Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4972. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 05-Mar-2015 ****************************************** %chk=\\icnas2.cc.ic.ac.uk\kvm12\3rdYearLabs\KVM_BENZENE_OPT_D6H_TC.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine scf=conver=9 ---------------------------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,6=9,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,6=9,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -------------------------------------------------------------- Benzene Optimisation (constrained symmetry, tight convergence) -------------------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 0. 1.39621 0. C 1.20916 0.69811 0. C 1.20916 -0.69811 0. C 0. -1.39621 0. C -1.20916 -0.69811 0. C -1.20916 0.69811 0. H 0. 2.48228 0. H 2.14972 1.24114 0. H 2.14972 -1.24114 0. H 0. -2.48228 0. H -2.14972 -1.24114 0. H -2.14972 1.24114 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3962 estimate D2E/DX2 ! ! R2 R(1,6) 1.3962 estimate D2E/DX2 ! ! R3 R(1,7) 1.0861 estimate D2E/DX2 ! ! R4 R(2,3) 1.3962 estimate D2E/DX2 ! ! R5 R(2,8) 1.0861 estimate D2E/DX2 ! ! R6 R(3,4) 1.3962 estimate D2E/DX2 ! ! R7 R(3,9) 1.0861 estimate D2E/DX2 ! ! R8 R(4,5) 1.3962 estimate D2E/DX2 ! ! R9 R(4,10) 1.0861 estimate D2E/DX2 ! ! R10 R(5,6) 1.3962 estimate D2E/DX2 ! ! R11 R(5,11) 1.0861 estimate D2E/DX2 ! ! R12 R(6,12) 1.0861 estimate D2E/DX2 ! ! A1 A(2,1,6) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,7) 120.0 estimate D2E/DX2 ! ! A3 A(6,1,7) 120.0 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.0 estimate D2E/DX2 ! ! A5 A(1,2,8) 120.0001 estimate D2E/DX2 ! ! A6 A(3,2,8) 120.0 estimate D2E/DX2 ! ! A7 A(2,3,4) 120.0 estimate D2E/DX2 ! ! A8 A(2,3,9) 120.0 estimate D2E/DX2 ! ! A9 A(4,3,9) 120.0001 estimate D2E/DX2 ! ! A10 A(3,4,5) 120.0 estimate D2E/DX2 ! ! A11 A(3,4,10) 120.0 estimate D2E/DX2 ! ! A12 A(5,4,10) 120.0 estimate D2E/DX2 ! ! A13 A(4,5,6) 120.0 estimate D2E/DX2 ! ! A14 A(4,5,11) 120.0001 estimate D2E/DX2 ! ! A15 A(6,5,11) 120.0 estimate D2E/DX2 ! ! A16 A(1,6,5) 120.0 estimate D2E/DX2 ! ! A17 A(1,6,12) 120.0001 estimate D2E/DX2 ! ! A18 A(5,6,12) 120.0 estimate D2E/DX2 ! ! D1 D(6,1,2,3) 0.0 estimate D2E/DX2 ! ! D2 D(6,1,2,8) 180.0 estimate D2E/DX2 ! ! D3 D(7,1,2,3) 180.0 estimate D2E/DX2 ! ! D4 D(7,1,2,8) 0.0 estimate D2E/DX2 ! ! D5 D(2,1,6,5) 0.0 estimate D2E/DX2 ! ! D6 D(2,1,6,12) 180.0 estimate D2E/DX2 ! ! D7 D(7,1,6,5) 180.0 estimate D2E/DX2 ! ! D8 D(7,1,6,12) 0.0 estimate D2E/DX2 ! ! D9 D(1,2,3,4) 0.0 estimate D2E/DX2 ! ! D10 D(1,2,3,9) 180.0 estimate D2E/DX2 ! ! D11 D(8,2,3,4) 180.0 estimate D2E/DX2 ! ! D12 D(8,2,3,9) 0.0 estimate D2E/DX2 ! ! D13 D(2,3,4,5) 0.0 estimate D2E/DX2 ! ! D14 D(2,3,4,10) 180.0 estimate D2E/DX2 ! ! D15 D(9,3,4,5) 180.0 estimate D2E/DX2 ! ! D16 D(9,3,4,10) 0.0 estimate D2E/DX2 ! ! D17 D(3,4,5,6) 0.0 estimate D2E/DX2 ! ! D18 D(3,4,5,11) 180.0 estimate D2E/DX2 ! ! D19 D(10,4,5,6) 180.0 estimate D2E/DX2 ! ! D20 D(10,4,5,11) 0.0 estimate D2E/DX2 ! ! D21 D(4,5,6,1) 0.0 estimate D2E/DX2 ! ! D22 D(4,5,6,12) 180.0 estimate D2E/DX2 ! ! D23 D(11,5,6,1) 180.0 estimate D2E/DX2 ! ! D24 D(11,5,6,12) 0.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396213 0.000000 2 6 0 1.209156 0.698107 0.000000 3 6 0 1.209156 -0.698107 0.000000 4 6 0 0.000000 -1.396213 0.000000 5 6 0 -1.209156 -0.698107 0.000000 6 6 0 -1.209156 0.698107 0.000000 7 1 0 0.000000 2.482277 0.000000 8 1 0 2.149715 1.241138 0.000000 9 1 0 2.149715 -1.241138 0.000000 10 1 0 0.000000 -2.482277 0.000000 11 1 0 -2.149715 -1.241138 0.000000 12 1 0 -2.149715 1.241138 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396213 0.000000 3 C 2.418312 1.396214 0.000000 4 C 2.792426 2.418312 1.396213 0.000000 5 C 2.418312 2.792427 2.418312 1.396213 0.000000 6 C 1.396213 2.418312 2.792427 2.418312 1.396214 7 H 1.086064 2.155301 3.402484 3.878490 3.402484 8 H 2.155301 1.086063 2.155301 3.402484 3.878490 9 H 3.402484 2.155301 1.086063 2.155301 3.402484 10 H 3.878490 3.402484 2.155301 1.086064 2.155301 11 H 3.402484 3.878490 3.402484 2.155301 1.086063 12 H 2.155301 3.402484 3.878490 3.402484 2.155301 6 7 8 9 10 6 C 0.000000 7 H 2.155301 0.000000 8 H 3.402484 2.482277 0.000000 9 H 3.878490 4.299429 2.482276 0.000000 10 H 3.402484 4.964554 4.299429 2.482277 0.000000 11 H 2.155301 4.299429 4.964554 4.299430 2.482277 12 H 1.086063 2.482277 4.299430 4.964554 4.299429 11 12 11 H 0.000000 12 H 2.482276 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396213 0.000000 2 6 0 1.209156 0.698106 0.000000 3 6 0 1.209156 -0.698106 0.000000 4 6 0 0.000000 -1.396213 0.000000 5 6 0 -1.209156 -0.698106 0.000000 6 6 0 -1.209156 0.698106 0.000000 7 1 0 0.000000 2.482277 0.000000 8 1 0 2.149715 1.241138 0.000000 9 1 0 2.149715 -1.241138 0.000000 10 1 0 0.000000 -2.482277 0.000000 11 1 0 -2.149715 -1.241138 0.000000 12 1 0 -2.149715 1.241138 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6906583 5.6906583 2.8453292 Standard basis: 6-31G(d,p) (6D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 19 symmetry adapted cartesian basis functions of B1G symmetry. There are 6 symmetry adapted cartesian basis functions of B2G symmetry. There are 9 symmetry adapted cartesian basis functions of B3G symmetry. There are 6 symmetry adapted cartesian basis functions of AU symmetry. There are 9 symmetry adapted cartesian basis functions of B1U symmetry. There are 26 symmetry adapted cartesian basis functions of B2U symmetry. There are 19 symmetry adapted cartesian basis functions of B3U symmetry. There are 26 symmetry adapted basis functions of AG symmetry. There are 19 symmetry adapted basis functions of B1G symmetry. There are 6 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 6 symmetry adapted basis functions of AU symmetry. There are 9 symmetry adapted basis functions of B1U symmetry. There are 26 symmetry adapted basis functions of B2U symmetry. There are 19 symmetry adapted basis functions of B3U symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.2632593617 Hartrees. NAtoms= 12 NActive= 12 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 4.39D-04 NBF= 26 19 6 9 6 9 26 19 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 26 19 6 9 6 9 26 19 ExpMin= 1.61D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B2U) (B1U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (B2G) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2U) (B1U) (A2G) (A2U) (A1G) (E2G) (E2G) (A1G) (E1G) (E1G) (E1U) (E1U) (E2U) (E2U) (B2G) (B1U) (E2G) (E2G) (E1U) (E1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (E1U) (E1U) (B1U) (B1G) (A2U) (E1G) (E1G) (E2U) (E2U) (E2G) (E2G) (B2U) (A1G) (A1G) (E1U) (E1U) (B1U) (E2G) (E2G) (E2U) (E2U) (B2G) (E1U) (E1U) (E1G) (E1G) (E2G) (E2G) (A2U) (E1G) (E1G) (B2U) (E1U) (E1U) (E2G) (E2G) (B1U) (A2G) (E2U) (E2U) (A1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) The electronic state of the initial guess is 1-A1G. Keep R1 ints in memory in symmetry-blocked form, NReq=29961214. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -232.258201603 A.U. after 10 cycles NFock= 10 Conv=0.35D-09 -V/T= 2.0101 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (E1U) (E1U) (B2G) (E2G) (E2G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2U) (A2U) (B1U) (A1G) (A2G) (A1G) (E2G) (E2G) (E1G) (E1G) (E1U) (E1U) (E2U) (E2U) (B2G) (E2G) (E2G) (B1U) (E1U) (E1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (E1U) (E1U) (B1U) (B1G) (A2U) (E1G) (E1G) (E2U) (E2U) (E2G) (E2G) (A1G) (B2U) (A1G) (B1U) (E1U) (E1U) (E2G) (E2G) (E2U) (E2U) (B2G) (E1U) (E1U) (E1G) (E1G) (E2G) (E2G) (A2U) (B2U) (E1G) (E1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A2G) (E2U) (E2U) (A1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -10.18793 -10.18767 -10.18767 -10.18711 -10.18711 Alpha occ. eigenvalues -- -10.18685 -0.84677 -0.74004 -0.74004 -0.59740 Alpha occ. eigenvalues -- -0.59740 -0.51794 -0.45822 -0.43854 -0.41656 Alpha occ. eigenvalues -- -0.41656 -0.35997 -0.33961 -0.33961 -0.24691 Alpha occ. eigenvalues -- -0.24691 Alpha virt. eigenvalues -- 0.00267 0.00267 0.09117 0.14517 0.14517 Alpha virt. eigenvalues -- 0.16189 0.18187 0.18187 0.19074 0.30072 Alpha virt. eigenvalues -- 0.30072 0.31820 0.31820 0.46726 0.52702 Alpha virt. eigenvalues -- 0.54832 0.55040 0.56113 0.59184 0.60124 Alpha virt. eigenvalues -- 0.60124 0.60154 0.60154 0.62466 0.62466 Alpha virt. eigenvalues -- 0.66712 0.66712 0.74251 0.81990 0.81990 Alpha virt. eigenvalues -- 0.82631 0.84428 0.84428 0.92466 0.93699 Alpha virt. eigenvalues -- 0.93699 0.95844 1.07892 1.07892 1.12961 Alpha virt. eigenvalues -- 1.12961 1.20178 1.26174 1.30038 1.40666 Alpha virt. eigenvalues -- 1.40666 1.42837 1.42837 1.43162 1.43162 Alpha virt. eigenvalues -- 1.75003 1.75782 1.81488 1.88212 1.92376 Alpha virt. eigenvalues -- 1.92376 1.96912 1.96912 1.97802 1.97802 Alpha virt. eigenvalues -- 2.02382 2.07415 2.07415 2.29652 2.29652 Alpha virt. eigenvalues -- 2.35668 2.35668 2.36699 2.41103 2.41496 Alpha virt. eigenvalues -- 2.41496 2.44331 2.44331 2.49463 2.49463 Alpha virt. eigenvalues -- 2.52597 2.59337 2.60037 2.60037 2.65785 Alpha virt. eigenvalues -- 2.77195 2.81147 2.81147 3.04929 3.04929 Alpha virt. eigenvalues -- 3.19263 3.23528 3.24815 3.24815 3.39476 Alpha virt. eigenvalues -- 3.50923 3.50923 3.95287 4.13045 4.16187 Alpha virt. eigenvalues -- 4.16187 4.43904 4.43904 4.83090 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.803183 0.549522 -0.035801 -0.040519 -0.035801 0.549522 2 C 0.549522 4.803183 0.549522 -0.035801 -0.040519 -0.035801 3 C -0.035801 0.549522 4.803183 0.549522 -0.035801 -0.040519 4 C -0.040519 -0.035801 0.549522 4.803183 0.549522 -0.035801 5 C -0.035801 -0.040519 -0.035801 0.549522 4.803183 0.549522 6 C 0.549522 -0.035801 -0.040519 -0.035801 0.549522 4.803183 7 H 0.368561 -0.042251 0.004828 0.000600 0.004828 -0.042251 8 H -0.042251 0.368561 -0.042251 0.004828 0.000600 0.004828 9 H 0.004828 -0.042251 0.368561 -0.042251 0.004828 0.000600 10 H 0.000600 0.004828 -0.042251 0.368561 -0.042251 0.004828 11 H 0.004828 0.000600 0.004828 -0.042251 0.368561 -0.042251 12 H -0.042251 0.004828 0.000600 0.004828 -0.042251 0.368561 7 8 9 10 11 12 1 C 0.368561 -0.042251 0.004828 0.000600 0.004828 -0.042251 2 C -0.042251 0.368561 -0.042251 0.004828 0.000600 0.004828 3 C 0.004828 -0.042251 0.368561 -0.042251 0.004828 0.000600 4 C 0.000600 0.004828 -0.042251 0.368561 -0.042251 0.004828 5 C 0.004828 0.000600 0.004828 -0.042251 0.368561 -0.042251 6 C -0.042251 0.004828 0.000600 0.004828 -0.042251 0.368561 7 H 0.634531 -0.006454 -0.000189 0.000015 -0.000189 -0.006454 8 H -0.006454 0.634531 -0.006454 -0.000189 0.000015 -0.000189 9 H -0.000189 -0.006454 0.634531 -0.006454 -0.000189 0.000015 10 H 0.000015 -0.000189 -0.006454 0.634531 -0.006454 -0.000189 11 H -0.000189 0.000015 -0.000189 -0.006454 0.634531 -0.006454 12 H -0.006454 -0.000189 0.000015 -0.000189 -0.006454 0.634531 Mulliken charges: 1 1 C -0.084423 2 C -0.084423 3 C -0.084423 4 C -0.084423 5 C -0.084423 6 C -0.084423 7 H 0.084423 8 H 0.084423 9 H 0.084423 10 H 0.084423 11 H 0.084423 12 H 0.084423 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 3 C 0.000000 4 C 0.000000 5 C 0.000000 6 C 0.000000 Electronic spatial extent (au): = 458.0813 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.4725 YY= -31.4725 ZZ= -38.5315 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.3530 YY= 2.3530 ZZ= -4.7060 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -270.6808 YYYY= -270.6808 ZZZZ= -39.8992 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -90.2269 XXZZ= -60.4108 YYZZ= -60.4108 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.032632593617D+02 E-N=-9.438978941994D+02 KE= 2.299463850378D+02 Symmetry AG KE= 7.407544059208D+01 Symmetry B1G KE= 3.748028362493D+01 Symmetry B2G KE= 2.235105767171D+00 Symmetry B3G KE= 2.235105767171D+00 Symmetry AU KE=-1.679897845919D-16 Symmetry B1U KE= 1.864661636000D+00 Symmetry B2U KE= 7.177690399632D+01 Symmetry B3U KE= 4.027888365410D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 -0.000067019 0.000000000 2 6 -0.000058040 -0.000033509 0.000000000 3 6 -0.000058040 0.000033509 0.000000000 4 6 0.000000000 0.000067019 0.000000000 5 6 0.000058040 0.000033509 0.000000000 6 6 0.000058040 -0.000033509 0.000000000 7 1 0.000000000 0.000193454 0.000000000 8 1 0.000167536 0.000096727 0.000000000 9 1 0.000167536 -0.000096727 0.000000000 10 1 0.000000000 -0.000193454 0.000000000 11 1 -0.000167536 -0.000096727 0.000000000 12 1 -0.000167536 0.000096727 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000193454 RMS 0.000083582 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000193454 RMS 0.000077036 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02139 0.02139 0.02139 0.02139 0.02139 Eigenvalues --- 0.02139 0.02139 0.02139 0.02139 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.35271 0.35271 Eigenvalues --- 0.35271 0.35271 0.35271 0.35271 0.41954 Eigenvalues --- 0.41954 0.46254 0.46254 0.46254 0.46254 RFO step: Lambda=-8.43992978D-07 EMin= 2.13885048D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00028870 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.28D-13 for atom 12. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63846 0.00013 0.00000 0.00027 0.00027 2.63873 R2 2.63846 0.00013 0.00000 0.00027 0.00027 2.63873 R3 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 R4 2.63846 0.00013 0.00000 0.00027 0.00027 2.63873 R5 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 R6 2.63846 0.00013 0.00000 0.00027 0.00027 2.63873 R7 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 R8 2.63846 0.00013 0.00000 0.00027 0.00027 2.63873 R9 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 R10 2.63846 0.00013 0.00000 0.00027 0.00027 2.63873 R11 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 R12 2.05236 0.00019 0.00000 0.00055 0.00055 2.05291 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A5 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A6 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A7 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A8 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A12 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A13 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A14 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A15 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A18 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000193 0.000015 NO RMS Force 0.000077 0.000010 NO Maximum Displacement 0.000822 0.000060 NO RMS Displacement 0.000289 0.000040 NO Predicted change in Energy=-4.219965D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396358 0.000000 2 6 0 1.209281 0.698179 0.000000 3 6 0 1.209281 -0.698179 0.000000 4 6 0 0.000000 -1.396358 0.000000 5 6 0 -1.209281 -0.698179 0.000000 6 6 0 -1.209281 0.698179 0.000000 7 1 0 0.000000 2.482712 0.000000 8 1 0 2.150091 1.241356 0.000000 9 1 0 2.150092 -1.241356 0.000000 10 1 0 0.000000 -2.482712 0.000000 11 1 0 -2.150091 -1.241356 0.000000 12 1 0 -2.150092 1.241356 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396358 0.000000 3 C 2.418562 1.396358 0.000000 4 C 2.792715 2.418562 1.396358 0.000000 5 C 2.418562 2.792715 2.418562 1.396358 0.000000 6 C 1.396358 2.418562 2.792715 2.418562 1.396358 7 H 1.086354 2.155671 3.403003 3.879070 3.403003 8 H 2.155671 1.086354 2.155671 3.403003 3.879070 9 H 3.403003 2.155671 1.086354 2.155671 3.403003 10 H 3.879070 3.403003 2.155671 1.086354 2.155671 11 H 3.403003 3.879070 3.403003 2.155671 1.086354 12 H 2.155671 3.403003 3.879070 3.403003 2.155671 6 7 8 9 10 6 C 0.000000 7 H 2.155671 0.000000 8 H 3.403003 2.482712 0.000000 9 H 3.879070 4.300183 2.482712 0.000000 10 H 3.403003 4.965424 4.300183 2.482712 0.000000 11 H 2.155671 4.300183 4.965424 4.300183 2.482712 12 H 1.086354 2.482712 4.300183 4.965424 4.300183 11 12 11 H 0.000000 12 H 2.482712 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396358 0.000000 2 6 0 1.209281 0.698179 0.000000 3 6 0 1.209281 -0.698179 0.000000 4 6 0 0.000000 -1.396358 0.000000 5 6 0 -1.209281 -0.698179 0.000000 6 6 0 -1.209281 0.698179 0.000000 7 1 0 0.000000 2.482712 0.000000 8 1 0 2.150092 1.241356 0.000000 9 1 0 2.150092 -1.241356 0.000000 10 1 0 0.000000 -2.482712 0.000000 11 1 0 -2.150092 -1.241356 0.000000 12 1 0 -2.150092 1.241356 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6893085 5.6893085 2.8446543 Standard basis: 6-31G(d,p) (6D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 19 symmetry adapted cartesian basis functions of B1G symmetry. There are 6 symmetry adapted cartesian basis functions of B2G symmetry. There are 9 symmetry adapted cartesian basis functions of B3G symmetry. There are 6 symmetry adapted cartesian basis functions of AU symmetry. There are 9 symmetry adapted cartesian basis functions of B1U symmetry. There are 26 symmetry adapted cartesian basis functions of B2U symmetry. There are 19 symmetry adapted cartesian basis functions of B3U symmetry. There are 26 symmetry adapted basis functions of AG symmetry. There are 19 symmetry adapted basis functions of B1G symmetry. There are 6 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 6 symmetry adapted basis functions of AU symmetry. There are 9 symmetry adapted basis functions of B1U symmetry. There are 26 symmetry adapted basis functions of B2U symmetry. There are 19 symmetry adapted basis functions of B3U symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.2371885619 Hartrees. NAtoms= 12 NActive= 12 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 4.39D-04 NBF= 26 19 6 9 6 9 26 19 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 26 19 6 9 6 9 26 19 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\kvm12\3rdYearLabs\KVM_BENZENE_OPT_D6H_TC.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) Keep R1 ints in memory in symmetry-blocked form, NReq=29961214. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -232.258201997 A.U. after 6 cycles NFock= 6 Conv=0.29D-09 -V/T= 2.0101 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 -0.000012633 0.000000000 2 6 -0.000010941 -0.000006317 0.000000000 3 6 -0.000010941 0.000006317 0.000000000 4 6 0.000000000 0.000012633 0.000000000 5 6 0.000010941 0.000006317 0.000000000 6 6 0.000010941 -0.000006317 0.000000000 7 1 0.000000000 -0.000006929 0.000000000 8 1 -0.000006001 -0.000003465 0.000000000 9 1 -0.000006001 0.000003465 0.000000000 10 1 0.000000000 0.000006929 0.000000000 11 1 0.000006001 0.000003465 0.000000000 12 1 0.000006001 -0.000003465 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000012633 RMS 0.000005882 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000019562 RMS 0.000006918 Search for a local minimum. Step number 2 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 DE= -3.94D-07 DEPred=-4.22D-07 R= 9.35D-01 Trust test= 9.35D-01 RLast= 1.50D-03 DXMaxT set to 3.00D-01 ITU= 0 0 Eigenvalues --- 0.02139 0.02139 0.02139 0.02139 0.02139 Eigenvalues --- 0.02139 0.02139 0.02139 0.02139 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.35141 0.35271 Eigenvalues --- 0.35271 0.35271 0.35271 0.35271 0.41955 Eigenvalues --- 0.41955 0.46254 0.46254 0.46254 0.49445 En-DIIS/RFO-DIIS IScMMF= 0 using points: 2 1 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.93894 0.06106 Iteration 1 RMS(Cart)= 0.00002283 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.45D-13 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63873 -0.00002 -0.00002 -0.00002 -0.00004 2.63869 R2 2.63873 -0.00002 -0.00002 -0.00002 -0.00004 2.63869 R3 2.05291 -0.00001 -0.00003 0.00002 -0.00002 2.05289 R4 2.63873 -0.00002 -0.00002 -0.00002 -0.00004 2.63869 R5 2.05291 -0.00001 -0.00003 0.00002 -0.00002 2.05289 R6 2.63873 -0.00002 -0.00002 -0.00002 -0.00004 2.63869 R7 2.05291 -0.00001 -0.00003 0.00002 -0.00002 2.05289 R8 2.63873 -0.00002 -0.00002 -0.00002 -0.00004 2.63869 R9 2.05291 -0.00001 -0.00003 0.00002 -0.00002 2.05289 R10 2.63873 -0.00002 -0.00002 -0.00002 -0.00004 2.63869 R11 2.05291 -0.00001 -0.00003 0.00002 -0.00002 2.05289 R12 2.05291 -0.00001 -0.00003 0.00002 -0.00002 2.05289 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A5 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A6 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A7 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A8 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A12 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A13 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A14 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A15 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A18 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000020 0.000015 NO RMS Force 0.000007 0.000010 YES Maximum Displacement 0.000056 0.000060 YES RMS Displacement 0.000023 0.000040 YES Predicted change in Energy=-2.650567D-09 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396337 0.000000 2 6 0 1.209263 0.698169 0.000000 3 6 0 1.209263 -0.698168 0.000000 4 6 0 0.000000 -1.396337 0.000000 5 6 0 -1.209263 -0.698169 0.000000 6 6 0 -1.209263 0.698168 0.000000 7 1 0 0.000000 2.482682 0.000000 8 1 0 2.150066 1.241341 0.000000 9 1 0 2.150066 -1.241341 0.000000 10 1 0 0.000000 -2.482682 0.000000 11 1 0 -2.150066 -1.241341 0.000000 12 1 0 -2.150066 1.241341 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396337 0.000000 3 C 2.418527 1.396337 0.000000 4 C 2.792674 2.418527 1.396337 0.000000 5 C 2.418527 2.792674 2.418527 1.396337 0.000000 6 C 1.396337 2.418527 2.792674 2.418527 1.396337 7 H 1.086345 2.155645 3.402959 3.879019 3.402959 8 H 2.155645 1.086345 2.155645 3.402959 3.879019 9 H 3.402959 2.155645 1.086345 2.155645 3.402959 10 H 3.879019 3.402959 2.155645 1.086345 2.155645 11 H 3.402959 3.879019 3.402959 2.155645 1.086345 12 H 2.155645 3.402959 3.879019 3.402959 2.155645 6 7 8 9 10 6 C 0.000000 7 H 2.155645 0.000000 8 H 3.402959 2.482682 0.000000 9 H 3.879019 4.300132 2.482682 0.000000 10 H 3.402959 4.965364 4.300132 2.482682 0.000000 11 H 2.155645 4.300132 4.965364 4.300132 2.482682 12 H 1.086345 2.482682 4.300132 4.965364 4.300132 11 12 11 H 0.000000 12 H 2.482682 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396337 0.000000 2 6 0 1.209263 0.698168 0.000000 3 6 0 1.209263 -0.698168 0.000000 4 6 0 0.000000 -1.396337 0.000000 5 6 0 -1.209263 -0.698168 0.000000 6 6 0 -1.209263 0.698168 0.000000 7 1 0 0.000000 2.482682 0.000000 8 1 0 2.150066 1.241341 0.000000 9 1 0 2.150066 -1.241341 0.000000 10 1 0 0.000000 -2.482682 0.000000 11 1 0 -2.150066 -1.241341 0.000000 12 1 0 -2.150066 1.241341 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6894703 5.6894703 2.8447352 Standard basis: 6-31G(d,p) (6D, 7F) There are 26 symmetry adapted cartesian basis functions of AG symmetry. There are 19 symmetry adapted cartesian basis functions of B1G symmetry. There are 6 symmetry adapted cartesian basis functions of B2G symmetry. There are 9 symmetry adapted cartesian basis functions of B3G symmetry. There are 6 symmetry adapted cartesian basis functions of AU symmetry. There are 9 symmetry adapted cartesian basis functions of B1U symmetry. There are 26 symmetry adapted cartesian basis functions of B2U symmetry. There are 19 symmetry adapted cartesian basis functions of B3U symmetry. There are 26 symmetry adapted basis functions of AG symmetry. There are 19 symmetry adapted basis functions of B1G symmetry. There are 6 symmetry adapted basis functions of B2G symmetry. There are 9 symmetry adapted basis functions of B3G symmetry. There are 6 symmetry adapted basis functions of AU symmetry. There are 9 symmetry adapted basis functions of B1U symmetry. There are 26 symmetry adapted basis functions of B2U symmetry. There are 19 symmetry adapted basis functions of B3U symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 203.2400010954 Hartrees. NAtoms= 12 NActive= 12 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 4.39D-04 NBF= 26 19 6 9 6 9 26 19 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 26 19 6 9 6 9 26 19 Initial guess from the checkpoint file: "\\icnas2.cc.ic.ac.uk\kvm12\3rdYearLabs\KVM_BENZENE_OPT_D6H_TC.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (B2G) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) (?C) Keep R1 ints in memory in symmetry-blocked form, NReq=29961214. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -232.258202000 A.U. after 5 cycles NFock= 5 Conv=0.53D-09 -V/T= 2.0101 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000001070 0.000000000 2 6 0.000000927 0.000000535 0.000000000 3 6 0.000000927 -0.000000535 0.000000000 4 6 0.000000000 -0.000001070 0.000000000 5 6 -0.000000927 -0.000000535 0.000000000 6 6 -0.000000927 0.000000535 0.000000000 7 1 0.000000000 -0.000000361 0.000000000 8 1 -0.000000313 -0.000000181 0.000000000 9 1 -0.000000313 0.000000181 0.000000000 10 1 0.000000000 0.000000361 0.000000000 11 1 0.000000313 0.000000181 0.000000000 12 1 0.000000313 -0.000000181 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000001070 RMS 0.000000461 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000000709 RMS 0.000000265 Search for a local minimum. Step number 3 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 DE= -2.59D-09 DEPred=-2.65D-09 R= 9.79D-01 Trust test= 9.79D-01 RLast= 1.05D-04 DXMaxT set to 3.00D-01 ITU= 0 0 0 Eigenvalues --- 0.02139 0.02139 0.02139 0.02139 0.02139 Eigenvalues --- 0.02139 0.02139 0.02139 0.02139 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.34771 0.35271 Eigenvalues --- 0.35271 0.35271 0.35271 0.35271 0.41955 Eigenvalues --- 0.41955 0.46254 0.46254 0.46254 0.51359 En-DIIS/RFO-DIIS IScMMF= 0 using points: 3 2 1 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.93722 0.05891 0.00386 Iteration 1 RMS(Cart)= 0.00000048 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.35D-13 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63869 0.00000 0.00000 0.00000 0.00000 2.63870 R2 2.63869 0.00000 0.00000 0.00000 0.00000 2.63870 R3 2.05289 0.00000 0.00000 0.00000 0.00000 2.05289 R4 2.63869 0.00000 0.00000 0.00000 0.00000 2.63870 R5 2.05289 0.00000 0.00000 0.00000 0.00000 2.05289 R6 2.63869 0.00000 0.00000 0.00000 0.00000 2.63870 R7 2.05289 0.00000 0.00000 0.00000 0.00000 2.05289 R8 2.63869 0.00000 0.00000 0.00000 0.00000 2.63870 R9 2.05289 0.00000 0.00000 0.00000 0.00000 2.05289 R10 2.63869 0.00000 0.00000 0.00000 0.00000 2.63870 R11 2.05289 0.00000 0.00000 0.00000 0.00000 2.05289 R12 2.05289 0.00000 0.00000 0.00000 0.00000 2.05289 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A4 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A5 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A6 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A7 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A8 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A12 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A13 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A14 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A15 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A18 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000001 0.000015 YES RMS Force 0.000000 0.000010 YES Maximum Displacement 0.000001 0.000060 YES RMS Displacement 0.000000 0.000040 YES Predicted change in Energy=-4.192361D-12 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3963 -DE/DX = 0.0 ! ! R2 R(1,6) 1.3963 -DE/DX = 0.0 ! ! R3 R(1,7) 1.0863 -DE/DX = 0.0 ! ! R4 R(2,3) 1.3963 -DE/DX = 0.0 ! ! R5 R(2,8) 1.0863 -DE/DX = 0.0 ! ! R6 R(3,4) 1.3963 -DE/DX = 0.0 ! ! R7 R(3,9) 1.0863 -DE/DX = 0.0 ! ! R8 R(4,5) 1.3963 -DE/DX = 0.0 ! ! R9 R(4,10) 1.0863 -DE/DX = 0.0 ! ! R10 R(5,6) 1.3963 -DE/DX = 0.0 ! ! R11 R(5,11) 1.0863 -DE/DX = 0.0 ! ! R12 R(6,12) 1.0863 -DE/DX = 0.0 ! ! A1 A(2,1,6) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,7) 120.0 -DE/DX = 0.0 ! ! A3 A(6,1,7) 120.0 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.0 -DE/DX = 0.0 ! ! A5 A(1,2,8) 120.0 -DE/DX = 0.0 ! ! A6 A(3,2,8) 120.0 -DE/DX = 0.0 ! ! A7 A(2,3,4) 120.0 -DE/DX = 0.0 ! ! A8 A(2,3,9) 120.0 -DE/DX = 0.0 ! ! A9 A(4,3,9) 120.0 -DE/DX = 0.0 ! ! A10 A(3,4,5) 120.0 -DE/DX = 0.0 ! ! A11 A(3,4,10) 120.0 -DE/DX = 0.0 ! ! A12 A(5,4,10) 120.0 -DE/DX = 0.0 ! ! A13 A(4,5,6) 120.0 -DE/DX = 0.0 ! ! A14 A(4,5,11) 120.0 -DE/DX = 0.0 ! ! A15 A(6,5,11) 120.0 -DE/DX = 0.0 ! ! A16 A(1,6,5) 120.0 -DE/DX = 0.0 ! ! A17 A(1,6,12) 120.0 -DE/DX = 0.0 ! ! A18 A(5,6,12) 120.0 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) 0.0 -DE/DX = 0.0 ! ! D2 D(6,1,2,8) 180.0 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) 180.0 -DE/DX = 0.0 ! ! D4 D(7,1,2,8) 0.0 -DE/DX = 0.0 ! ! D5 D(2,1,6,5) 0.0 -DE/DX = 0.0 ! ! D6 D(2,1,6,12) 180.0 -DE/DX = 0.0 ! ! D7 D(7,1,6,5) 180.0 -DE/DX = 0.0 ! ! D8 D(7,1,6,12) 0.0 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) 0.0 -DE/DX = 0.0 ! ! D10 D(1,2,3,9) 180.0 -DE/DX = 0.0 ! ! D11 D(8,2,3,4) 180.0 -DE/DX = 0.0 ! ! D12 D(8,2,3,9) 0.0 -DE/DX = 0.0 ! ! D13 D(2,3,4,5) 0.0 -DE/DX = 0.0 ! ! D14 D(2,3,4,10) 180.0 -DE/DX = 0.0 ! ! D15 D(9,3,4,5) 180.0 -DE/DX = 0.0 ! ! D16 D(9,3,4,10) 0.0 -DE/DX = 0.0 ! ! D17 D(3,4,5,6) 0.0 -DE/DX = 0.0 ! ! D18 D(3,4,5,11) 180.0 -DE/DX = 0.0 ! ! D19 D(10,4,5,6) 180.0 -DE/DX = 0.0 ! ! D20 D(10,4,5,11) 0.0 -DE/DX = 0.0 ! ! D21 D(4,5,6,1) 0.0 -DE/DX = 0.0 ! ! D22 D(4,5,6,12) 180.0 -DE/DX = 0.0 ! ! D23 D(11,5,6,1) 180.0 -DE/DX = 0.0 ! ! D24 D(11,5,6,12) 0.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396337 0.000000 2 6 0 1.209263 0.698169 0.000000 3 6 0 1.209263 -0.698168 0.000000 4 6 0 0.000000 -1.396337 0.000000 5 6 0 -1.209263 -0.698169 0.000000 6 6 0 -1.209263 0.698168 0.000000 7 1 0 0.000000 2.482682 0.000000 8 1 0 2.150066 1.241341 0.000000 9 1 0 2.150066 -1.241341 0.000000 10 1 0 0.000000 -2.482682 0.000000 11 1 0 -2.150066 -1.241341 0.000000 12 1 0 -2.150066 1.241341 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396337 0.000000 3 C 2.418527 1.396337 0.000000 4 C 2.792674 2.418527 1.396337 0.000000 5 C 2.418527 2.792674 2.418527 1.396337 0.000000 6 C 1.396337 2.418527 2.792674 2.418527 1.396337 7 H 1.086345 2.155645 3.402959 3.879019 3.402959 8 H 2.155645 1.086345 2.155645 3.402959 3.879019 9 H 3.402959 2.155645 1.086345 2.155645 3.402959 10 H 3.879019 3.402959 2.155645 1.086345 2.155645 11 H 3.402959 3.879019 3.402959 2.155645 1.086345 12 H 2.155645 3.402959 3.879019 3.402959 2.155645 6 7 8 9 10 6 C 0.000000 7 H 2.155645 0.000000 8 H 3.402959 2.482682 0.000000 9 H 3.879019 4.300132 2.482682 0.000000 10 H 3.402959 4.965364 4.300132 2.482682 0.000000 11 H 2.155645 4.300132 4.965364 4.300132 2.482682 12 H 1.086345 2.482682 4.300132 4.965364 4.300132 11 12 11 H 0.000000 12 H 2.482682 0.000000 Stoichiometry C6H6 Framework group D6H[3C2'(HC.CH)] Deg. of freedom 2 Full point group D6H NOp 24 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.396337 0.000000 2 6 0 1.209263 0.698168 0.000000 3 6 0 1.209263 -0.698168 0.000000 4 6 0 0.000000 -1.396337 0.000000 5 6 0 -1.209263 -0.698168 0.000000 6 6 0 -1.209263 0.698168 0.000000 7 1 0 0.000000 2.482682 0.000000 8 1 0 2.150066 1.241341 0.000000 9 1 0 2.150066 -1.241341 0.000000 10 1 0 0.000000 -2.482682 0.000000 11 1 0 -2.150066 -1.241341 0.000000 12 1 0 -2.150066 1.241341 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.6894703 5.6894703 2.8447352 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (A1G) (B1U) (B2U) (E1U) (E1U) (A2U) (E2G) (E2G) (E1G) (E1G) Virtual (E2U) (E2U) (A1G) (E1U) (E1U) (B2G) (E2G) (E2G) (B1U) (E2G) (E2G) (E1U) (E1U) (B2U) (A2U) (B1U) (A1G) (A2G) (A1G) (E2G) (E2G) (E1G) (E1G) (E1U) (E1U) (E2U) (E2U) (B2G) (E2G) (E2G) (B1U) (E1U) (E1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (E1U) (E1U) (B1U) (B1G) (A2U) (E1G) (E1G) (E2U) (E2U) (E2G) (E2G) (A1G) (B2U) (A1G) (B1U) (E1U) (E1U) (E2G) (E2G) (E2U) (E2U) (B2G) (E1U) (E1U) (E1G) (E1G) (E2G) (E2G) (A2U) (B2U) (E1G) (E1G) (E1U) (E1U) (E2G) (E2G) (B1U) (A2G) (E2U) (E2U) (A1U) (B2G) (E2G) (E2G) (E1U) (E1U) (B1U) (A1G) (E1U) (E1U) (A2G) (E2G) (E2G) (B1U) (A1G) (E1U) (E1U) (E2G) (E2G) (B1U) The electronic state is 1-A1G. Alpha occ. eigenvalues -- -10.18800 -10.18774 -10.18774 -10.18718 -10.18718 Alpha occ. eigenvalues -- -10.18692 -0.84671 -0.74000 -0.74000 -0.59736 Alpha occ. eigenvalues -- -0.59736 -0.51787 -0.45817 -0.43851 -0.41653 Alpha occ. eigenvalues -- -0.41653 -0.35994 -0.33960 -0.33960 -0.24690 Alpha occ. eigenvalues -- -0.24690 Alpha virt. eigenvalues -- 0.00264 0.00264 0.09108 0.14509 0.14509 Alpha virt. eigenvalues -- 0.16183 0.18179 0.18179 0.19063 0.30065 Alpha virt. eigenvalues -- 0.30065 0.31814 0.31814 0.46729 0.52702 Alpha virt. eigenvalues -- 0.54815 0.55037 0.56101 0.59186 0.60116 Alpha virt. eigenvalues -- 0.60116 0.60154 0.60154 0.62463 0.62463 Alpha virt. eigenvalues -- 0.66710 0.66710 0.74247 0.81973 0.81973 Alpha virt. eigenvalues -- 0.82614 0.84417 0.84417 0.92450 0.93694 Alpha virt. eigenvalues -- 0.93694 0.95832 1.07890 1.07890 1.12952 Alpha virt. eigenvalues -- 1.12952 1.20165 1.26173 1.30043 1.40666 Alpha virt. eigenvalues -- 1.40666 1.42834 1.42834 1.43144 1.43144 Alpha virt. eigenvalues -- 1.74991 1.75775 1.81458 1.88184 1.92335 Alpha virt. eigenvalues -- 1.92335 1.96897 1.96897 1.97796 1.97796 Alpha virt. eigenvalues -- 2.02378 2.07399 2.07399 2.29635 2.29635 Alpha virt. eigenvalues -- 2.35629 2.35629 2.36676 2.41072 2.41473 Alpha virt. eigenvalues -- 2.41473 2.44332 2.44332 2.49442 2.49442 Alpha virt. eigenvalues -- 2.52555 2.59352 2.60000 2.60000 2.65760 Alpha virt. eigenvalues -- 2.77145 2.81102 2.81102 3.04872 3.04872 Alpha virt. eigenvalues -- 3.19223 3.23463 3.24752 3.24752 3.39404 Alpha virt. eigenvalues -- 3.50854 3.50854 3.95209 4.13034 4.16187 Alpha virt. eigenvalues -- 4.16187 4.43895 4.43895 4.83052 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.803309 0.549465 -0.035811 -0.040485 -0.035811 0.549465 2 C 0.549465 4.803309 0.549465 -0.035811 -0.040485 -0.035811 3 C -0.035811 0.549465 4.803309 0.549465 -0.035811 -0.040485 4 C -0.040485 -0.035811 0.549465 4.803309 0.549465 -0.035811 5 C -0.035811 -0.040485 -0.035811 0.549465 4.803309 0.549465 6 C 0.549465 -0.035811 -0.040485 -0.035811 0.549465 4.803309 7 H 0.368527 -0.042224 0.004823 0.000599 0.004823 -0.042224 8 H -0.042224 0.368527 -0.042224 0.004823 0.000599 0.004823 9 H 0.004823 -0.042224 0.368527 -0.042224 0.004823 0.000599 10 H 0.000599 0.004823 -0.042224 0.368527 -0.042224 0.004823 11 H 0.004823 0.000599 0.004823 -0.042224 0.368527 -0.042224 12 H -0.042224 0.004823 0.000599 0.004823 -0.042224 0.368527 7 8 9 10 11 12 1 C 0.368527 -0.042224 0.004823 0.000599 0.004823 -0.042224 2 C -0.042224 0.368527 -0.042224 0.004823 0.000599 0.004823 3 C 0.004823 -0.042224 0.368527 -0.042224 0.004823 0.000599 4 C 0.000599 0.004823 -0.042224 0.368527 -0.042224 0.004823 5 C 0.004823 0.000599 0.004823 -0.042224 0.368527 -0.042224 6 C -0.042224 0.004823 0.000599 0.004823 -0.042224 0.368527 7 H 0.634473 -0.006446 -0.000189 0.000015 -0.000189 -0.006446 8 H -0.006446 0.634473 -0.006446 -0.000189 0.000015 -0.000189 9 H -0.000189 -0.006446 0.634473 -0.006446 -0.000189 0.000015 10 H 0.000015 -0.000189 -0.006446 0.634473 -0.006446 -0.000189 11 H -0.000189 0.000015 -0.000189 -0.006446 0.634473 -0.006446 12 H -0.006446 -0.000189 0.000015 -0.000189 -0.006446 0.634473 Mulliken charges: 1 1 C -0.084456 2 C -0.084456 3 C -0.084456 4 C -0.084456 5 C -0.084456 6 C -0.084456 7 H 0.084456 8 H 0.084456 9 H 0.084456 10 H 0.084456 11 H 0.084456 12 H 0.084456 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.000000 2 C 0.000000 3 C 0.000000 4 C 0.000000 5 C 0.000000 6 C 0.000000 Electronic spatial extent (au): = 458.1719 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.4728 YY= -31.4728 ZZ= -38.5349 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 2.3540 YY= 2.3540 ZZ= -4.7081 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -270.7408 YYYY= -270.7408 ZZZZ= -39.9046 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -90.2469 XXZZ= -60.4289 YYZZ= -60.4289 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.032400010954D+02 E-N=-9.438479404627D+02 KE= 2.299421826569D+02 Symmetry AG KE= 7.407420078969D+01 Symmetry B1G KE= 3.747955418875D+01 Symmetry B2G KE= 2.235059178749D+00 Symmetry B3G KE= 2.235059178749D+00 Symmetry AU KE=-1.512535717174D-16 Symmetry B1U KE= 1.864646049887D+00 Symmetry B2U KE= 7.177573828096D+01 Symmetry B3U KE= 4.027792499010D+01 1|1| IMPERIAL COLLEGE-CHWS-263|FOpt|RB3LYP|6-31G(d,p)|C6H6|KVM12|05-Ma r-2015|0||# opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=grid =ultrafine scf=conver=9||Benzene Optimisation (constrained symmetry, t ight convergence)||0,1|C,-0.0000001079,1.3963369707,0.|C,1.2092632349, 0.6981685788,0.|C,1.2092633428,-0.6981683919,0.|C,0.0000001079,-1.3963 369707,0.|C,-1.2092632349,-0.6981685788,0.|C,-1.2092633428,0.698168391 9,0.|H,-0.0000001918,2.4826821185,0.|H,2.1500656882,1.2413412254,0.|H, 2.1500658801,-1.2413408931,0.|H,0.0000001918,-2.4826821185,0.|H,-2.150 0656882,-1.2413412254,0.|H,-2.1500658801,1.2413408931,0.||Version=EM64 W-G09RevD.01|State=1-A1G|HF=-232.258202|RMSD=5.317e-010|RMSF=4.611e-00 7|Dipole=0.,0.,0.|Quadrupole=1.7501733,1.7501733,-3.5003466,0.,0.,0.|P G=D06H [3C2'(H1C1.C1H1)]||@ SEEN ON A WALL AT THE UNIVERSITY OF ILLINOIS AT CHICAGO CIRCLE: TO DO IS TO BE -- SOCRATES TO BE IS TO DO -- SARTRE OO BE DO BE DO -- SINATRA Job cpu time: 0 days 0 hours 0 minutes 22.0 seconds. File lengths (MBytes): RWF= 9 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Thu Mar 05 14:37:04 2015.