Entering Link 1 = C:\G09W\l1.exe PID= 2232. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64W-G09RevC.01 23-Sep-2011 11-Mar-2013 ****************************************** %chk=\\ic.ac.uk\homes\cif110\Year 3 Labs\Computational Diels Alder\cis_butadiene _MO.chk ----------------------- # am1 geom=connectivity ----------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=2,16=1,25=1,41=700000/1,2,3; 4/35=1/1; 5/5=2,35=1,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------ Cis-butadiene population ------------------------ Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: C 1.33351 -0.86078 0. H 1.88856 0.08617 0. H 1.95788 -1.7636 0. C 0. -0.92506 0. H -0.5028 -1.90935 0. C -0.90079 0.21052 0. H -1.97367 -0.05508 0. C -0.53471 1.49442 0. H 0.51371 1.8194 0. H -1.27175 2.30786 0. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.333512 -0.860781 0.000000 2 1 0 1.888561 0.086171 0.000000 3 1 0 1.957875 -1.763598 0.000000 4 6 0 0.000000 -0.925062 0.000000 5 1 0 -0.502798 -1.909347 0.000000 6 6 0 -0.900790 0.210525 0.000000 7 1 0 -1.973670 -0.055085 0.000000 8 6 0 -0.534711 1.494418 0.000000 9 1 0 0.513708 1.819398 0.000000 10 1 0 -1.271745 2.307863 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.097632 0.000000 3 H 1.097683 1.851067 0.000000 4 C 1.335061 2.142254 2.129887 0.000000 5 H 2.114599 3.114593 2.464986 1.105270 0.000000 6 C 2.477863 2.792121 3.474065 1.449476 2.156908 7 H 3.403909 3.864813 4.286731 2.156904 2.366802 8 C 3.006197 2.802750 4.102152 2.477862 3.403915 9 H 2.802755 2.212306 3.863093 2.792125 3.864819 10 H 4.102154 3.863088 5.196850 3.474067 4.286740 6 7 8 9 10 6 C 0.000000 7 H 1.105269 0.000000 8 C 1.335064 2.114606 0.000000 9 H 2.142260 3.114600 1.097631 0.000000 10 H 2.129891 2.464999 1.097685 1.851065 0.000000 Stoichiometry C4H6 Framework group CS[SG(C4H6)] Deg. of freedom 17 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.333512 0.860781 0.000000 2 1 0 1.888561 -0.086171 0.000000 3 1 0 1.957875 1.763598 0.000000 4 6 0 0.000000 0.925062 0.000000 5 1 0 -0.502798 1.909347 0.000000 6 6 0 -0.900790 -0.210525 0.000000 7 1 0 -1.973670 0.055085 0.000000 8 6 0 -0.534711 -1.494418 0.000000 9 1 0 0.513708 -1.819398 0.000000 10 1 0 -1.271745 -2.307863 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 20.7823895 5.8951746 4.5924663 Standard basis: VSTO-6G (5D, 7F) There are 18 symmetry adapted basis functions of A' symmetry. There are 4 symmetry adapted basis functions of A" symmetry. Integral buffers will be 131072 words long. Regular integral format. Two-electron integral symmetry is turned off. 22 basis functions, 132 primitive gaussians, 22 cartesian basis functions 11 alpha electrons 11 beta electrons nuclear repulsion energy 70.0077677058 Hartrees. Do NDO integrals. One-electron integrals computed using PRISM. NBasis= 22 RedAO= F NBF= 18 4 NBsUse= 22 1.00D-04 NBFU= 18 4 Simple Huckel Guess. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") Virtual (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Overlap will be assumed to be unity. Keep J ints in memory in canonical form, NReq=879868. Fock symm off for IB=2 I1= 1 I= 19 J= 15 Cut=1.00D-07 Err=1.67D-03 Fock matrix is not symmetric: symmetry in diagonalization turned off. SCF Done: E(RAM1) = 0.487971831707E-01 A.U. after 11 cycles Convg = 0.3513D-08 -V/T = 1.0036 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") Virtual (A") (A") (A') (A') (A') (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -1.32734 -1.12532 -0.88834 -0.70104 -0.61968 Alpha occ. eigenvalues -- -0.55138 -0.51394 -0.44832 -0.44171 -0.43756 Alpha occ. eigenvalues -- -0.34382 Alpha virt. eigenvalues -- 0.01708 0.08501 0.14489 0.14521 0.15733 Alpha virt. eigenvalues -- 0.16932 0.18711 0.18932 0.20812 0.21075 Alpha virt. eigenvalues -- 0.21980 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.207981 0.000000 0.000000 0.000000 0.000000 0.000000 2 H 0.000000 0.888022 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.887323 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 4.136327 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 0.880348 0.000000 6 C 0.000000 0.000000 0.000000 0.000000 0.000000 4.136326 7 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 8 C 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 9 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 10 H 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 7 8 9 10 1 C 0.000000 0.000000 0.000000 0.000000 2 H 0.000000 0.000000 0.000000 0.000000 3 H 0.000000 0.000000 0.000000 0.000000 4 C 0.000000 0.000000 0.000000 0.000000 5 H 0.000000 0.000000 0.000000 0.000000 6 C 0.000000 0.000000 0.000000 0.000000 7 H 0.880347 0.000000 0.000000 0.000000 8 C 0.000000 4.207981 0.000000 0.000000 9 H 0.000000 0.000000 0.888022 0.000000 10 H 0.000000 0.000000 0.000000 0.887324 Mulliken atomic charges: 1 1 C -0.207981 2 H 0.111978 3 H 0.112677 4 C -0.136327 5 H 0.119652 6 C -0.136326 7 H 0.119653 8 C -0.207981 9 H 0.111978 10 H 0.112676 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.016674 4 C -0.016675 6 C -0.016673 8 C 0.016674 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0325 Y= -0.0257 Z= 0.0000 Tot= 0.0414 N-N= 7.000776770575D+01 E-N=-1.117219972959D+02 KE=-1.339907594420D+01 1|1|UNPC-CHWS-261|SP|RAM1|ZDO|C4H6|CIF110|11-Mar-2013|0||# am1 geom=co nnectivity||Cis-butadiene population||0,1|C,0,1.33351249,-0.86078055,0 .|H,0,1.88856077,0.08617059,0.|H,0,1.95787522,-1.76359842,0.|C,0,0.,-0 .92506233,0.|H,0,-0.5027984,-1.90934708,0.|C,0,-0.90079009,0.21052479, 0.|H,0,-1.97366965,-0.05508464,0.|C,0,-0.53471078,1.49441784,0.|H,0,0. 51370787,1.81939832,0.|H,0,-1.27174546,2.30786276,0.||Version=EM64W-G0 9RevC.01|State=1-A'|HF=0.0487972|RMSD=3.513e-009|Dipole=0.0127686,0.01 01295,0.|PG=CS [SG(C4H6)]||@ THE TEST OF A FIRST RATE INTELLIGENCE IS THE ABILITY TO HOLD TWO OPPOSED IDEAS IN THE MIND AT THE SAME TIME, AND STILL RETAIN THE ABILITY TO FUNCTION. ONE SHOULD, FOR EXAMPLE, BE ABLE TO SEE THAT THINGS ARE HOPELESS AND YET BE DETERMINED TO MAKE THEM OTHERWISE. -- F. SCOTT FITZGERALD Job cpu time: 0 days 0 hours 0 minutes 1.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Mon Mar 11 15:03:21 2013.