Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_c01/g09/l1.exe /home/scan-user-1/run/69227/Gau-28138.inp -scrdir=/home/scan-user-1/run/69227/ Entering Link 1 = /apps/gaussian/g09_c01/g09/l1.exe PID= 28139. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevC.01 23-Sep-2011 15-Jan-2013 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.3579094.cx1b/rwf ------------------------------------ # opt ccsd/lanl2dz geom=connectivity ------------------------------------ 1/18=20,19=15,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=6,6=3,11=9,16=1,25=1,30=1,71=1/1,2,3; 4//1; 5/5=2,38=5/2; 8/6=4,9=120000,10=1/1,4; 9/5=7,15=1/13; 11/28=-8,29=200,42=3/11; 10/5=6/2; 6/7=2,8=2,9=2,10=2/1; 7/12=7/1,2,3,16; 1/18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=6,6=3,11=9,16=1,25=1,30=1,71=1/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 8/6=4,9=120000,10=1/1,4; 9/5=7,15=1/13; 11/28=-8,29=200,42=3/11; 10/5=6/2; 7/12=7/1,2,3,16; 1/18=20,19=15/3(-9); 2/9=110/2; 6/7=2,8=2,9=2,10=2/1; 99//99; ------------------ TlBr3 optimisation ------------------ Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: Tl 0. 0. 0. Br -2.32961 1.345 0. Br 2.32961 1.345 0. Br 0. -2.69 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.69 estimate D2E/DX2 ! ! R2 R(1,3) 2.69 estimate D2E/DX2 ! ! R3 R(1,4) 2.69 estimate D2E/DX2 ! ! A1 A(2,1,3) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! D1 D(2,1,4,3) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 -2.329608 1.345000 0.000000 3 35 0 2.329608 1.345000 0.000000 4 35 0 0.000000 -2.690000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Tl 0.000000 2 Br 2.690000 0.000000 3 Br 2.690000 4.659217 0.000000 4 Br 2.690000 4.659217 4.659217 0.000000 Stoichiometry Br3Tl Framework group D3H[O(Tl),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.690000 0.000000 3 35 0 2.329608 -1.345000 0.000000 4 35 0 -2.329608 -1.345000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.5899884 0.5899884 0.2949942 Standard basis: LANL2DZ (5D, 7F) There are 18 symmetry adapted basis functions of A1 symmetry. There are 4 symmetry adapted basis functions of A2 symmetry. There are 12 symmetry adapted basis functions of B1 symmetry. There are 8 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 42 basis functions, 66 primitive gaussians, 44 cartesian basis functions 17 alpha electrons 17 beta electrons nuclear repulsion energy 70.4003369795 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. 12 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 42 RedAO= T NBF= 18 4 12 8 NBsUse= 42 1.00D-06 NBFU= 18 4 12 8 Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 4.44D-02 ExpMax= 8.65D+00 ExpMxC= 8.65D+00 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (E') (E') (A1') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E") (E") (E') (E') (A2') Virtual (A1') (A2") (E') (E') (E') (E') (A2") (E") (E") (A2') (E') (E') (A1') (E') (E') (A2") (E") (E") (A1') (E') (E') (A1') (A1') (E') (E') The electronic state of the initial guess is 1-A1'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=1335437. SCF Done: E(RHF) = -89.0349511891 A.U. after 10 cycles Convg = 0.1553D-08 -V/T = 2.9505 Range of M.O.s used for correlation: 1 42 NBasis= 42 NAE= 17 NBE= 17 NFC= 0 NFV= 0 NROrb= 42 NOA= 17 NOB= 17 NVA= 25 NVB= 25 Semi-Direct transformation. ModeAB= 4 MOrb= 17 LenV= 1703752213 LASXX= 107169 LTotXX= 107169 LenRXX= 226384 LTotAB= 119215 MaxLAS= 539784 LenRXY= 0 NonZer= 333553 LenScr= 1000448 LnRSAI= 539784 LnScr1= 1571840 LExtra= 0 Total= 3338456 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 17. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.1004584434D-01 E2= -0.2144709534D-01 alpha-beta T2 = 0.7064393086D-01 E2= -0.1296843280D+00 beta-beta T2 = 0.1004584434D-01 E2= -0.2144709534D-01 ANorm= 0.1044382889D+01 E2 = -0.1725785186D+00 EUMP2 = -0.89207529707694D+02 R2 and R3 integrals will be kept in memory, NReq= 1801090. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. MP4(R+Q)= 0.16097240D-02 E3= -0.15113139D-01 EUMP3= -0.89222642847D+02 E4(DQ)= -0.32605221D-02 UMP4(DQ)= -0.89225903369D+02 E4(SDQ)= -0.62510896D-02 UMP4(SDQ)= -0.89228893937D+02 DE(Corr)= -0.18582623 E(Corr)= -89.220777417 NORM(A)= 0.10582919D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19269716 E(CORR)= -89.227648350 Delta=-6.87D-03 NORM(A)= 0.10675817D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19427167 E(CORR)= -89.229222856 Delta=-1.57D-03 NORM(A)= 0.10703839D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19509736 E(CORR)= -89.230048545 Delta=-8.26D-04 NORM(A)= 0.10711691D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19517310 E(CORR)= -89.230124293 Delta=-7.57D-05 NORM(A)= 0.10713434D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518562 E(CORR)= -89.230136805 Delta=-1.25D-05 NORM(A)= 0.10713633D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518734 E(CORR)= -89.230138530 Delta=-1.72D-06 NORM(A)= 0.10713652D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518634 E(CORR)= -89.230137531 Delta= 9.99D-07 NORM(A)= 0.10713655D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518733 E(CORR)= -89.230138516 Delta=-9.84D-07 NORM(A)= 0.10713674D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518749 E(CORR)= -89.230138675 Delta=-1.59D-07 NORM(A)= 0.10713678D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518777 E(CORR)= -89.230138962 Delta=-2.87D-07 NORM(A)= 0.10713682D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518780 E(CORR)= -89.230138992 Delta=-2.99D-08 NORM(A)= 0.10713683D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518782 E(CORR)= -89.230139011 Delta=-1.98D-08 NORM(A)= 0.10713684D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518783 E(CORR)= -89.230139021 Delta=-9.67D-09 NORM(A)= 0.10713684D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518784 E(CORR)= -89.230139024 Delta=-3.14D-09 NORM(A)= 0.10713684D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19518784 E(CORR)= -89.230139027 Delta=-3.10D-09 NORM(A)= 0.10713684D+01 Largest amplitude= 6.84D-02 Z-AMPLITUDE ITERATIONS Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.19188717D+00 E(Z)= -0.89226838362D+02 NORM(A)= 0.10713685D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.19188718D+00 E(Z)= -0.89226838374D+02 NORM(A)= 0.10713685D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.19188718D+00 E(Z)= -0.89226838373D+02 NORM(A)= 0.10713683D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.19188716D+00 E(Z)= -0.89226838344D+02 NORM(A)= 0.10713685D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.19188718D+00 E(Z)= -0.89226838368D+02 NORM(A)= 0.10625760D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18996928D+00 E(Z)= -0.89224920467D+02 NORM(A)= 0.10622836D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18988804D+00 E(Z)= -0.89224839231D+02 NORM(A)= 0.10621646D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18988124D+00 E(Z)= -0.89224832424D+02 NORM(A)= 0.10621532D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987344D+00 E(Z)= -0.89224824631D+02 NORM(A)= 0.10621546D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987522D+00 E(Z)= -0.89224826407D+02 NORM(A)= 0.10621560D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987527D+00 E(Z)= -0.89224826456D+02 NORM(A)= 0.10621565D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987532D+00 E(Z)= -0.89224826509D+02 NORM(A)= 0.10621567D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987533D+00 E(Z)= -0.89224826522D+02 NORM(A)= 0.10621568D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987532D+00 E(Z)= -0.89224826510D+02 NORM(A)= 0.10621568D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987533D+00 E(Z)= -0.89224826515D+02 NORM(A)= 0.10621568D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987532D+00 E(Z)= -0.89224826511D+02 NORM(A)= 0.10621568D+01 Iteration Nr. 17 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18987532D+00 E(Z)= -0.89224826512D+02 NORM(A)= 0.10621568D+01 Discarding MO integrals. IDoAtm=1111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=1311492. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=9.25D-03 Max=1.42D-01 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=2.02D-03 Max=1.43D-02 LinEq1: Iter= 2 NonCon= 1 RMS=3.14D-04 Max=1.73D-03 LinEq1: Iter= 3 NonCon= 1 RMS=6.82D-05 Max=4.35D-04 LinEq1: Iter= 4 NonCon= 1 RMS=1.33D-05 Max=1.08D-04 LinEq1: Iter= 5 NonCon= 1 RMS=1.80D-06 Max=2.18D-05 LinEq1: Iter= 6 NonCon= 1 RMS=1.82D-07 Max=1.14D-06 LinEq1: Iter= 7 NonCon= 1 RMS=1.03D-08 Max=8.27D-08 LinEq1: Iter= 8 NonCon= 1 RMS=6.89D-10 Max=7.22D-09 LinEq1: Iter= 9 NonCon= 0 RMS=5.88D-11 Max=6.10D-10 Linear equations converged to 1.000D-10 1.000D-09 after 9 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A1') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E") (E") (A2') (E') (E') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (E") (E") (A2') (E') (E') (A1') (E') (E') (A2") (E") (E") (A1') (E') (E') (A1') (A1') (E') (E') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -1.02042 -1.02042 -1.01940 -0.98208 -0.98208 Alpha occ. eigenvalues -- -0.96330 -0.95677 -0.95677 -0.58046 -0.45802 Alpha occ. eigenvalues -- -0.45802 -0.44687 -0.43374 -0.43374 -0.43150 Alpha occ. eigenvalues -- -0.42278 -0.42278 Alpha virt. eigenvalues -- -0.09084 -0.00565 0.09590 0.09590 0.21427 Alpha virt. eigenvalues -- 0.24621 0.24621 0.66848 0.66848 0.70371 Alpha virt. eigenvalues -- 0.70813 0.70813 0.73091 0.73167 0.73167 Alpha virt. eigenvalues -- 0.74760 1.57172 1.57172 1.58273 1.61121 Alpha virt. eigenvalues -- 1.61121 8.73660 18.11962 18.68066 18.68066 Condensed to atoms (all electrons): 1 2 3 4 1 Tl 11.337706 0.262778 0.262778 0.262778 2 Br 0.262778 7.040376 -0.005917 -0.005917 3 Br 0.262778 -0.005917 7.040376 -0.005917 4 Br 0.262778 -0.005917 -0.005917 7.040376 Mulliken atomic charges: 1 1 Tl 0.873959 2 Br -0.291320 3 Br -0.291320 4 Br -0.291320 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Tl 0.873959 2 Br -0.291320 3 Br -0.291320 4 Br -0.291320 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 713.0291 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -81.4205 YY= -81.4205 ZZ= -66.3217 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -5.0329 YY= -5.0329 ZZ= 10.0658 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= -10.9972 ZZZ= 0.0000 XYY= 0.0000 XXY= 10.9972 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1166.6602 YYYY= -1166.6602 ZZZZ= -93.2374 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -388.8867 XXZZ= -209.9135 YYZZ= -209.9135 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.040033697954D+01 E-N=-3.405397598194D+02 KE= 4.564748213989D+01 Symmetry A1 KE= 1.783295070736D+01 Symmetry A2 KE= 7.749879066872D+00 Symmetry B1 KE= 1.111953580969D+01 Symmetry B2 KE= 8.945116555963D+00 12 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=T MaxTD1= 7 Len= 274 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 81 0.000000000 0.000000000 0.000000000 2 35 0.011317176 -0.006533974 0.000000000 3 35 -0.011317176 -0.006533974 0.000000000 4 35 0.000000000 0.013067949 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.013067949 RMS 0.006533974 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.013067949 RMS 0.008554981 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.10302 R2 0.00000 0.10302 R3 0.00000 0.00000 0.10302 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00230 0.10302 0.10302 0.10302 0.25000 Eigenvalues --- 0.25000 RFO step: Lambda=-4.75359141D-03 EMin= 2.30000000D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.07937883 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.83D-12 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 5.08336 -0.01307 0.00000 -0.12125 -0.12125 4.96211 R2 5.08336 -0.01307 0.00000 -0.12125 -0.12125 4.96211 R3 5.08336 -0.01307 0.00000 -0.12125 -0.12125 4.96211 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.013068 0.000450 NO RMS Force 0.008555 0.000300 NO Maximum Displacement 0.121253 0.001800 NO RMS Displacement 0.079379 0.001200 NO Predicted change in Energy=-2.481629D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 -2.274040 1.312918 0.000000 3 35 0 2.274040 1.312918 0.000000 4 35 0 0.000000 -2.625836 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Tl 0.000000 2 Br 2.625836 0.000000 3 Br 2.625836 4.548081 0.000000 4 Br 2.625836 4.548081 4.548081 0.000000 Stoichiometry Br3Tl Framework group D3H[O(Tl),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.625836 0.000000 3 35 0 2.274040 -1.312918 0.000000 4 35 0 -2.274040 -1.312918 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6191743 0.6191743 0.3095872 Standard basis: LANL2DZ (5D, 7F) There are 18 symmetry adapted basis functions of A1 symmetry. There are 4 symmetry adapted basis functions of A2 symmetry. There are 12 symmetry adapted basis functions of B1 symmetry. There are 8 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 42 basis functions, 66 primitive gaussians, 44 cartesian basis functions 17 alpha electrons 17 beta electrons nuclear repulsion energy 72.1206260721 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. 12 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 42 RedAO= T NBF= 18 4 12 8 NBsUse= 42 1.00D-06 NBFU= 18 4 12 8 Initial guess read from the read-write file. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (E') (E') (A1') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E") (E") (A2') (E') (E') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (E") (E") (A2') (E') (E') (A1') (E') (E') (A2") (E") (E") (A1') (E') (E') (A1') (A1') (E') (E') Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 4.44D-02 ExpMax= 8.65D+00 ExpMxC= 8.65D+00 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=1335437. SCF Done: E(RHF) = -89.0410022160 A.U. after 10 cycles Convg = 0.2269D-08 -V/T = 2.9489 Range of M.O.s used for correlation: 1 42 NBasis= 42 NAE= 17 NBE= 17 NFC= 0 NFV= 0 NROrb= 42 NOA= 17 NOB= 17 NVA= 25 NVB= 25 Semi-Direct transformation. ModeAB= 4 MOrb= 17 LenV= 1703752213 LASXX= 107169 LTotXX= 107169 LenRXX= 226384 LTotAB= 119215 MaxLAS= 539784 LenRXY= 0 NonZer= 333553 LenScr= 1000448 LnRSAI= 539784 LnScr1= 1571840 LExtra= 0 Total= 3338456 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 17. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.9850849236D-02 E2= -0.2146617903D-01 alpha-beta T2 = 0.6673443911D-01 E2= -0.1277197501D+00 beta-beta T2 = 0.9850849236D-02 E2= -0.2146617903D-01 ANorm= 0.1042322473D+01 E2 = -0.1706521082D+00 EUMP2 = -0.89211654324129D+02 R2 and R3 integrals will be kept in memory, NReq= 1801090. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. MP4(R+Q)= 0.13518005D-02 E3= -0.14572521D-01 EUMP3= -0.89226226845D+02 E4(DQ)= -0.31794047D-02 UMP4(DQ)= -0.89229406250D+02 E4(SDQ)= -0.59950424D-02 UMP4(SDQ)= -0.89232221888D+02 DE(Corr)= -0.18363531 E(Corr)= -89.224637522 NORM(A)= 0.10551424D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19012349 E(CORR)= -89.231125708 Delta=-6.49D-03 NORM(A)= 0.10632678D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19158309 E(CORR)= -89.232585304 Delta=-1.46D-03 NORM(A)= 0.10655900D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19229552 E(CORR)= -89.233297736 Delta=-7.12D-04 NORM(A)= 0.10662014D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19235475 E(CORR)= -89.233356963 Delta=-5.92D-05 NORM(A)= 0.10663291D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236308 E(CORR)= -89.233365300 Delta=-8.34D-06 NORM(A)= 0.10663428D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236393 E(CORR)= -89.233366147 Delta=-8.47D-07 NORM(A)= 0.10663445D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236319 E(CORR)= -89.233365403 Delta= 7.44D-07 NORM(A)= 0.10663448D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236385 E(CORR)= -89.233366065 Delta=-6.62D-07 NORM(A)= 0.10663460D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236397 E(CORR)= -89.233366184 Delta=-1.19D-07 NORM(A)= 0.10663463D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236415 E(CORR)= -89.233366367 Delta=-1.82D-07 NORM(A)= 0.10663465D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236417 E(CORR)= -89.233366386 Delta=-1.93D-08 NORM(A)= 0.10663466D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236418 E(CORR)= -89.233366396 Delta=-1.00D-08 NORM(A)= 0.10663466D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236418 E(CORR)= -89.233366400 Delta=-3.86D-09 NORM(A)= 0.10663466D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19236419 E(CORR)= -89.233366401 Delta=-1.23D-09 NORM(A)= 0.10663466D+01 Largest amplitude= 5.76D-02 Z-AMPLITUDE ITERATIONS Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18966151D+00 E(Z)= -0.89230663726D+02 NORM(A)= 0.10663465D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18966147D+00 E(Z)= -0.89230663687D+02 NORM(A)= 0.10663466D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18966150D+00 E(Z)= -0.89230663712D+02 NORM(A)= 0.10663466D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18966150D+00 E(Z)= -0.89230663719D+02 NORM(A)= 0.10663465D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18966149D+00 E(Z)= -0.89230663702D+02 NORM(A)= 0.10581796D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18765477D+00 E(Z)= -0.89228656982D+02 NORM(A)= 0.10585275D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18781144D+00 E(Z)= -0.89228813656D+02 NORM(A)= 0.10585531D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18779951D+00 E(Z)= -0.89228801726D+02 NORM(A)= 0.10585628D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780397D+00 E(Z)= -0.89228806189D+02 NORM(A)= 0.10585637D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780394D+00 E(Z)= -0.89228806156D+02 NORM(A)= 0.10585632D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780381D+00 E(Z)= -0.89228806024D+02 NORM(A)= 0.10585631D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780380D+00 E(Z)= -0.89228806020D+02 NORM(A)= 0.10585632D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780381D+00 E(Z)= -0.89228806029D+02 NORM(A)= 0.10585632D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780382D+00 E(Z)= -0.89228806038D+02 NORM(A)= 0.10585633D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18780382D+00 E(Z)= -0.89228806039D+02 NORM(A)= 0.10585633D+01 Discarding MO integrals. IDoAtm=1111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=1311492. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=8.83D-03 Max=1.30D-01 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.85D-03 Max=1.43D-02 LinEq1: Iter= 2 NonCon= 1 RMS=2.82D-04 Max=1.54D-03 LinEq1: Iter= 3 NonCon= 1 RMS=6.63D-05 Max=4.04D-04 LinEq1: Iter= 4 NonCon= 1 RMS=1.39D-05 Max=1.16D-04 LinEq1: Iter= 5 NonCon= 1 RMS=2.04D-06 Max=2.09D-05 LinEq1: Iter= 6 NonCon= 1 RMS=1.71D-07 Max=9.85D-07 LinEq1: Iter= 7 NonCon= 1 RMS=8.60D-09 Max=5.95D-08 LinEq1: Iter= 8 NonCon= 1 RMS=5.99D-10 Max=6.52D-09 LinEq1: Iter= 9 NonCon= 0 RMS=4.83D-11 Max=4.99D-10 Linear equations converged to 1.000D-10 1.000D-09 after 9 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. 12 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=T MaxTD1= 7 Len= 274 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 81 0.000000000 0.000000000 0.000000000 2 35 0.003632916 -0.002097465 0.000000000 3 35 -0.003632916 -0.002097465 0.000000000 4 35 0.000000000 0.004194930 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.004194930 RMS 0.002097465 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.004194930 RMS 0.002746226 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -3.23D-03 DEPred=-2.48D-03 R= 1.30D+00 SS= 1.41D+00 RLast= 2.10D-01 DXNew= 5.0454D-01 6.3005D-01 Trust test= 1.30D+00 RLast= 2.10D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.09307 R2 -0.00995 0.09307 R3 -0.00995 -0.00995 0.09307 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.00230 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.07318 0.10302 0.10302 0.25000 Eigenvalues --- 0.25000 RFO step: Lambda= 0.00000000D+00 EMin= 2.30000000D-03 Quartic linear search produced a step of 0.38252. Iteration 1 RMS(Cart)= 0.03036367 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.80D-13 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.96211 -0.00419 -0.04638 0.00000 -0.04638 4.91573 R2 4.96211 -0.00419 -0.04638 0.00000 -0.04638 4.91573 R3 4.96211 -0.00419 -0.04638 0.00000 -0.04638 4.91573 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.004195 0.000450 NO RMS Force 0.002746 0.000300 NO Maximum Displacement 0.046381 0.001800 NO RMS Displacement 0.030364 0.001200 NO Predicted change in Energy=-3.475665D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 -2.252785 1.300646 0.000000 3 35 0 2.252785 1.300646 0.000000 4 35 0 0.000000 -2.601292 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Tl 0.000000 2 Br 2.601292 0.000000 3 Br 2.601292 4.505569 0.000000 4 Br 2.601292 4.505569 4.505569 0.000000 Stoichiometry Br3Tl Framework group D3H[O(Tl),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.601292 0.000000 3 35 0 2.252785 -1.300646 0.000000 4 35 0 -2.252785 -1.300646 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6309136 0.6309136 0.3154568 Standard basis: LANL2DZ (5D, 7F) There are 18 symmetry adapted basis functions of A1 symmetry. There are 4 symmetry adapted basis functions of A2 symmetry. There are 12 symmetry adapted basis functions of B1 symmetry. There are 8 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned on. 42 basis functions, 66 primitive gaussians, 44 cartesian basis functions 17 alpha electrons 17 beta electrons nuclear repulsion energy 72.8011043407 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. 12 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=T MaxTD1= 6 Len= 172 NBasis= 42 RedAO= T NBF= 18 4 12 8 NBsUse= 42 1.00D-06 NBFU= 18 4 12 8 Initial guess read from the read-write file. B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (E') (E') (A1') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E") (E") (A2') (E') (E') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (E") (E") (E') (E') (A2') (A1') (E') (E') (A2") (E") (E") (A1') (E') (E') (A1') (A1') (E') (E') Harris functional with IExCor= 205 diagonalized for initial guess. ExpMin= 4.44D-02 ExpMax= 8.65D+00 ExpMxC= 8.65D+00 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 205 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. Defaulting to unpruned grid for atomic number 81. FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=1335437. SCF Done: E(RHF) = -89.0423070217 A.U. after 8 cycles Convg = 0.6024D-08 -V/T = 2.9481 Range of M.O.s used for correlation: 1 42 NBasis= 42 NAE= 17 NBE= 17 NFC= 0 NFV= 0 NROrb= 42 NOA= 17 NOB= 17 NVA= 25 NVB= 25 Semi-Direct transformation. ModeAB= 4 MOrb= 17 LenV= 1703752213 LASXX= 107169 LTotXX= 107169 LenRXX= 226384 LTotAB= 119215 MaxLAS= 539784 LenRXY= 0 NonZer= 333553 LenScr= 1000448 LnRSAI= 539784 LnScr1= 1571840 LExtra= 0 Total= 3338456 MaxDsk= -1 SrtSym= T ITran= 4 JobTyp=0 Pass 1: I= 1 to 17. (rs|ai) integrals will be sorted in core. Spin components of T(2) and E(2): alpha-alpha T2 = 0.9777563167D-02 E2= -0.2147602195D-01 alpha-beta T2 = 0.6536380253D-01 E2= -0.1270119350D+00 beta-beta T2 = 0.9777563167D-02 E2= -0.2147602195D-01 ANorm= 0.1041594417D+01 E2 = -0.1699639789D+00 EUMP2 = -0.89212271000608D+02 R2 and R3 integrals will be kept in memory, NReq= 1801090. Iterations= 50 Convergence= 0.100D-07 Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. MP4(R+Q)= 0.12650274D-02 E3= -0.14379620D-01 EUMP3= -0.89226650621D+02 E4(DQ)= -0.31503539D-02 UMP4(DQ)= -0.89229800975D+02 E4(SDQ)= -0.59012784D-02 UMP4(SDQ)= -0.89232551899D+02 DE(Corr)= -0.18284803 E(Corr)= -89.225155052 NORM(A)= 0.10540309D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.18920008 E(CORR)= -89.231507102 Delta=-6.35D-03 NORM(A)= 0.10617651D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19061973 E(CORR)= -89.232926753 Delta=-1.42D-03 NORM(A)= 0.10639291D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19129386 E(CORR)= -89.233600877 Delta=-6.74D-04 NORM(A)= 0.10644870D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19134796 E(CORR)= -89.233654980 Delta=-5.41D-05 NORM(A)= 0.10646012D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135510 E(CORR)= -89.233662125 Delta=-7.14D-06 NORM(A)= 0.10646132D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135571 E(CORR)= -89.233662734 Delta=-6.10D-07 NORM(A)= 0.10646148D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135505 E(CORR)= -89.233662069 Delta= 6.65D-07 NORM(A)= 0.10646152D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135561 E(CORR)= -89.233662635 Delta=-5.65D-07 NORM(A)= 0.10646162D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135572 E(CORR)= -89.233662740 Delta=-1.05D-07 NORM(A)= 0.10646164D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135587 E(CORR)= -89.233662891 Delta=-1.52D-07 NORM(A)= 0.10646166D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135589 E(CORR)= -89.233662908 Delta=-1.69D-08 NORM(A)= 0.10646167D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135589 E(CORR)= -89.233662916 Delta=-7.62D-09 NORM(A)= 0.10646167D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135590 E(CORR)= -89.233662918 Delta=-2.56D-09 NORM(A)= 0.10646167D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Corr)= -0.19135590 E(CORR)= -89.233662919 Delta=-7.51D-10 NORM(A)= 0.10646167D+01 Largest amplitude= 5.42D-02 Z-AMPLITUDE ITERATIONS Iteration Nr. 1 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18884639D+00 E(Z)= -0.89231153416D+02 NORM(A)= 0.10646166D+01 Iteration Nr. 2 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18884637D+00 E(Z)= -0.89231153391D+02 NORM(A)= 0.10646167D+01 Iteration Nr. 3 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18884638D+00 E(Z)= -0.89231153405D+02 NORM(A)= 0.10646167D+01 Iteration Nr. 4 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18884640D+00 E(Z)= -0.89231153421D+02 NORM(A)= 0.10646168D+01 Iteration Nr. 5 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18884640D+00 E(Z)= -0.89231153426D+02 NORM(A)= 0.10575903D+01 Iteration Nr. 6 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18717839D+00 E(Z)= -0.89229485414D+02 NORM(A)= 0.10574105D+01 Iteration Nr. 7 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18705279D+00 E(Z)= -0.89229359812D+02 NORM(A)= 0.10573405D+01 Iteration Nr. 8 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18705443D+00 E(Z)= -0.89229361457D+02 NORM(A)= 0.10573136D+01 Iteration Nr. 9 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704758D+00 E(Z)= -0.89229354605D+02 NORM(A)= 0.10573099D+01 Iteration Nr. 10 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704728D+00 E(Z)= -0.89229354301D+02 NORM(A)= 0.10573105D+01 Iteration Nr. 11 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704747D+00 E(Z)= -0.89229354496D+02 NORM(A)= 0.10573106D+01 Iteration Nr. 12 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704747D+00 E(Z)= -0.89229354495D+02 NORM(A)= 0.10573106D+01 Iteration Nr. 13 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704747D+00 E(Z)= -0.89229354496D+02 NORM(A)= 0.10573107D+01 Iteration Nr. 14 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704747D+00 E(Z)= -0.89229354494D+02 NORM(A)= 0.10573107D+01 Iteration Nr. 15 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704747D+00 E(Z)= -0.89229354496D+02 NORM(A)= 0.10573107D+01 Iteration Nr. 16 ********************** DD1Dir will call FoFMem 1 times, MxPair= 306 NAB= 153 NAA= 0 NBB= 0. DE(Z) -0.18704747D+00 E(Z)= -0.89229354495D+02 NORM(A)= 0.10573107D+01 Discarding MO integrals. IDoAtm=1111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in canonical form, NReq=1311492. There are 1 degrees of freedom in the 1st order CPHF. IDoFFX=0. LinEq1: Iter= 0 NonCon= 1 RMS=8.67D-03 Max=1.26D-01 AX will form 1 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 1 RMS=1.79D-03 Max=1.42D-02 LinEq1: Iter= 2 NonCon= 1 RMS=2.70D-04 Max=1.49D-03 LinEq1: Iter= 3 NonCon= 1 RMS=6.58D-05 Max=4.48D-04 LinEq1: Iter= 4 NonCon= 1 RMS=1.40D-05 Max=1.20D-04 LinEq1: Iter= 5 NonCon= 1 RMS=2.04D-06 Max=2.03D-05 LinEq1: Iter= 6 NonCon= 1 RMS=1.65D-07 Max=9.41D-07 LinEq1: Iter= 7 NonCon= 1 RMS=8.01D-09 Max=5.40D-08 LinEq1: Iter= 8 NonCon= 1 RMS=5.69D-10 Max=6.26D-09 LinEq1: Iter= 9 NonCon= 0 RMS=4.46D-11 Max=4.62D-10 Linear equations converged to 1.000D-10 1.000D-09 after 9 iterations. End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. 12 Symmetry operations used in ECPInt. ECPInt: NShTT= 171 NPrTT= 387 LenC2= 172 LenP2D= 378. LDataN: DoStor=T MaxTD1= 7 Len= 274 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 81 0.000000000 0.000000000 0.000000000 2 35 -0.000012787 0.000007382 0.000000000 3 35 0.000012787 0.000007382 0.000000000 4 35 0.000000000 -0.000014765 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000014765 RMS 0.000007382 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000014765 RMS 0.000009666 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 DE= -2.97D-04 DEPred=-3.48D-04 R= 8.53D-01 SS= 1.41D+00 RLast= 8.03D-02 DXNew= 8.4853D-01 2.4100D-01 Trust test= 8.53D-01 RLast= 8.03D-02 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.09893 R2 -0.00409 0.09893 R3 -0.00409 -0.00409 0.09893 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.00230 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00230 0.09076 0.10302 0.10302 0.25000 Eigenvalues --- 0.25000 RFO step: Lambda= 0.00000000D+00 EMin= 2.30000000D-03 Quartic linear search produced a step of -0.00331. Iteration 1 RMS(Cart)= 0.00010059 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.21D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.91573 0.00001 0.00015 0.00000 0.00015 4.91588 R2 4.91573 0.00001 0.00015 0.00000 0.00015 4.91588 R3 4.91573 0.00001 0.00015 0.00000 0.00015 4.91588 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000015 0.000450 YES RMS Force 0.000010 0.000300 YES Maximum Displacement 0.000154 0.001800 YES RMS Displacement 0.000101 0.001200 YES Predicted change in Energy=-3.591615D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.6013 -DE/DX = 0.0 ! ! R2 R(1,3) 2.6013 -DE/DX = 0.0 ! ! R3 R(1,4) 2.6013 -DE/DX = 0.0 ! ! A1 A(2,1,3) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,4) 120.0 -DE/DX = 0.0 ! ! A3 A(3,1,4) 120.0 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 -2.252785 1.300646 0.000000 3 35 0 2.252785 1.300646 0.000000 4 35 0 0.000000 -2.601292 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Tl 0.000000 2 Br 2.601292 0.000000 3 Br 2.601292 4.505569 0.000000 4 Br 2.601292 4.505569 4.505569 0.000000 Stoichiometry Br3Tl Framework group D3H[O(Tl),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 81 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.601292 0.000000 3 35 0 2.252785 -1.300646 0.000000 4 35 0 -2.252785 -1.300646 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.6309136 0.6309136 0.3154568 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A1') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E") (E") (A2') (E') (E') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (E") (E") (E') (E') (A2') (A1') (E') (E') (A2") (E") (E") (A1') (E') (E') (A1') (A1') (E') (E') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -1.03070 -1.03070 -1.03006 -0.98219 -0.98219 Alpha occ. eigenvalues -- -0.96082 -0.95440 -0.95440 -0.58800 -0.46661 Alpha occ. eigenvalues -- -0.46661 -0.45180 -0.43519 -0.43519 -0.43279 Alpha occ. eigenvalues -- -0.42453 -0.42453 Alpha virt. eigenvalues -- -0.06734 0.00086 0.10734 0.10734 0.21240 Alpha virt. eigenvalues -- 0.25517 0.25517 0.66924 0.66924 0.69698 Alpha virt. eigenvalues -- 0.69698 0.71112 0.71711 0.73722 0.73722 Alpha virt. eigenvalues -- 0.75236 1.57433 1.57433 1.58717 1.61737 Alpha virt. eigenvalues -- 1.61737 8.72437 18.33204 18.84036 18.84036 Condensed to atoms (all electrons): 1 2 3 4 1 Tl 11.308254 0.279820 0.279820 0.279820 2 Br 0.279820 7.019931 -0.007828 -0.007828 3 Br 0.279820 -0.007828 7.019931 -0.007828 4 Br 0.279820 -0.007828 -0.007828 7.019931 Mulliken atomic charges: 1 1 Tl 0.852286 2 Br -0.284095 3 Br -0.284095 4 Br -0.284095 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Tl 0.852286 2 Br -0.284095 3 Br -0.284095 4 Br -0.284095 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 676.4120 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -80.5452 YY= -80.5452 ZZ= -66.1663 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -4.7930 YY= -4.7930 ZZ= 9.5859 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= -10.0443 ZZZ= 0.0000 XYY= 0.0000 XXY= 10.0443 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1093.0797 YYYY= -1093.0797 ZZZZ= -92.7731 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -364.3599 XXZZ= -197.7283 YYZZ= -197.7283 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.280110434068D+01 E-N=-3.452919102594D+02 KE= 4.570653926719D+01 Symmetry A1 KE= 1.787285664272D+01 Symmetry A2 KE= 7.751931556685D+00 Symmetry B1 KE= 1.114798537413D+01 Symmetry B2 KE= 8.933765693659D+00 1\1\GINC-CX1-27-5-1\FOpt\RCCSD-FC\LANL2DZ\Br3Tl1\SCAN-USER-1\15-Jan-20 13\0\\# opt ccsd/lanl2dz geom=connectivity\\TlBr3 optimisation\\0,1\Tl ,0.,0.,0.\Br,-2.2527846739,1.3006458379,0.\Br,2.2527846739,1.300645837 9,0.\Br,0.,-2.6012916758,0.\\Version=EM64L-G09RevC.01\State=1-A1'\HF=- 89.042307\MP2=-89.212271\MP3=-89.2266506\MP4D=-89.231066\MP4DQ=-89.229 801\MP4SDQ=-89.2325519\CCSD=-89.2336629\RMSD=6.024e-09\RMSF=7.382e-06\ Dipole=0.,0.,0.\PG=D03H [O(Tl1),3C2(Br1)]\\@ ... THIS SEEMS PLAINLY ABSURD; BUT WHOEVER WISHES TO BECOME A PHILOSOPHER MUST LEARN NOT TO BE FRIGHTENED BY ABSURDITIES. -- BERTRAND RUSSELL Job cpu time: 0 days 0 hours 4 minutes 33.1 seconds. File lengths (MBytes): RWF= 42 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Jan 15 18:22:49 2013.