Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4236. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 23-Oct-2013 ****************************************** %chk=\\ic.ac.uk\homes\ft311\3rdyearphyscomp\QST_optimised_job_fail.chk Default route: MaxDisk=10GB ------------------------------------------ # opt=qst2 freq hf/3-21g geom=connectivity ------------------------------------------ 1/5=1,18=20,27=202,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/5=1,18=20,27=202/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=5,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/5=1,18=20,27=202/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -1.40556 4.51327 1.01102 C -0.59956 4.31741 -0.03314 C 0.52411 3.3189 -0.0882 C 0.32408 2.256 -1.19583 C 1.44776 1.25749 -1.25089 C 2.25375 1.06163 -2.29507 H -2.20659 5.24749 0.98799 H -0.75371 4.90772 -0.93867 H 1.60189 0.66715 -0.34539 H 2.14001 1.62689 -3.21833 H 3.05467 0.3273 -2.2721 H -1.29182 3.94803 1.93429 H 1.47462 3.83823 -0.27839 H 0.62634 2.82182 0.88544 H 0.22184 2.75308 -2.16946 H -0.62642 1.73666 -1.00563 ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -0.5771 6.39547 -0.67146 C -1.71085 5.51858 -0.21497 C -2.96184 5.57604 -0.67322 C 2.39048 8.08026 0.47403 C 1.13949 8.13772 0.01577 C 0.00574 7.26084 0.47225 H 0.23346 5.77395 -1.07895 H -1.46532 4.79365 0.56373 H 0.89396 8.86269 -0.7629 H 0.34548 6.61113 1.28954 H -0.80482 7.88236 0.87973 H -0.91685 7.04518 -1.48875 H -3.7413 4.91804 -0.29809 H -3.25457 6.28284 -1.44756 H 2.68321 7.37344 1.24836 H 3.1699 8.73837 0.09902 Iteration 1 RMS(Cart)= 0.09643534 RMS(Int)= 1.11782895 Iteration 2 RMS(Cart)= 0.08069504 RMS(Int)= 1.08993403 Iteration 3 RMS(Cart)= 0.07753067 RMS(Int)= 1.06444806 Iteration 4 RMS(Cart)= 0.07529371 RMS(Int)= 1.04175264 Iteration 5 RMS(Cart)= 0.07186027 RMS(Int)= 1.02177927 Iteration 6 RMS(Cart)= 0.06653346 RMS(Int)= 1.00412256 Iteration 7 RMS(Cart)= 0.05722150 RMS(Int)= 0.98847601 Iteration 8 RMS(Cart)= 0.05156244 RMS(Int)= 0.97453961 Iteration 9 RMS(Cart)= 0.04696387 RMS(Int)= 0.96226220 Iteration 10 RMS(Cart)= 0.04283979 RMS(Int)= 0.95138595 Iteration 11 RMS(Cart)= 0.03991355 RMS(Int)= 0.94175302 Iteration 12 RMS(Cart)= 0.03767835 RMS(Int)= 0.93327981 Iteration 13 RMS(Cart)= 0.03579899 RMS(Int)= 0.92582371 Iteration 14 RMS(Cart)= 0.03438503 RMS(Int)= 0.91928445 Iteration 15 RMS(Cart)= 0.03326585 RMS(Int)= 0.91351274 Iteration 16 RMS(Cart)= 0.03242555 RMS(Int)= 0.90844091 Iteration 17 RMS(Cart)= 0.03163656 RMS(Int)= 0.90406521 Iteration 18 RMS(Cart)= 0.03101145 RMS(Int)= 0.90034479 Iteration 19 RMS(Cart)= 0.03092562 RMS(Int)= 0.89720201 Iteration 20 RMS(Cart)= 0.03091957 RMS(Int)= 0.89461648 Iteration 21 RMS(Cart)= 0.03141492 RMS(Int)= 0.89255829 Iteration 22 RMS(Cart)= 0.03172540 RMS(Int)= 0.89101687 Iteration 23 RMS(Cart)= 0.03125900 RMS(Int)= 0.88999845 Iteration 24 RMS(Cart)= 0.02944336 RMS(Int)= 0.88952219 Iteration 25 RMS(Cart)= 0.02767072 RMS(Int)= 0.88954854 Iteration 26 RMS(Cart)= 0.02609181 RMS(Int)= 0.88991004 Iteration 27 RMS(Cart)= 0.02553006 RMS(Int)= 0.89030255 Iteration 28 RMS(Cart)= 0.01811982 RMS(Int)= 0.89069751 Iteration 29 RMS(Cart)= 0.00598564 RMS(Int)= 0.89066564 Iteration 30 RMS(Cart)= 0.00392250 RMS(Int)= 0.89061832 Iteration 31 RMS(Cart)= 0.00290038 RMS(Int)= 0.89057614 Iteration 32 RMS(Cart)= 0.00229950 RMS(Int)= 0.89053834 Iteration 33 RMS(Cart)= 0.00190960 RMS(Int)= 0.89050328 Iteration 34 RMS(Cart)= 0.00163203 RMS(Int)= 0.89046983 Iteration 35 RMS(Cart)= 0.00141917 RMS(Int)= 0.89043727 Iteration 36 RMS(Cart)= 0.00124722 RMS(Int)= 0.89040514 Iteration 37 RMS(Cart)= 0.00110363 RMS(Int)= 0.89037316 Iteration 38 RMS(Cart)= 0.00096709 RMS(Int)= 0.89034029 Iteration 39 RMS(Cart)= 0.00079518 RMS(Int)= 0.89030307 Iteration 40 RMS(Cart)= 0.00066825 RMS(Int)= 0.89026548 Iteration 41 RMS(Cart)= 0.00057087 RMS(Int)= 0.89022828 Iteration 42 RMS(Cart)= 0.00049398 RMS(Int)= 0.89019188 Iteration 43 RMS(Cart)= 0.00043188 RMS(Int)= 0.89015653 Iteration 44 RMS(Cart)= 0.00038072 RMS(Int)= 0.89012238 Iteration 45 RMS(Cart)= 0.00033784 RMS(Int)= 0.89008951 Iteration 46 RMS(Cart)= 0.00030135 RMS(Int)= 0.89005799 Iteration 47 RMS(Cart)= 0.00026993 RMS(Int)= 0.89002780 Iteration 48 RMS(Cart)= 0.00024260 RMS(Int)= 0.88999895 Iteration 49 RMS(Cart)= 0.00021866 RMS(Int)= 0.88997141 Iteration 50 RMS(Cart)= 0.00019755 RMS(Int)= 0.88994514 Iteration 51 RMS(Cart)= 0.00017886 RMS(Int)= 0.88992011 Iteration 52 RMS(Cart)= 0.00016224 RMS(Int)= 0.88989627 Iteration 53 RMS(Cart)= 0.00014744 RMS(Int)= 0.88987358 Iteration 54 RMS(Cart)= 0.00013421 RMS(Int)= 0.88985199 Iteration 55 RMS(Cart)= 0.00012238 RMS(Int)= 0.88983146 Iteration 56 RMS(Cart)= 0.00011178 RMS(Int)= 0.88981194 Iteration 57 RMS(Cart)= 0.00010227 RMS(Int)= 0.88979337 Iteration 58 RMS(Cart)= 0.00009374 RMS(Int)= 0.88977573 Iteration 59 RMS(Cart)= 0.00008607 RMS(Int)= 0.88975896 Iteration 60 RMS(Cart)= 0.00007917 RMS(Int)= 0.88974302 Iteration 61 RMS(Cart)= 0.00007296 RMS(Int)= 0.88972787 Iteration 62 RMS(Cart)= 0.00006738 RMS(Int)= 0.88971346 Iteration 63 RMS(Cart)= 0.00006235 RMS(Int)= 0.88969977 Iteration 64 RMS(Cart)= 0.00005781 RMS(Int)= 0.88968676 Iteration 65 RMS(Cart)= 0.00005372 RMS(Int)= 0.88967438 Iteration 66 RMS(Cart)= 0.00005003 RMS(Int)= 0.88966261 Iteration 67 RMS(Cart)= 0.00004669 RMS(Int)= 0.88965142 Iteration 68 RMS(Cart)= 0.00004368 RMS(Int)= 0.88964077 Iteration 69 RMS(Cart)= 0.00004095 RMS(Int)= 0.88963063 Iteration 70 RMS(Cart)= 0.00003848 RMS(Int)= 0.88962098 Iteration 71 RMS(Cart)= 0.00003623 RMS(Int)= 0.88961180 Iteration 72 RMS(Cart)= 0.00003419 RMS(Int)= 0.88960305 Iteration 73 RMS(Cart)= 0.00003233 RMS(Int)= 0.88959471 Iteration 74 RMS(Cart)= 0.00003063 RMS(Int)= 0.88958677 Iteration 75 RMS(Cart)= 0.00002908 RMS(Int)= 0.88957919 Iteration 76 RMS(Cart)= 0.00002766 RMS(Int)= 0.88957197 Iteration 77 RMS(Cart)= 0.00002635 RMS(Int)= 0.88956509 Iteration 78 RMS(Cart)= 0.00002514 RMS(Int)= 0.88955851 Iteration 79 RMS(Cart)= 0.00002402 RMS(Int)= 0.88955224 Iteration 80 RMS(Cart)= 0.00002298 RMS(Int)= 0.88954625 Iteration 81 RMS(Cart)= 0.00002202 RMS(Int)= 0.88954053 Iteration 82 RMS(Cart)= 0.00002111 RMS(Int)= 0.88953507 Iteration 83 RMS(Cart)= 0.00002027 RMS(Int)= 0.88952984 Iteration 84 RMS(Cart)= 0.00001948 RMS(Int)= 0.88952485 Iteration 85 RMS(Cart)= 0.00001873 RMS(Int)= 0.88952007 Iteration 86 RMS(Cart)= 0.00001802 RMS(Int)= 0.88951550 Iteration 87 RMS(Cart)= 0.00001735 RMS(Int)= 0.88951113 Iteration 88 RMS(Cart)= 0.00001672 RMS(Int)= 0.88950695 Iteration 89 RMS(Cart)= 0.00001611 RMS(Int)= 0.88950294 Iteration 90 RMS(Cart)= 0.00001554 RMS(Int)= 0.88949911 Iteration 91 RMS(Cart)= 0.00001499 RMS(Int)= 0.88949543 Iteration 92 RMS(Cart)= 0.00001446 RMS(Int)= 0.88949191 Iteration 93 RMS(Cart)= 0.00001396 RMS(Int)= 0.88948853 Iteration 94 RMS(Cart)= 0.00001347 RMS(Int)= 0.88948530 Iteration 95 RMS(Cart)= 0.00001301 RMS(Int)= 0.88948219 Iteration 96 RMS(Cart)= 0.00001256 RMS(Int)= 0.88947921 Iteration 97 RMS(Cart)= 0.00001213 RMS(Int)= 0.88947636 Iteration 98 RMS(Cart)= 0.00001172 RMS(Int)= 0.88947362 Iteration 99 RMS(Cart)= 0.00001132 RMS(Int)= 0.88947099 Iteration100 RMS(Cart)= 0.00001094 RMS(Int)= 0.88946846 New curvilinear step not converged. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. RedQX1 iteration 1 Try 1 RMS(Cart)= 0.15104734 RMS(Int)= 1.05616489 XScale= 7.69667834 RedQX1 iteration 1 Try 2 RMS(Cart)= 0.15186610 RMS(Int)= 0.97801343 XScale= 3.90600971 RedQX1 iteration 1 Try 3 RMS(Cart)= 0.15620250 RMS(Int)= 0.91685998 XScale= 2.62181831 RedQX1 iteration 1 Try 4 RMS(Cart)= 0.17242567 RMS(Int)= 0.87443269 XScale= 1.95227478 RedQX1 iteration 1 Try 5 RMS(Cart)= 0.25235960 RMS(Int)= 0.85991782 XScale= 1.48663579 RedQX1 iteration 1 Try 6 RMS(Cart)= 0.24900501 RMS(Int)= 0.92516506 XScale= 1.33171024 RedQX1 iteration 2 Try 1 RMS(Cart)= 0.05881992 RMS(Int)= 0.94196436 XScale= 1.29950617 RedQX1 iteration 2 Try 2 RMS(Cart)= 0.07657812 RMS(Int)= 0.93691258 XScale= 1.25485639 RedQX1 iteration 2 Try 3 RMS(Cart)= 0.07206429 RMS(Int)= 0.96992141 XScale= 1.24522189 RedQX1 iteration 2 Try 4 RMS(Cart)= 0.16191757 RMS(Int)= 0.90692701 XScale= 1.24968088 RedQX1 iteration 2 Try 5 RMS(Cart)= 0.36062000 RMS(Int)= 0.90969793 XScale= 1.27930502 RedQX1 iteration 2 Try 6 RMS(Cart)= 0.27268792 RMS(Int)= 0.98850154 XScale= 1.12628082 RedQX1 iteration 3 Try 1 RMS(Cart)= 0.07238790 RMS(Int)= 1.02685390 XScale= 1.08936543 RedQX1 iteration 3 Try 2 RMS(Cart)= 0.10177266 RMS(Int)= 1.03632767 XScale= 1.03345615 RedQX1 iteration 3 Try 3 RMS(Cart)= 0.17828492 RMS(Int)= 1.01952645 XScale= 1.08132001 RedQX1 iteration 3 Try 4 RMS(Cart)= 0.22052121 RMS(Int)= 1.13201288 XScale= 0.97598954 RedQX1 iteration 4 Try 1 RMS(Cart)= 0.08820848 RMS(Int)= 1.05796944 XScale= 1.04247722 RedQX1 iteration 4 Try 2 RMS(Cart)= 0.12643642 RMS(Int)= 1.12705601 XScale= 0.98075646 RedQX1 iteration 5 Try 1 RMS(Cart)= 0.10114914 RMS(Int)= 1.11194931 XScale= 0.99360695 RedQX1 iteration 6 Try 1 RMS(Cart)= 0.02022983 RMS(Int)= 1.06797550 XScale= 1.03301822 RedQX1 iteration 6 Try 2 RMS(Cart)= 0.02174772 RMS(Int)= 1.07916961 XScale= 1.02267843 RedQX1 iteration 6 Try 3 RMS(Cart)= 0.02346527 RMS(Int)= 1.09174167 XScale= 1.01134319 RedQX1 iteration 6 Try 4 RMS(Cart)= 0.02541846 RMS(Int)= 1.10593331 XScale= 0.99886643 RedQX1 iteration 7 Try 1 RMS(Cart)= 0.02236825 RMS(Int)= 1.10419900 XScale= 1.00037440 RedQX1 iteration 7 Try 2 RMS(Cart)= 0.02408765 RMS(Int)= 1.11813875 XScale= 0.98838116 RedQX1 iteration 8 Try 1 RMS(Cart)= 0.02312414 RMS(Int)= 1.11757065 XScale= 0.98886451 RedQX1 iteration 9 Try 1 RMS(Cart)= 0.00462483 RMS(Int)= 1.10683361 XScale= 0.99808593 RedQX1 iteration 10 Try 1 RMS(Cart)= 0.00092497 RMS(Int)= 1.10472436 XScale= 0.99991723 RedQX1 iteration 10 Try 2 RMS(Cart)= 0.00092771 RMS(Int)= 1.10525208 XScale= 0.99945842 RedQX1 iteration 10 Try 3 RMS(Cart)= 0.00093047 RMS(Int)= 1.10578219 XScale= 0.99899796 RedQX1 iteration 11 Try 1 RMS(Cart)= 0.00092749 RMS(Int)= 1.10578049 XScale= 0.99899944 RedQX1 iteration 12 Try 1 RMS(Cart)= 0.00018550 RMS(Int)= 1.10535770 XScale= 0.99936665 RedQX1 iteration 12 Try 2 RMS(Cart)= 0.00018561 RMS(Int)= 1.10546342 XScale= 0.99927480 RedQX1 iteration 12 Try 3 RMS(Cart)= 0.00018572 RMS(Int)= 1.10556922 XScale= 0.99918290 RedQX1 iteration 12 Try 4 RMS(Cart)= 0.00018583 RMS(Int)= 1.10567513 XScale= 0.99909092 RedQX1 iteration 12 Try 5 RMS(Cart)= 0.00018594 RMS(Int)= 1.10578113 XScale= 0.99899888 RedQX1 iteration 13 Try 1 RMS(Cart)= 0.00018570 RMS(Int)= 1.10578099 XScale= 0.99899900 RedQX1 iteration 14 Try 1 RMS(Cart)= 0.00003714 RMS(Int)= 1.10569630 XScale= 0.99907254 RedQX1 iteration 14 Try 2 RMS(Cart)= 0.00003714 RMS(Int)= 1.10571747 XScale= 0.99905415 RedQX1 iteration 14 Try 3 RMS(Cart)= 0.00003715 RMS(Int)= 1.10573865 XScale= 0.99903577 RedQX1 iteration 14 Try 4 RMS(Cart)= 0.00003715 RMS(Int)= 1.10575983 XScale= 0.99901737 RedQX1 iteration 14 Try 5 RMS(Cart)= 0.00003716 RMS(Int)= 1.10578102 XScale= 0.99899898 RedQX1 iteration 15 Try 1 RMS(Cart)= 0.00003715 RMS(Int)= 1.10578101 XScale= 0.99899899 RedQX1 iteration 16 Try 1 RMS(Cart)= 0.00000743 RMS(Int)= 1.10576407 XScale= 0.99901370 RedQX1 iteration 16 Try 2 RMS(Cart)= 0.00000743 RMS(Int)= 1.10576831 XScale= 0.99901002 RedQX1 iteration 16 Try 3 RMS(Cart)= 0.00000743 RMS(Int)= 1.10577254 XScale= 0.99900634 RedQX1 iteration 16 Try 4 RMS(Cart)= 0.00000743 RMS(Int)= 1.10577678 XScale= 0.99900266 RedQX1 iteration 16 Try 5 RMS(Cart)= 0.00000743 RMS(Int)= 1.10578101 XScale= 0.99899898 RedQX1 iteration 17 Try 1 RMS(Cart)= 0.00000743 RMS(Int)= 1.10578101 XScale= 0.99899898 RedQX1 iteration 18 Try 1 RMS(Cart)= 0.00000149 RMS(Int)= 1.10577763 XScale= 0.99900193 RedQX1 iteration 18 Try 2 RMS(Cart)= 0.00000149 RMS(Int)= 1.10577847 XScale= 0.99900119 RedQX1 iteration 18 Try 3 RMS(Cart)= 0.00000149 RMS(Int)= 1.10577932 XScale= 0.99900046 RedQX1 iteration 18 Try 4 RMS(Cart)= 0.00000149 RMS(Int)= 1.10578017 XScale= 0.99899972 RedQX1 iteration 19 Try 1 RMS(Cart)= 0.00000149 RMS(Int)= 1.10578017 XScale= 0.99899972 RedQX1 iteration 20 Try 1 RMS(Cart)= 0.00000030 RMS(Int)= 1.10577949 XScale= 0.99900031 RedQX1 iteration 20 Try 2 RMS(Cart)= 0.00000030 RMS(Int)= 1.10577966 XScale= 0.99900016 RedQX1 iteration 20 Try 3 RMS(Cart)= 0.00000030 RMS(Int)= 1.10577983 XScale= 0.99900001 RedQX1 iteration 20 Try 4 RMS(Cart)= 0.00000030 RMS(Int)= 1.10578000 XScale= 0.99899987 Old curvilinear step not converged, using linear step: SCX= 5.53D+00 DXMaxT= 1.25-314 SCLim= 6.24-315 Fact= 1.13-315 RedCar/ORedCr failed for GTrans. Error termination via Lnk1e in C:\G09W\l101.exe at Wed Oct 23 19:01:07 2013. Job cpu time: 0 days 0 hours 0 minutes 32.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1