Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_c01/g09/l1.exe /home/scan-user-1/run/72672/Gau-23324.inp -scrdir=/home/scan-user-1/run/72672/ Entering Link 1 = /apps/gaussian/g09_c01/g09/l1.exe PID= 23325. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevC.01 23-Sep-2011 24-Feb-2013 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.3897584.cx1b/rwf ------------------------------------------------------- # opt b3lyp/6-31g(d,p) nosymm pop=nbo geom=connectivity ------------------------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,15=1,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1,7; 7/30=1/1,2,3,16; 1/14=-1,18=20,19=15/3(2); 2/9=110,15=1/2; 99//99; 2/9=110,15=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7/30=1/1,2,3,16; 1/14=-1,18=20,19=15/3(-5); 2/9=110,15=1/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1,7; 99/9=1/99; ---------------- pop analysis nh3 ---------------- Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: N -0.83489 -1.42623 -0.01031 H -0.43746 -2.36341 -0.01027 H -0.43744 -0.95767 0.80133 H -0.43749 -0.95762 -0.82196 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.018 estimate D2E/DX2 ! ! R2 R(1,3) 1.018 estimate D2E/DX2 ! ! R3 R(1,4) 1.018 estimate D2E/DX2 ! ! A1 A(2,1,3) 105.7414 estimate D2E/DX2 ! ! A2 A(2,1,4) 105.7486 estimate D2E/DX2 ! ! A3 A(3,1,4) 105.7478 estimate D2E/DX2 ! ! D1 D(2,1,4,3) -111.8631 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.834888 -1.426230 -0.010305 2 1 0 -0.437458 -2.363409 -0.010267 3 1 0 -0.437439 -0.957673 0.801333 4 1 0 -0.437487 -0.957619 -0.821960 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.017966 0.000000 3 H 1.017972 1.623203 0.000000 4 H 1.017992 1.623296 1.623293 0.000000 Symmetry turned off by external request. Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Rotational constants (GHZ): 293.7475344 293.7134104 190.3065162 Standard basis: 6-31G(d,p) (6D, 7F) Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned off. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.8944651690 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 30 RedAO= T NBF= 30 NBsUse= 30 1.00D-06 NBFU= 30 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Symmetry not used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=1020743. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.5577685597 A.U. after 10 cycles Convg = 0.3791D-09 -V/T = 2.0091 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Alpha occ. eigenvalues -- -14.30568 -0.84466 -0.45031 -0.45029 -0.25317 Alpha virt. eigenvalues -- 0.07985 0.16922 0.16923 0.67850 0.67853 Alpha virt. eigenvalues -- 0.71437 0.87555 0.87556 0.88552 1.13371 Alpha virt. eigenvalues -- 1.41877 1.41880 1.83052 2.09376 2.24216 Alpha virt. eigenvalues -- 2.24223 2.34640 2.34643 2.79253 2.95067 Alpha virt. eigenvalues -- 2.95071 3.19853 3.42892 3.42897 3.90462 Condensed to atoms (all electrons): 1 2 3 4 1 N 6.703110 0.337976 0.337975 0.337975 2 H 0.337976 0.487751 -0.032373 -0.032365 3 H 0.337975 -0.032373 0.487754 -0.032366 4 H 0.337975 -0.032365 -0.032366 0.487743 Mulliken atomic charges: 1 1 N -0.717035 2 H 0.239012 3 H 0.239010 4 H 0.239013 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 119.1362 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 1.8464 Y= 0.0000 Z= 0.0000 Tot= 1.8464 Quadrupole moment (field-independent basis, Debye-Ang): XX= -11.3653 YY= -6.1591 ZZ= -6.1590 XY= -2.6334 XZ= -0.0189 YZ= -0.0002 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -3.4709 YY= 1.7354 ZZ= 1.7355 XY= -2.6334 XZ= -0.0189 YZ= -0.0002 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 23.1781 YYY= 25.5841 ZZZ= 0.1903 XYY= 9.0132 XXY= 16.2096 XXZ= 0.1170 XZZ= 5.2574 YZZ= 9.5530 YYZ= 0.0639 XYZ= 0.0271 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -43.8448 YYYY= -80.5004 ZZZZ= -9.7201 XXXY= -33.0573 XXXZ= -0.2387 YYYX= -27.6124 YYYZ= -0.2646 ZZZX= -0.1625 ZZZY= -0.2952 XXYY= -30.7625 XXZZ= -7.6451 YYZZ= -17.9609 XXYZ= -0.1669 YYXZ= -0.0929 ZZXY= -7.7370 N-N= 1.189446516903D+01 E-N=-1.556684602863D+02 KE= 5.604582094482D+01 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: pop analysis nh3 Storage needed: 2904 in NPA, 3721 in NBO ( 917503888 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 N 1 S Cor( 1S) 1.99982 -14.16808 2 N 1 S Val( 2S) 1.53303 -0.57736 3 N 1 S Ryd( 3S) 0.00043 1.20835 4 N 1 S Ryd( 4S) 0.00000 3.73005 5 N 1 px Val( 2p) 1.83298 -0.21388 6 N 1 px Ryd( 3p) 0.00520 0.73498 7 N 1 py Val( 2p) 1.37252 -0.16298 8 N 1 py Ryd( 3p) 0.00158 0.77568 9 N 1 pz Val( 2p) 1.37252 -0.16298 10 N 1 pz Ryd( 3p) 0.00158 0.77569 11 N 1 dxy Ryd( 3d) 0.00163 2.29429 12 N 1 dxz Ryd( 3d) 0.00163 2.29431 13 N 1 dyz Ryd( 3d) 0.00016 2.41119 14 N 1 dx2y2 Ryd( 3d) 0.00149 2.16257 15 N 1 dz2 Ryd( 3d) 0.00060 2.32835 16 H 2 S Val( 1S) 0.62250 0.13597 17 H 2 S Ryd( 2S) 0.00093 0.57862 18 H 2 px Ryd( 2p) 0.00066 2.40557 19 H 2 py Ryd( 2p) 0.00053 2.93335 20 H 2 pz Ryd( 2p) 0.00034 2.31981 21 H 3 S Val( 1S) 0.62250 0.13596 22 H 3 S Ryd( 2S) 0.00093 0.57863 23 H 3 px Ryd( 2p) 0.00066 2.40557 24 H 3 py Ryd( 2p) 0.00039 2.47317 25 H 3 pz Ryd( 2p) 0.00048 2.77997 26 H 4 S Val( 1S) 0.62249 0.13594 27 H 4 S Ryd( 2S) 0.00093 0.57863 28 H 4 px Ryd( 2p) 0.00066 2.40553 29 H 4 py Ryd( 2p) 0.00039 2.47317 30 H 4 pz Ryd( 2p) 0.00048 2.77994 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- N 1 -1.12515 1.99982 6.11104 0.01429 8.12515 H 2 0.37505 0.00000 0.62250 0.00246 0.62495 H 3 0.37505 0.00000 0.62250 0.00246 0.62495 H 4 0.37505 0.00000 0.62249 0.00246 0.62495 ======================================================================= * Total * 0.00000 1.99982 7.97852 0.02166 10.00000 Natural Population -------------------------------------------------------- Core 1.99982 ( 99.9908% of 2) Valence 7.97852 ( 99.7316% of 8) Natural Minimal Basis 9.97834 ( 99.7834% of 10) Natural Rydberg Basis 0.02166 ( 0.2166% of 10) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- N 1 [core]2S( 1.53)2p( 4.58)3p( 0.01)3d( 0.01) H 2 1S( 0.62) H 3 1S( 0.62) H 4 1S( 0.62) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 9.99429 0.00571 1 3 0 1 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 1.99982 ( 99.991% of 2) Valence Lewis 7.99447 ( 99.931% of 8) ================== ============================ Total Lewis 9.99429 ( 99.943% of 10) ----------------------------------------------------- Valence non-Lewis 0.00000 ( 0.000% of 10) Rydberg non-Lewis 0.00571 ( 0.057% of 10) ================== ============================ Total non-Lewis 0.00571 ( 0.057% of 10) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (1.99909) BD ( 1) N 1 - H 2 ( 68.83%) 0.8297* N 1 s( 24.87%)p 3.02( 75.05%)d 0.00( 0.09%) -0.0001 -0.4986 -0.0059 0.0000 -0.2910 0.0052 0.8155 0.0277 0.0000 0.0000 0.0281 0.0000 0.0000 0.0032 0.0082 ( 31.17%) 0.5583* H 2 s( 99.91%)p 0.00( 0.09%) -0.9996 0.0000 0.0072 -0.0289 0.0000 2. (1.99909) BD ( 1) N 1 - H 3 ( 68.83%) 0.8297* N 1 s( 24.86%)p 3.02( 75.05%)d 0.00( 0.09%) 0.0001 0.4986 0.0059 0.0000 0.2910 -0.0052 0.4077 0.0138 0.7062 0.0240 0.0140 0.0243 0.0076 0.0033 0.0031 ( 31.17%) 0.5583* H 3 s( 99.91%)p 0.00( 0.09%) 0.9996 0.0000 -0.0072 -0.0145 -0.0250 3. (1.99909) BD ( 1) N 1 - H 4 ( 68.83%) 0.8297* N 1 s( 24.87%)p 3.02( 75.05%)d 0.00( 0.09%) 0.0001 0.4986 0.0059 0.0000 0.2909 -0.0052 0.4077 0.0138 -0.7062 -0.0239 0.0140 -0.0243 -0.0076 0.0033 0.0031 ( 31.17%) 0.5583* H 4 s( 99.91%)p 0.00( 0.09%) 0.9996 0.0000 -0.0072 -0.0145 0.0250 4. (1.99982) CR ( 1) N 1 s(100.00%) 1.0000 -0.0002 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5. (1.99721) LP ( 1) N 1 s( 25.38%)p 2.94( 74.52%)d 0.00( 0.10%) 0.0001 0.5036 -0.0120 0.0000 -0.8618 0.0505 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0269 0.0155 6. (0.00000) RY*( 1) N 1 s( 99.98%)p 0.00( 0.02%)d 0.00( 0.00%) 7. (0.00000) RY*( 2) N 1 s(100.00%) 8. (0.00000) RY*( 3) N 1 s( 0.03%)p99.99( 99.97%)d 0.01( 0.00%) 9. (0.00000) RY*( 4) N 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 10. (0.00000) RY*( 5) N 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 11. (0.00000) RY*( 6) N 1 s( 0.00%)p 1.00( 0.12%)d99.99( 99.88%) 12. (0.00000) RY*( 7) N 1 s( 0.00%)p 1.00( 0.12%)d99.99( 99.88%) 13. (0.00000) RY*( 8) N 1 s( 0.00%)p 1.00( 0.01%)d99.99( 99.99%) 14. (0.00000) RY*( 9) N 1 s( 0.01%)p 4.42( 0.06%)d99.99( 99.92%) 15. (0.00000) RY*(10) N 1 s( 0.00%)p 1.00( 0.03%)d99.99( 99.97%) 16. (0.00112) RY*( 1) H 2 s( 72.77%)p 0.37( 27.23%) 0.0038 0.8531 0.5218 -0.0017 -0.0001 17. (0.00045) RY*( 2) H 2 s( 26.59%)p 2.76( 73.41%) -0.0017 0.5157 -0.8435 -0.1501 -0.0007 18. (0.00034) RY*( 3) H 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0004 -0.0005 -0.0001 1.0000 19. (0.00000) RY*( 4) H 2 s( 0.72%)p99.99( 99.28%) 20. (0.00112) RY*( 1) H 3 s( 72.77%)p 0.37( 27.23%) 0.0038 0.8531 0.5218 0.0009 0.0014 21. (0.00045) RY*( 2) H 3 s( 26.59%)p 2.76( 73.41%) -0.0017 0.5157 -0.8435 0.0756 0.1297 22. (0.00034) RY*( 3) H 3 s( 0.00%)p 1.00(100.00%) 0.0000 0.0004 -0.0005 -0.8660 0.5000 23. (0.00000) RY*( 4) H 3 s( 0.72%)p99.99( 99.28%) 24. (0.00112) RY*( 1) H 4 s( 72.76%)p 0.37( 27.24%) 0.0038 0.8530 0.5219 0.0009 -0.0015 25. (0.00045) RY*( 2) H 4 s( 26.61%)p 2.76( 73.39%) -0.0017 0.5158 -0.8435 0.0750 -0.1300 26. (0.00034) RY*( 3) H 4 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.8660 0.5000 27. (0.00000) RY*( 4) H 4 s( 0.72%)p99.99( 99.28%) 28. (0.00000) BD*( 1) N 1 - H 2 ( 31.17%) 0.5583* N 1 s( 24.87%)p 3.02( 75.05%)d 0.00( 0.09%) ( 68.83%) -0.8297* H 2 s( 99.91%)p 0.00( 0.09%) 29. (0.00000) BD*( 1) N 1 - H 3 ( 31.17%) 0.5583* N 1 s( 24.86%)p 3.02( 75.05%)d 0.00( 0.09%) ( 68.83%) -0.8297* H 3 s( 99.91%)p 0.00( 0.09%) 30. (0.00000) BD*( 1) N 1 - H 4 ( 31.17%) 0.5583* N 1 s( 24.87%)p 3.02( 75.05%)d 0.00( 0.09%) ( 68.83%) -0.8297* H 4 s( 99.91%)p 0.00( 0.09%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== 1. BD ( 1) N 1 - H 2 90.0 293.0 90.0 288.7 4.3 -- -- -- 2. BD ( 1) N 1 - H 3 37.1 49.7 34.9 55.9 4.3 -- -- -- 3. BD ( 1) N 1 - H 4 142.9 49.7 145.1 55.9 4.3 -- -- -- 5. LP ( 1) N 1 -- -- 90.0 180.0 -- -- -- -- Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 5. LP ( 1) N 1 / 16. RY*( 1) H 2 1.01 1.43 0.034 5. LP ( 1) N 1 / 17. RY*( 2) H 2 0.67 2.17 0.034 5. LP ( 1) N 1 / 20. RY*( 1) H 3 1.01 1.43 0.034 5. LP ( 1) N 1 / 21. RY*( 2) H 3 0.67 2.17 0.034 5. LP ( 1) N 1 / 24. RY*( 1) H 4 1.01 1.43 0.034 5. LP ( 1) N 1 / 25. RY*( 2) H 4 0.67 2.17 0.034 Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (H3N) 1. BD ( 1) N 1 - H 2 1.99909 -0.60417 2. BD ( 1) N 1 - H 3 1.99909 -0.60417 3. BD ( 1) N 1 - H 4 1.99909 -0.60416 4. CR ( 1) N 1 1.99982 -14.16768 5. LP ( 1) N 1 1.99721 -0.31756 24(v),16(v),20(v),17(v) 21(v),25(v) 6. RY*( 1) N 1 0.00000 1.20799 7. RY*( 2) N 1 0.00000 3.73005 8. RY*( 3) N 1 0.00000 0.73750 9. RY*( 4) N 1 0.00000 0.77341 10. RY*( 5) N 1 0.00000 0.77342 11. RY*( 6) N 1 0.00000 2.29040 12. RY*( 7) N 1 0.00000 2.29041 13. RY*( 8) N 1 0.00000 2.40939 14. RY*( 9) N 1 0.00000 2.16324 15. RY*( 10) N 1 0.00000 2.32730 16. RY*( 1) H 2 0.00112 1.11323 17. RY*( 2) H 2 0.00045 1.84851 18. RY*( 3) H 2 0.00034 2.31981 19. RY*( 4) H 2 0.00000 2.94718 20. RY*( 1) H 3 0.00112 1.11322 21. RY*( 2) H 3 0.00045 1.84851 22. RY*( 3) H 3 0.00034 2.31980 23. RY*( 4) H 3 0.00000 2.94717 24. RY*( 1) H 4 0.00112 1.11347 25. RY*( 2) H 4 0.00045 1.84827 26. RY*( 3) H 4 0.00034 2.31978 27. RY*( 4) H 4 0.00000 2.94712 28. BD*( 1) N 1 - H 2 0.00000 0.48620 29. BD*( 1) N 1 - H 3 0.00000 0.48619 30. BD*( 1) N 1 - H 4 0.00000 0.48616 ------------------------------- Total Lewis 9.99429 ( 99.9429%) Valence non-Lewis 0.00000 ( 0.0000%) Rydberg non-Lewis 0.00571 ( 0.0571%) ------------------------------- Total unit 1 10.00000 (100.0000%) Charge unit 1 0.00000 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000007148 0.000001537 -0.000004076 2 1 0.000003163 0.000004032 -0.000009139 3 1 -0.000004158 0.000006306 -0.000008284 4 1 -0.000006153 -0.000011875 0.000021498 ------------------------------------------------------------------- Cartesian Forces: Max 0.000021498 RMS 0.000008881 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000024323 RMS 0.000011728 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.44664 R2 0.00000 0.44663 R3 0.00000 0.00000 0.44660 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00790 ITU= 0 Eigenvalues --- 0.06638 0.16000 0.16000 0.44660 0.44663 Eigenvalues --- 0.44664 RFO step: Lambda= 0.00000000D+00 EMin= 6.63756316D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00005585 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92368 0.00000 0.00000 -0.00001 -0.00001 1.92367 R2 1.92369 0.00000 0.00000 -0.00001 -0.00001 1.92368 R3 1.92373 -0.00002 0.00000 -0.00005 -0.00005 1.92367 A1 1.84553 0.00001 0.00000 0.00007 0.00007 1.84560 A2 1.84566 -0.00001 0.00000 -0.00007 -0.00007 1.84559 A3 1.84565 -0.00001 0.00000 -0.00007 -0.00007 1.84558 D1 -1.95238 0.00000 0.00000 -0.00002 -0.00002 -1.95240 Item Value Threshold Converged? Maximum Force 0.000024 0.000450 YES RMS Force 0.000012 0.000300 YES Maximum Displacement 0.000088 0.001800 YES RMS Displacement 0.000056 0.001200 YES Predicted change in Energy=-1.759459D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.018 -DE/DX = 0.0 ! ! R2 R(1,3) 1.018 -DE/DX = 0.0 ! ! R3 R(1,4) 1.018 -DE/DX = 0.0 ! ! A1 A(2,1,3) 105.7414 -DE/DX = 0.0 ! ! A2 A(2,1,4) 105.7486 -DE/DX = 0.0 ! ! A3 A(3,1,4) 105.7478 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) -111.8631 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.834888 -1.426230 -0.010305 2 1 0 -0.437458 -2.363409 -0.010267 3 1 0 -0.437439 -0.957673 0.801333 4 1 0 -0.437487 -0.957619 -0.821960 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.017966 0.000000 3 H 1.017972 1.623203 0.000000 4 H 1.017992 1.623296 1.623293 0.000000 Symmetry turned off by external request. Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Rotational constants (GHZ): 293.7475344 293.7134104 190.3065162 1\1\GINC-CX1-14-33-1\FOpt\RB3LYP\6-31G(d,p)\H3N1\SCAN-USER-1\24-Feb-20 13\0\\# opt b3lyp/6-31g(d,p) nosymm pop=nbo geom=connectivity\\pop ana lysis nh3\\0,1\N,-0.834888,-1.42623,-0.010305\H,-0.437458,-2.363409,-0 .010267\H,-0.437439,-0.957673,0.801333\H,-0.437487,-0.957619,-0.82196\ \Version=EM64L-G09RevC.01\HF=-56.5577686\RMSD=3.791e-10\RMSF=8.881e-06 \Dipole=0.7264302,-0.000006,-0.0000002\Quadrupole=-2.5805069,1.2902059 ,1.290301,-1.9578747,-0.014066,-0.0001311\PG=C01 [X(H3N1)]\\@ NOTHING WILL BE ATTEMPTED IF ALL POSSIBLE OBJECTIONS MUST FIRST BE OVERCOME. -- THE GOLDEN PRINCIPLE, PAUL DICKSON'S "THE OFFICIAL RULES" Job cpu time: 0 days 0 hours 0 minutes 14.8 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Sun Feb 24 16:00:46 2013.