Entering Link 1 = C:\G09W\l1.exe PID= 4420. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64W-G09RevC.01 23-Sep-2011 13-Mar-2013 ****************************************** %chk=\\ic.ac.uk\homes\ag3210\3rd year labs\Computational Labs\Mini Project\CFCL3 NMR.chk ---------------------------------------------------------------------- # nmr=giao b3lyp/cc-pvtz scrf=(cpcm,solvent=chloroform) geom=connectiv ity ---------------------------------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=16,6=1,11=2,16=1,25=1,30=1,70=2101,72=7,74=-5/1,2,8,3; 4//1; 5/5=2,38=5,53=7/2; 8/6=1,10=90,11=11/1; 10/13=100,45=16/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/9=1/99; ------------------- Title Card Required ------------------- Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: C 0. 0. 0.25313 F 0. 0. 1.59123 Cl 0. 1.69099 -0.31058 Cl -1.46444 -0.84549 -0.31058 Cl 1.46444 -0.84549 -0.31058 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.253131 2 9 0 0.000000 0.000000 1.591225 3 17 0 0.000000 1.690987 -0.310585 4 17 0 -1.464437 -0.845493 -0.310585 5 17 0 1.464437 -0.845493 -0.310585 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 F 1.338095 0.000000 3 Cl 1.782473 2.544861 0.000000 4 Cl 1.782473 2.544861 2.928875 0.000000 5 Cl 1.782473 2.544861 2.928875 2.928875 0.000000 Stoichiometry CCl3F Framework group C3V[C3(CF),3SGV(Cl)] Deg. of freedom 3 Full point group C3V NOp 6 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.253131 2 9 0 0.000000 0.000000 1.591225 3 17 0 0.000000 1.690987 -0.310585 4 17 0 -1.464437 -0.845493 -0.310585 5 17 0 1.464437 -0.845493 -0.310585 --------------------------------------------------------------------- Rotational constants (GHZ): 2.4183623 2.4183623 1.6847451 Standard basis: CC-pVTZ (5D, 7F) There are 97 symmetry adapted basis functions of A' symmetry. There are 65 symmetry adapted basis functions of A" symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 162 basis functions, 386 primitive gaussians, 187 cartesian basis functions 33 alpha electrons 33 beta electrons nuclear repulsion energy 364.2904008879 Hartrees. NAtoms= 5 NActive= 5 NUniq= 3 SFac= 2.78D+00 NAtFMM= 60 NAOKFM=F Big=F ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : C-PCM. Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : Matrix inversion. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 5. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Chloroform, Eps= 4.711300 Eps(inf)= 2.090627 ------------------------------------------------------------------------------ Spheres list: ISph on Nord Re0 Alpha Xe Ye Ze 1 C 1 1.926 1.100 0.000000 0.000000 0.253131 2 F 2 1.682 1.100 0.000000 0.000000 1.591225 3 Cl 3 1.974 1.100 0.000000 1.690987 -0.310585 4 Cl 4 1.974 1.100 -1.464437 -0.845493 -0.310585 5 Cl 5 1.974 1.100 1.464437 -0.845493 -0.310585 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 162 RedAO= T NBF= 97 65 NBsUse= 162 1.00D-06 NBFU= 97 65 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.21D-01 ExpMax= 4.56D+05 ExpMxC= 1.44D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (E) (E) (A1) (A1) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (A2) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A2) Virtual (A1) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A2) (A1) (A1) (E) (E) (A2) (E) (E) (A1) (E) (E) (A2) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (A2) (E) (E) (E) (E) (A1) (A2) (E) (E) (E) (E) (A1) (E) (E) (A2) (E) (E) (A1) (E) (E) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (A2) (E) (E) (E) (E) (E) (E) (A1) (A2) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) The electronic state of the initial guess is 1-A1. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Error on total polarization charges = 0.00888 SCF Done: E(RB3LYP) = -1518.68095531 A.U. after 10 cycles Convg = 0.3669D-08 -V/T = 2.0030 Range of M.O.s used for correlation: 1 162 NBasis= 162 NAE= 33 NBE= 33 NFC= 0 NFV= 0 NROrb= 162 NOA= 33 NOB= 33 NVA= 129 NVB= 129 NEqPCM: Using equilibrium solvation (IEInf=0, Eps= 4.7113, EpsInf= 2.0906) Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFCou: FMM=F IPFlag= 0 FMFlag= 10101102 FMFlg1= 0 NFxFlg= 40000000 DoJE=F BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 6100 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 7 NGrid= 813. Symmetry not used in FoFCou. There are 3 degrees of freedom in the 1st order CPHF. IDoFFX=0. 3 vectors produced by pass 0 Test12= 1.42D-13 3.33D-08 XBig12= 2.56D+00 1.32D+00. AX will form 3 AO Fock derivatives at one time. 3 vectors produced by pass 1 Test12= 1.42D-13 3.33D-08 XBig12= 7.94D-03 3.40D-02. 3 vectors produced by pass 2 Test12= 1.42D-13 3.33D-08 XBig12= 2.56D-05 2.22D-03. 3 vectors produced by pass 3 Test12= 1.42D-13 3.33D-08 XBig12= 2.19D-08 4.58D-05. 3 vectors produced by pass 4 Test12= 1.42D-13 3.33D-08 XBig12= 5.13D-11 4.12D-06. 3 vectors produced by pass 5 Test12= 1.42D-13 3.33D-08 XBig12= 1.25D-13 1.02D-07. Inverted reduced A of dimension 18 with in-core refinement. Calculating GIAO nuclear magnetic shielding tensors. SCF GIAO Magnetic shielding tensor (ppm): 1 C Isotropic = 28.1522 Anisotropy = 1.6323 XX= 27.6022 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 27.6140 ZY= -0.0144 XZ= 0.0000 YZ= 0.0042 ZZ= 29.2403 Eigenvalues: 27.6022 27.6139 29.2404 2 F Isotropic = 168.5547 Anisotropy = 74.8934 XX= 143.5878 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 143.5927 ZY= 0.0036 XZ= 0.0000 YZ= 0.0736 ZZ= 218.4836 Eigenvalues: 143.5878 143.5927 218.4836 3 Cl Isotropic = 393.7547 Anisotropy = 855.6992 XX= 126.1269 YX= 0.0000 ZX= 0.0000 XY= 0.0000 YY= 916.5239 ZY= -204.0106 XZ= 0.0000 YZ= -192.8719 ZZ= 138.6133 Eigenvalues: 90.9164 126.1269 964.2208 4 Cl Isotropic = 393.7208 Anisotropy = 855.6358 XX= 718.9669 YX= 342.0676 ZX= 176.7441 XY= 342.0447 YY= 323.8888 ZY= 102.0591 XZ= 167.0816 YZ= 96.4687 ZZ= 138.3066 Eigenvalues: 90.5886 126.4290 964.1447 5 Cl Isotropic = 393.7208 Anisotropy = 855.6358 XX= 718.9669 YX= -342.0676 ZX= -176.7441 XY= -342.0447 YY= 323.8888 ZY= 102.0591 XZ= -167.0816 YZ= 96.4687 ZZ= 138.3066 Eigenvalues: 90.5886 126.4290 964.1447 End of Minotr Frequency-dependent properties file 721 does not exist. End of Minotr Frequency-dependent properties file 722 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (?A) (?A) (?A) (A1) (A1) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (A1) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A2) Virtual (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (?A) (?A) (?A) (E) (E) (E) (E) (A2) (A1) (A1) (E) (E) (A2) (E) (E) (A1) (E) (E) (A2) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (A2) (E) (E) (A1) (E) (E) (A2) (E) (E) (E) (E) (A1) (E) (E) (A2) (E) (E) (A1) (E) (E) (A2) (A1) (E) (E) (E) (E) (A1) (E) (E) (A2) (E) (E) (E) (E) (E) (E) (A1) (A2) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A2) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) Unable to determine electronic state: an orbital has unidentified symmetry. Alpha occ. eigenvalues -- -101.59492-101.59492-101.59491 -24.74737 -10.44844 Alpha occ. eigenvalues -- -9.50063 -9.50062 -9.50062 -7.26436 -7.26436 Alpha occ. eigenvalues -- -7.26436 -7.25432 -7.25432 -7.25432 -7.25423 Alpha occ. eigenvalues -- -7.25423 -7.25423 -1.29367 -0.94513 -0.86088 Alpha occ. eigenvalues -- -0.86087 -0.67547 -0.56332 -0.55107 -0.55106 Alpha occ. eigenvalues -- -0.43711 -0.43711 -0.37772 -0.36723 -0.36722 Alpha occ. eigenvalues -- -0.33852 -0.33851 -0.32475 Alpha virt. eigenvalues -- -0.05898 -0.00249 -0.00248 0.07874 0.23180 Alpha virt. eigenvalues -- 0.23183 0.26360 0.27404 0.27405 0.27979 Alpha virt. eigenvalues -- 0.32077 0.32113 0.32113 0.33159 0.33160 Alpha virt. eigenvalues -- 0.35255 0.35255 0.35865 0.36457 0.38375 Alpha virt. eigenvalues -- 0.42675 0.42675 0.45507 0.48496 0.48496 Alpha virt. eigenvalues -- 0.54288 0.58100 0.58101 0.63645 0.69787 Alpha virt. eigenvalues -- 0.69787 0.74351 0.85903 0.90286 0.90288 Alpha virt. eigenvalues -- 0.92379 0.92379 1.01345 1.06915 1.06915 Alpha virt. eigenvalues -- 1.08791 1.08793 1.13686 1.61062 1.72631 Alpha virt. eigenvalues -- 1.72631 1.81218 1.81218 1.84156 1.85502 Alpha virt. eigenvalues -- 1.86781 1.86782 1.88514 1.89392 1.89393 Alpha virt. eigenvalues -- 1.91014 1.91694 1.91694 1.93089 1.93089 Alpha virt. eigenvalues -- 1.93558 1.99566 1.99566 1.99885 2.03071 Alpha virt. eigenvalues -- 2.03071 2.03647 2.05876 2.05876 2.06099 Alpha virt. eigenvalues -- 2.06832 2.07616 2.07616 2.15115 2.15116 Alpha virt. eigenvalues -- 2.17479 2.18220 2.18220 2.18636 2.21731 Alpha virt. eigenvalues -- 2.21732 2.24710 2.24710 2.26427 2.26427 Alpha virt. eigenvalues -- 2.27735 2.31472 2.38289 2.49835 2.55933 Alpha virt. eigenvalues -- 2.55934 2.61844 2.81534 2.81534 3.02189 Alpha virt. eigenvalues -- 3.11210 3.11210 3.33249 3.33249 3.34127 Alpha virt. eigenvalues -- 3.47583 3.49315 3.49316 3.54321 3.54321 Alpha virt. eigenvalues -- 3.55188 3.63040 3.91718 3.91719 4.39503 Alpha virt. eigenvalues -- 4.83305 4.83305 5.14937 5.14937 5.64855 Alpha virt. eigenvalues -- 6.80775 6.81000 6.91465 6.91465 6.96637 Alpha virt. eigenvalues -- 7.17486 7.17486 7.72517 8.29814 8.29814 Alpha virt. eigenvalues -- 8.76671 8.76671 9.24105 11.42671 Condensed to atoms (all electrons): 1 2 3 4 5 1 C 4.358469 0.401276 0.326018 0.326018 0.326018 2 F 0.401276 8.881874 -0.052243 -0.052243 -0.052243 3 Cl 0.326018 -0.052243 16.924480 -0.076497 -0.076497 4 Cl 0.326018 -0.052243 -0.076497 16.924480 -0.076497 5 Cl 0.326018 -0.052243 -0.076497 -0.076497 16.924480 Mulliken atomic charges: 1 1 C 0.262202 2 F -0.126420 3 Cl -0.045260 4 Cl -0.045260 5 Cl -0.045260 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.262202 2 F -0.126420 3 Cl -0.045260 4 Cl -0.045260 5 Cl -0.045260 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 726.9806 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= -0.3401 Tot= 0.3401 Quadrupole moment (field-independent basis, Debye-Ang): XX= -46.8304 YY= -46.8304 ZZ= -48.7641 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.6446 YY= 0.6446 ZZ= -1.2892 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 4.4569 ZZZ= 6.8568 XYY= 0.0000 XXY= -4.4569 XXZ= 0.3978 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.3978 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -349.8747 YYYY= -349.8747 ZZZZ= -147.0803 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= -4.7017 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -116.6249 XXZZ= -84.6207 YYZZ= -84.6207 XXYZ= 4.7017 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 3.642904008879D+02 E-N=-4.336174021382D+03 KE= 1.514170366912D+03 Symmetry A' KE= 1.000705618482D+03 Symmetry A" KE= 5.134647484295D+02 1|1|UNPC-CHWS-LAP87|SP|RB3LYP|CC-pVTZ|C1Cl3F1|AG3210|13-Mar-2013|0||# nmr=giao b3lyp/cc-pvtz scrf=(cpcm,solvent=chloroform) geom=connectivit y||Title Card Required||0,1|C,0,0.,0.,0.25313085|F,0,0.,0.,1.59122539| Cl,0,0.,1.69098662,-0.31058458|Cl,0,-1.46443738,-0.84549331,-0.3105845 8|Cl,0,1.46443738,-0.84549331,-0.31058458||Version=EM64W-G09RevC.01|St ate=1-A1|HF=-1518.6809553|RMSD=3.669e-009|Dipole=0.,0.,-0.1338159|Quad rupole=0.4792378,0.4792378,-0.9584756,0.,0.,0.|PG=C03V [C3(C1F1),3SGV( Cl1)]||@ Just remember, when you're over the hill, you begin to pick up speed. -- Charles Schulz Job cpu time: 0 days 0 hours 3 minutes 6.0 seconds. File lengths (MBytes): RWF= 25 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Wed Mar 13 13:47:45 2013.