2)--O -0.447857 -0.218823 9 (A1)--O -0.360333 -0.191242 10 (B1)--V -0.021768 -0.065362 11 (A1)--V 0.007385 -0.031904 12 (B2)--V 0.107002 0.051063 13 (A1)--V 0.300129 0.010197 14 (B1)--V 0.307675 -0.064454 15 (A1)--V 0.310712 -0.036153 16 (A2)--V 0.323171 -0.041361 17 (B2)--V 0.348570 0.009831 Total kinetic energy from orbitals=-7.645419574114D+00 1|1| IMPERIAL COLLEGE-CHWS-278|FOpt|RPM6|ZDO|O2S1|JR3915|24-Jan-2018|0 ||# opt=noeigen freq pm6 geom=connectivity integral=grid=ultrafine pop =full gfprint||Title Card Required||0,1|S,-1.9674706881,-1.0588981426, 0.|O,-0.6099289022,-1.418234053,0.|O,-2.7593523932,0.1008282743,0.||Ve rsion=EM64W-G09RevD.01|State=1-A1|HF=-0.1001378|RMSD=8.515e-009|RMSF=1 .163e-005|Dipole=-0.4405522,-0.6233669,0.|PG=C02V [C2(S1),SGV(O2)]||@ ERWIN WITH HIS PSI CAN DO CALCULATIONS QUITE A FEW. BUT ONE THING HAS NOT BEEN SEEN JUST WHAT DOES PSI REALLY MEAN. -- WALTER HUCKEL, TRANS. BY FELIX BLOCH Job cpu time: 0 days 0 hours 0 minutes 11.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed Jan 24 21:11:14 2018. Link1: Proceeding to internal job step number 2. ------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RPM6/ZDO Freq ------------------------------------------------------------- 1/10=4,11=1,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=2,14=-4,16=1,24=100,25=1,41=3900000,70=2,71=2,75=-5,116=1,135=40,140=1/1,2,3; 4/5=101,35=1/1; 5/5=2,35=1,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=3,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,11=1,30=1/3; 99//99; Structure from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" ------------------- Title Card Required ------------------- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. S,0,-1.9674706881,-1.0588981426,0. O,0,-0.6099289022,-1.418234053,0. O,0,-2.7593523932,0.1008282743,0. Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.4043 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 139.1519 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 -1.967471 -1.058898 0.000000 2 8 0 -0.609929 -1.418234 0.000000 3 8 0 -2.759352 0.100828 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 S 0.000000 2 O 1.404294 0.000000 3 O 1.404294 2.632028 0.000000 Stoichiometry O2S Framework group C2V[C2(S),SGV(O2)] Deg. of freedom 2 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.245025 2 8 0 0.000000 1.316014 -0.245025 3 8 0 0.000000 -1.316014 -0.245025 --------------------------------------------------------------------- Rotational constants (GHZ): 131.6057740 9.1218775 8.5306032 Standard basis: VSTO-6G (5D, 7F) AO basis set (Overlap normalization): Atom S1 Shell 1 SPD 6 bf 1 - 9 0.000000000000 0.000000000000 0.463030213161 0.1312982083D+02 -0.9737395526D-02 -0.8104943356D-02 0.6633434386D-02 0.3780719926D+01 -0.7265876782D-01 -0.1715478915D-01 0.5958177963D-01 0.1487051804D+01 -0.1716155198D+00 0.7369785762D-01 0.2401949582D+00 0.6796332161D+00 0.1289776243D+00 0.3965149986D+00 0.4648114679D+00 0.3382303503D+00 0.7288614510D+00 0.4978084880D+00 0.3434092326D+00 0.1737022754D+00 0.3013317422D+00 0.1174825823D+00 0.5389056980D-01 Atom O2 Shell 2 SP 6 bf 10 - 13 0.000000000000 2.486906101794 -0.463030213161 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 Atom O3 Shell 3 SP 6 bf 14 - 17 0.000000000000 -2.486906101794 -0.463030213161 0.8026430740D+02 -0.9737395526D-02 -0.8104943356D-02 0.2311203406D+02 -0.7265876782D-01 -0.1715478915D-01 0.9090541650D+01 -0.1716155198D+00 0.7369785762D-01 0.4154686502D+01 0.1289776243D+00 0.3965149986D+00 0.2067646250D+01 0.7288614510D+00 0.4978084880D+00 0.1061864667D+01 0.3013317422D+00 0.1174825823D+00 There are 8 symmetry adapted cartesian basis functions of A1 symmetry. There are 2 symmetry adapted cartesian basis functions of A2 symmetry. There are 3 symmetry adapted cartesian basis functions of B1 symmetry. There are 5 symmetry adapted cartesian basis functions of B2 symmetry. There are 7 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 3 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. 17 basis functions, 108 primitive gaussians, 18 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 54.2432932161 Hartrees. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 17 RedAO= T EigKep= 1.00D+00 NBF= 7 2 3 5 NBsUse= 17 1.00D-06 EigRej= -1.00D+00 NBFU= 7 2 3 5 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\jr3915\Desktop\TS lab\Exercise 3\SO2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=1872442. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RPM6) = -0.100137766990 A.U. after 2 cycles NFock= 1 Conv=0.12D-08 -V/T= 0.9869 Range of M.O.s used for correlation: 1 17 NBasis= 17 NAE= 9 NBE= 9 NFC= 0 NFV= 0 NROrb= 17 NOA= 9 NOB= 9 NVA= 8 NVB= 8 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 4 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Electric field/nuclear overlap derivatives assumed to be zero. Keep J ints in memory in canonical form, NReq=1855126. There are 9 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 9. LinEq1: Iter= 0 NonCon= 9 RMS=6.61D-01 Max=3.27D+00 NDo= 9 AX will form 9 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 9 RMS=1.54D-01 Max=1.05D+00 NDo= 9 LinEq1: Iter= 2 NonCon= 9 RMS=2.34D-02 Max=1.18D-01 NDo= 9 LinEq1: Iter= 3 NonCon= 9 RMS=4.32D-03 Max=1.82D-02 NDo= 9 LinEq1: Iter= 4 NonCon= 9 RMS=6.11D-04 Max=3.12D-03 NDo= 9 LinEq1: Iter= 5 NonCon= 9 RMS=6.48D-05 Max=2.94D-04 NDo= 9 LinEq1: Iter= 6 NonCon= 9 RMS=6.25D-06 Max=2.28D-05 NDo= 9 LinEq1: Iter= 7 NonCon= 9 RMS=1.40D-06 Max=4.89D-06 NDo= 9 LinEq1: Iter= 8 NonCon= 5 RMS=2.73D-07 Max=1.10D-06 NDo= 9 LinEq1: Iter= 9 NonCon= 2 RMS=4.03D-08 Max=1.53D-07 NDo= 9 LinEq1: Iter= 10 NonCon= 0 RMS=5.13D-09 Max=1.42D-08 NDo= 9 Linear equations converged to 1.000D-08 1.000D-07 after 10 iterations. Isotropic polarizability for W= 0.000000 24.44 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (B1) (A1) (B2) (A2) (B2) (A1) Virtual (B1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -1.19678 -1.12967 -0.74430 -0.56855 -0.55395 Alpha occ. eigenvalues -- -0.54777 -0.44872 -0.44786 -0.36033 Alpha virt. eigenvalues -- -0.02177 0.00739 0.10700 0.30013 0.30768 Alpha virt. eigenvalues -- 0.31071 0.32317 0.34857 Molecular Orbital Coefficients: 1 2 3 4 5 (A1)--O (B2)--O (A1)--O (B1)--O (A1)--O Eigenvalues -- -1.19678 -1.12967 -0.74430 -0.56855 -0.55395 1 1 S 1S 0.63683 0.00000 -0.51942 0.00000 0.11756 2 1PX 0.00000 0.00000 0.00000 0.61599 0.00000 3 1PY 0.00000 0.49625 0.00000 0.00000 0.00000 4 1PZ -0.20230 0.00000 -0.06810 0.00000 0.55907 5 1D 0 -0.04935 0.00000 -0.00739 0.00000 -0.09114 6 1D+1 0.00000 0.00000 0.00000 -0.04433 0.00000 7 1D-1 0.00000 -0.07500 0.00000 0.00000 0.00000 8 1D+2 -0.11162 0.00000 -0.02022 0.00000 -0.07428 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.44939 0.58457 0.52152 0.00000 0.08587 11 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 12 1PY -0.25183 -0.16149 0.27727 0.00000 0.23204 13 1PZ 0.06282 0.07906 -0.11699 0.00000 0.51835 14 3 O 1S 0.44939 -0.58457 0.52152 0.00000 0.08587 15 1PX 0.00000 0.00000 0.00000 0.55615 0.00000 16 1PY 0.25183 -0.16149 -0.27727 0.00000 -0.23204 17 1PZ 0.06282 -0.07906 -0.11699 0.00000 0.51835 6 7 8 9 10 (B2)--O (A2)--O (B2)--O (A1)--O (B1)--V Eigenvalues -- -0.54777 -0.44872 -0.44786 -0.36033 -0.02177 1 1 S 1S 0.00000 0.00000 0.00000 0.51207 0.00000 2 1PX 0.00000 0.00000 0.00000 0.00000 0.78695 3 1PY -0.36998 0.00000 0.07139 0.00000 0.00000 4 1PZ 0.00000 0.00000 0.00000 0.29413 0.00000 5 1D 0 0.00000 0.00000 0.00000 0.18712 0.00000 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.07985 7 1D-1 0.05394 0.00000 0.20718 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.33062 0.00000 9 1D-2 0.00000 0.21126 0.00000 0.00000 0.00000 10 2 O 1S 0.33367 0.00000 0.00258 0.00912 0.00000 11 1PX 0.00000 0.69115 0.00000 0.00000 -0.43263 12 1PY 0.48703 0.00000 0.35928 0.36844 0.00000 13 1PZ -0.28561 0.00000 0.58898 -0.34299 0.00000 14 3 O 1S -0.33367 0.00000 -0.00258 0.00912 0.00000 15 1PX 0.00000 -0.69115 0.00000 0.00000 -0.43263 16 1PY 0.48703 0.00000 0.35928 -0.36844 0.00000 17 1PZ 0.28561 0.00000 -0.58898 -0.34299 0.00000 11 12 13 14 15 (A1)--V (B2)--V (A1)--V (B1)--V (A1)--V Eigenvalues -- 0.00739 0.10700 0.30013 0.30768 0.31071 1 1 S 1S -0.15772 0.00000 -0.12914 0.00000 -0.08400 2 1PX 0.00000 0.00000 0.00000 -0.03567 0.00000 3 1PY 0.00000 0.75969 0.00000 0.00000 0.00000 4 1PZ 0.74316 0.00000 0.00817 0.00000 0.05495 5 1D 0 0.01342 0.00000 0.79661 0.00000 -0.56517 6 1D+1 0.00000 0.00000 0.00000 0.99582 0.00000 7 1D-1 0.00000 0.28398 0.00000 0.00000 0.00000 8 1D+2 -0.17072 0.00000 0.46949 0.00000 0.78914 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.09693 -0.19815 0.07820 0.00000 0.05563 11 1PX 0.00000 0.00000 0.00000 0.05945 0.00000 12 1PY -0.35146 0.25985 -0.16546 0.00000 -0.13863 13 1PZ -0.25267 -0.25362 0.17502 0.00000 0.03959 14 3 O 1S 0.09693 0.19815 0.07820 0.00000 0.05563 15 1PX 0.00000 0.00000 0.00000 0.05945 0.00000 16 1PY 0.35146 0.25985 0.16546 0.00000 0.13863 17 1PZ -0.25267 0.25362 0.17502 0.00000 0.03959 16 17 (A2)--V (B2)--V Eigenvalues -- 0.32317 0.34857 1 1 S 1S 0.00000 0.00000 2 1PX 0.00000 0.00000 3 1PY 0.00000 -0.18608 4 1PZ 0.00000 0.00000 5 1D 0 0.00000 0.00000 6 1D+1 0.00000 0.00000 7 1D-1 0.00000 0.93161 8 1D+2 0.00000 0.00000 9 1D-2 0.97743 0.00000 10 2 O 1S 0.00000 0.08757 11 1PX -0.14938 0.00000 12 1PY 0.00000 -0.20031 13 1PZ 0.00000 -0.03077 14 3 O 1S 0.00000 -0.08757 15 1PX 0.14938 0.00000 16 1PY 0.00000 -0.20031 17 1PZ 0.00000 0.03077 Density Matrix: 1 2 3 4 5 1 1 S 1S 1.90278 2 1PX 0.00000 0.75888 3 1PY 0.00000 0.00000 0.77648 4 1PZ 0.24577 0.00000 0.00000 0.88927 5 1D 0 0.11504 0.00000 0.00000 0.02914 0.09162 6 1D+1 0.00000 -0.05462 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 -0.08477 0.00000 0.00000 8 1D+2 0.19998 0.00000 0.00000 0.15935 0.14859 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.06012 0.00000 0.33366 -0.15147 -0.06431 11 1PX 0.00000 0.68516 0.00000 0.00000 0.00000 12 1PY -0.17689 0.00000 -0.46936 0.54031 0.11634 13 1PZ -0.02785 0.00000 0.37390 0.36833 -0.22732 14 3 O 1S 0.06012 0.00000 -0.33366 -0.15147 -0.06431 15 1PX 0.00000 0.68516 0.00000 0.00000 0.00000 16 1PY 0.17689 0.00000 -0.46936 -0.54031 -0.11634 17 1PZ -0.02785 0.00000 -0.37390 0.36833 -0.22732 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25538 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 -0.05062 -0.12814 0.00000 1.86892 11 1PX -0.04931 0.00000 0.00000 0.29202 0.00000 12 1PY 0.00000 0.22563 0.25416 0.00000 0.24750 13 1PZ 0.00000 0.20138 -0.31309 0.00000 -0.07792 14 3 O 1S 0.00000 0.05062 -0.12814 0.00000 0.05665 15 1PX -0.04931 0.00000 0.00000 -0.29202 0.00000 16 1PY 0.00000 0.22563 -0.25416 0.00000 0.02862 17 1PZ 0.00000 -0.20138 -0.31309 0.00000 0.11233 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44448 13 1PZ 0.00000 0.01077 1.67737 14 3 O 1S 0.00000 -0.02862 0.11233 1.86892 15 1PX -0.33677 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.12494 0.22819 -0.24750 0.00000 17 1PZ 0.00000 -0.22819 -0.06154 -0.07792 0.00000 16 17 16 1PY 1.44448 17 1PZ -0.01077 1.67737 Full Mulliken population analysis: 1 2 3 4 5 1 1 S 1S 1.90278 2 1PX 0.00000 0.75888 3 1PY 0.00000 0.00000 0.77648 4 1PZ 0.00000 0.00000 0.00000 0.88927 5 1D 0 0.00000 0.00000 0.00000 0.00000 0.09162 6 1D+1 0.00000 0.00000 0.00000 0.00000 0.00000 7 1D-1 0.00000 0.00000 0.00000 0.00000 0.00000 8 1D+2 0.00000 0.00000 0.00000 0.00000 0.00000 9 1D-2 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 7 8 9 10 6 1D+1 0.00393 7 1D-1 0.00000 0.10292 8 1D+2 0.00000 0.00000 0.25538 9 1D-2 0.00000 0.00000 0.00000 0.08926 10 2 O 1S 0.00000 0.00000 0.00000 0.00000 1.86892 11 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 12 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 13 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 14 3 O 1S 0.00000 0.00000 0.00000 0.00000 0.00000 15 1PX 0.00000 0.00000 0.00000 0.00000 0.00000 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 11 12 13 14 15 11 1PX 1.57397 12 1PY 0.00000 1.44448 13 1PZ 0.00000 0.00000 1.67737 14 3 O 1S 0.00000 0.00000 0.00000 1.86892 15 1PX 0.00000 0.00000 0.00000 0.00000 1.57397 16 1PY 0.00000 0.00000 0.00000 0.00000 0.00000 17 1PZ 0.00000 0.00000 0.00000 0.00000 0.00000 16 17 16 1PY 1.44448 17 1PZ 0.00000 1.67737 Gross orbital populations: 1 1 1 S 1S 1.90278 2 1PX 0.75888 3 1PY 0.77648 4 1PZ 0.88927 5 1D 0 0.09162 6 1D+1 0.00393 7 1D-1 0.10292 8 1D+2 0.25538 9 1D-2 0.08926 10 2 O 1S 1.86892 11 1PX 1.57397 12 1PY 1.44448 13 1PZ 1.67737 14 3 O 1S 1.86892 15 1PX 1.57397 16 1PY 1.44448 17 1PZ 1.67737 Condensed to atoms (all electrons): 1 2 3 1 S 4.870521 0.000000 0.000000 2 O 0.000000 6.564739 0.000000 3 O 0.000000 0.000000 6.564739 Mulliken charges: 1 1 S 1.129479 2 O -0.564739 3 O -0.564739 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 1.129479 2 O -0.564739 3 O -0.564739 APT charges: 1 1 S 1.168129 2 O -0.584064 3 O -0.584064 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 S 1.168129 2 O -0.584064 3 O -0.584064 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 1.9402 Tot= 1.9402 N-N= 5.424329321609D+01 E-N=-8.904558014842D+01 KE=-7.645419573746D+00 Symmetry A1 KE=-3.813711344127D+00 Symmetry A2 KE=-4.432043403704D-01 Symmetry B1 KE=-6.627341896003D-01 Symmetry B2 KE=-2.725769699649D+00 Orbital energies and kinetic energies (alpha): 1 2 1 (A1)--O -1.196781 -0.852152 2 (B2)--O -1.129673 -0.830170 3 (A1)--O -0.744297 -0.538163 4 (B1)--O -0.568553 -0.331367 5 (A1)--O -0.553950 -0.325299 6 (B2)--O -0.547770 -0.313891 7 (A2)--O -0.448717 -0.221602 8 (B2)--O -0.447857 -0.218823 9 (A1)--O -0.360333 -0.191242 10 (B1)--V -0.021768 -0.065362 11 (A1)--V 0.007385 -0.031904 12 (B2)--V 0.107002 0.051063 13 (A1)--V 0.300129 0.010197 14 (B1)--V 0.307675 -0.064454 15 (A1)--V 0.310712 -0.036153 16 (A2)--V 0.323171 -0.041361 17 (B2)--V 0.348570 0.009831 Total kinetic energy from orbitals=-7.645419573746D+00 Exact polarizability: 11.288 0.000 52.570 0.000 0.000 9.461 Approx polarizability: 8.350 0.000 60.491 0.000 0.000 8.522 Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- -5.8817 -3.6875 -3.4663 -0.0013 0.0056 0.0081 Low frequencies --- 224.3006 992.7424 1284.3785 Diagonal vibrational polarizability: 0.0000000 3.3444776 39.2743609 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 A1 A1 B2 Frequencies -- 224.3006 992.7424 1284.3785 Red. masses -- 20.3592 16.5848 20.8737 Frc consts -- 0.6035 9.6302 20.2879 IR Inten -- 72.9921 8.4564 205.0129 Atom AN X Y Z X Y Z X Y Z 1 16 0.00 0.00 0.52 0.00 0.00 0.19 0.00 0.55 0.00 2 8 0.00 -0.30 -0.52 0.00 0.67 -0.19 0.00 -0.55 0.21 3 8 0.00 0.30 -0.52 0.00 -0.67 -0.19 0.00 -0.55 -0.21 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 16 and mass 31.97207 Atom 2 has atomic number 8 and mass 15.99491 Atom 3 has atomic number 8 and mass 15.99491 Molecular mass: 63.96190 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 13.71324 197.84756 211.56080 X 0.00000 0.00000 1.00000 Y 1.00000 0.00000 0.00000 Z 0.00000 1.00000 0.00000 This molecule is an asymmetric top. Rotational symmetry number 2. Rotational temperatures (Kelvin) 6.31607 0.43778 0.40940 Rotational constants (GHZ): 131.60577 9.12188 8.53060 Zero-point vibrational energy 14961.8 (Joules/Mol) 3.57596 (Kcal/Mol) Warning -- explicit consideration of 1 degrees of freedom as vibrations may cause significant error Vibrational temperatures: 322.72 1428.33 1847.93 (Kelvin) Zero-point correction= 0.005699 (Hartree/Particle) Thermal correction to Energy= 0.009105 Thermal correction to Enthalpy= 0.010049 Thermal correction to Gibbs Free Energy= -0.018476 Sum of electronic and zero-point Energies= -0.094439 Sum of electronic and thermal Energies= -0.091033 Sum of electronic and thermal Enthalpies= -0.090089 Sum of electronic and thermal Free Energies= -0.118614 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 5.713 8.307 60.037 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 38.386 Rotational 0.889 2.981 19.601 Vibrational 3.936 2.345 2.050 Vibration 1 0.649 1.804 1.924 Q Log10(Q) Ln(Q) Total Bot 0.315191D+09 8.498573 19.568688 Total V=0 0.131755D+12 11.119768 25.604212 Vib (Bot) 0.365567D-02 -2.437033 -5.611477 Vib (Bot) 1 0.880266D+00 -0.055386 -0.127531 Vib (V=0) 0.152813D+01 0.184161 0.424047 Vib (V=0) 1 0.151236D+01 0.179655 0.413670 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.201065D+08 7.303337 16.816555 Rotational 0.428814D+04 3.632269 8.363609 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 -0.000011188 -0.000015831 0.000000000 2 8 0.000020367 -0.000002525 0.000000000 3 8 -0.000009179 0.000018356 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000020367 RMS 0.000011634 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000020335 RMS 0.000017138 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R2 A1 R1 0.54143 R2 0.00994 0.54143 A1 0.05947 0.05947 0.07085 ITU= 0 Eigenvalues --- 0.05655 0.53150 0.56566 Angle between quadratic step and forces= 53.35 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00013210 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.01D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65373 0.00002 0.00000 0.00006 0.00006 2.65379 R2 2.65373 0.00002 0.00000 0.00006 0.00006 2.65379 A1 2.42866 -0.00001 0.00000 -0.00020 -0.00020 2.42846 Item Value Threshold Converged? Maximum Force 0.000020 0.000450 YES RMS Force 0.000017 0.000300 YES Maximum Displacement 0.000148 0.001800 YES RMS Displacement 0.000132 0.001200 YES Predicted change in Energy=-1.937740D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4043 -DE/DX = 0.0 ! ! R2 R(1,3) 1.4043 -DE/DX = 0.0 ! ! A1 A(2,1,3) 139.1519 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1|1| IMPERIAL COLLEGE-CHWS-278|Freq|RPM6|ZDO|O2S1|JR3915|24-Jan-2018|0 ||#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RPM6/ZDO Freq||Title Card Required||0,1|S,-1.9674706881,-1.0588981426,0.|O,-0.6099289022,- 1.418234053,0.|O,-2.7593523932,0.1008282743,0.||Version=EM64W-G09RevD. 01|State=1-A1|HF=-0.1001378|RMSD=1.227e-009|RMSF=1.163e-005|ZeroPoint= 0.0056987|Thermal=0.0091047|Dipole=-0.4405522,-0.6233669,0.|DipoleDeri v=1.5625362,-0.2888352,0.,-0.2888352,1.3579723,0.,0.,0.,0.5838783,-0.9 227267,0.292379,0.,-0.1037297,-0.537527,0.,0.,0.,-0.2919376,-0.6398091 ,-0.0035433,0.,0.3925654,-0.8204446,0.,0.,0.,-0.2919376|Polar=38.21064 12,-20.3179733,23.8206975,0.,0.,11.2881018|HyperPolar=-98.4238049,1.83 43237,52.5619183,-66.7273927,0.,0.,0.,2.810461,3.9767103,0.|PG=C02V [C 2(S1),SGV(O2)]|NImag=0||0.65954971,-0.38768870,0.38497417,0.,0.,-0.000 02097,-0.47760281,0.15848976,0.,0.49555126,0.12450148,-0.04465921,0.,- 0.15092018,0.05593303,0.,0.,0.00001047,0.,0.,-0.00000886,-0.18194691,0 .22919873,0.,-0.01794853,0.02641882,0.,0.19989553,0.26318701,-0.340315 12,0.,-0.00756954,-0.01127366,0.,-0.25561737,0.35158876,0.,0.,0.000010 47,0.,0.,-0.00000159,0.,0.,-0.00000886||0.00001119,0.00001583,0.,-0.00 002037,0.00000252,0.,0.00000918,-0.00001836,0.|||@ ERWIN WITH HIS PSI CAN DO CALCULATIONS QUITE A FEW. BUT ONE THING HAS NOT BEEN SEEN JUST WHAT DOES PSI REALLY MEAN. -- WALTER HUCKEL, TRANS. BY FELIX BLOCH Job cpu time: 0 days 0 hours 0 minutes 3.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Wed Jan 24 21:11:17 2018.