Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/101916/Gau-30397.inp" -scrdir="/home/scan-user-1/run/101916/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 30398. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 13-Nov-2014 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.8276150.cx1b/rwf ---------------------------------------------------------------------- # opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------- NH3_optimisation ---------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 N 0.02283 -0.25114 0. H 0.53284 0.4701 -1.24924 H 0.53615 -1.70307 0. H 0.53951 0.47953 1.26557 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.53 estimate D2E/DX2 ! ! R2 R(1,3) 1.54 estimate D2E/DX2 ! ! R3 R(1,4) 1.55 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.4713 estimate D2E/DX2 ! ! A3 A(3,1,4) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,4,3) -120.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.022831 -0.251142 0.000000 2 1 0 0.532840 0.470101 -1.249240 3 1 0 0.536147 -1.703074 0.000000 4 1 0 0.539507 0.479529 1.265570 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.530000 0.000000 3 H 1.540000 2.506651 0.000000 4 H 1.550000 2.514836 2.522981 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.001748 0.001751 -0.153989 2 1 0 0.375216 1.392540 0.362855 3 1 0 1.024898 -1.028451 0.359282 4 1 0 -1.412350 -0.376347 0.355785 --------------------------------------------------------------------- Rotational constants (GHZ): 132.3577071 130.7215647 79.2874383 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 7.8475299497 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 4.95D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.3061419807 A.U. after 12 cycles NFock= 12 Conv=0.14D-08 -V/T= 2.0238 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -14.42377 -0.72792 -0.35718 -0.35522 -0.25956 Alpha virt. eigenvalues -- -0.08491 -0.01029 -0.00722 0.65068 0.72203 Alpha virt. eigenvalues -- 0.72214 0.72665 0.83218 0.83422 0.95381 Alpha virt. eigenvalues -- 1.56829 1.57505 1.62343 1.62514 1.64365 Alpha virt. eigenvalues -- 1.99847 2.07487 2.07794 2.16653 2.18553 Alpha virt. eigenvalues -- 2.19122 2.57324 2.79515 2.81208 3.45442 Condensed to atoms (all electrons): 1 2 3 4 1 N 6.836014 0.195622 0.195185 0.194727 2 H 0.195622 0.669273 -0.003989 -0.003916 3 H 0.195185 -0.003989 0.672137 -0.003845 4 H 0.194727 -0.003916 -0.003845 0.675008 Mulliken charges: 1 1 N -0.421549 2 H 0.143010 3 H 0.140512 4 H 0.138026 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 Electronic spatial extent (au): = 41.2091 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0082 Y= 0.0081 Z= 1.1715 Tot= 1.1716 Quadrupole moment (field-independent basis, Debye-Ang): XX= -6.3515 YY= -6.3590 ZZ= -9.6816 XY= -0.0001 XZ= 0.0074 YZ= 0.0074 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.1125 YY= 1.1050 ZZ= -2.2175 XY= -0.0001 XZ= 0.0074 YZ= 0.0074 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -1.6955 YYY= 1.6977 ZZZ= -0.1796 XYY= 1.7074 XXY= -1.6863 XXZ= 0.8436 XZZ= 0.0183 YZZ= 0.0183 YYZ= 0.8516 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -20.5575 YYYY= -20.3214 ZZZZ= -12.7281 XXXY= 0.0254 XXXZ= -0.7283 YYYX= -0.0258 YYYZ= 0.7355 ZZZX= 0.0140 ZZZY= 0.0142 XXYY= -6.8132 XXZZ= -6.0889 YYZZ= -6.0107 XXYZ= -0.7264 YYXZ= 0.7376 ZZXY= 0.0000 N-N= 7.847529949660D+00 E-N=-1.466211108228D+02 KE= 5.499642830894D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.046107126 -0.000013401 -0.000645107 2 1 -0.015377513 -0.048550975 0.084017458 3 1 -0.015371521 0.096612677 -0.000075172 4 1 -0.015358092 -0.048048301 -0.083297180 ------------------------------------------------------------------- Cartesian Forces: Max 0.096612677 RMS 0.050688683 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.096612831 RMS 0.066358225 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.10591 R2 0.00000 0.10358 R3 0.00000 0.00000 0.10131 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.05082 0.10131 0.10358 0.10591 0.16000 Eigenvalues --- 0.16000 RFO step: Lambda=-1.32500737D-01 EMin= 5.08230741D-02 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.413 Iteration 1 RMS(Cart)= 0.13071275 RMS(Int)= 0.00325769 Iteration 2 RMS(Cart)= 0.00241295 RMS(Int)= 0.00177165 Iteration 3 RMS(Cart)= 0.00001756 RMS(Int)= 0.00177160 Iteration 4 RMS(Cart)= 0.00000007 RMS(Int)= 0.00177160 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.89128 -0.09661 0.00000 -0.16718 -0.16718 2.72410 R2 2.91018 -0.09621 0.00000 -0.16813 -0.16813 2.74205 R3 2.92908 -0.09578 0.00000 -0.16900 -0.16900 2.76008 A1 1.91063 -0.00406 0.00000 -0.02350 -0.02673 1.88390 A2 1.91063 -0.02774 0.00000 -0.04801 -0.04934 1.86130 A3 1.91063 -0.02761 0.00000 -0.04783 -0.04916 1.86147 D1 -2.09439 0.03887 0.00000 0.08747 0.08465 -2.00975 Item Value Threshold Converged? Maximum Force 0.096613 0.000015 NO RMS Force 0.066358 0.000010 NO Maximum Displacement 0.191856 0.000060 NO RMS Displacement 0.130468 0.000040 NO Predicted change in Energy=-4.979552D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.004253 -0.253798 -0.004447 2 1 0 0.538722 0.426538 -1.157485 3 1 0 0.541741 -1.601548 0.008229 4 1 0 0.546609 0.424221 1.170033 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.441531 0.000000 3 H 1.451029 2.339237 0.000000 4 H 1.460570 2.327533 2.335284 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000588 0.005277 -0.161384 2 1 0 -0.863089 1.022733 0.383462 3 1 0 1.331161 0.212006 0.379286 4 1 0 -0.472190 -1.271681 0.366938 --------------------------------------------------------------------- Rotational constants (GHZ): 146.5150454 145.1803373 92.0388900 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 8.3388302291 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 4.43D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.888225 -0.002441 0.002463 -0.459396 Ang= -54.70 deg. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.3616422634 A.U. after 11 cycles NFock= 11 Conv=0.57D-08 -V/T= 2.0236 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.067009234 0.001221353 0.001947520 2 1 -0.022048856 -0.051115945 0.085397164 3 1 -0.022086126 0.099413932 -0.001560838 4 1 -0.022874251 -0.049519340 -0.085783846 ------------------------------------------------------------------- Cartesian Forces: Max 0.099413932 RMS 0.054463150 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.100605988 RMS 0.068265057 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -5.55D-02 DEPred=-4.98D-02 R= 1.11D+00 TightC=F SS= 1.41D+00 RLast= 3.12D-01 DXNew= 5.0454D-01 9.3680D-01 Trust test= 1.11D+00 RLast= 3.12D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.06195 R2 -0.04438 0.05869 R3 -0.04489 -0.04549 0.05511 A1 -0.01510 -0.01557 -0.01610 0.15353 A2 -0.00725 -0.00643 -0.00554 0.00102 0.14913 A3 -0.00753 -0.00673 -0.00587 0.00083 -0.01064 D1 -0.02161 -0.02342 -0.02541 -0.01371 0.01374 A3 D1 A3 0.14957 D1 0.01312 -0.03930 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.03423 0.03046 0.10223 0.10488 0.14571 Eigenvalues --- 0.16000 RFO step: Lambda=-1.92992733D-01 EMin=-3.42264987D-02 Skip linear search -- no minimum in search direction. Maximum step size ( 0.505) exceeded in Quadratic search. -- Step size scaled by 0.477 Iteration 1 RMS(Cart)= 0.14019900 RMS(Int)= 0.05941795 Iteration 2 RMS(Cart)= 0.05481836 RMS(Int)= 0.00086403 Iteration 3 RMS(Cart)= 0.00008897 RMS(Int)= 0.00086055 Iteration 4 RMS(Cart)= 0.00000020 RMS(Int)= 0.00086055 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.72410 -0.10061 0.00000 -0.28632 -0.28632 2.43778 R2 2.74205 -0.10053 0.00000 -0.28939 -0.28939 2.45266 R3 2.76008 -0.10046 0.00000 -0.29268 -0.29268 2.46739 A1 1.88390 -0.00657 0.00000 -0.00843 -0.01001 1.87389 A2 1.86130 -0.02527 0.00000 -0.03893 -0.03949 1.82181 A3 1.86147 -0.02526 0.00000 -0.03953 -0.04008 1.82139 D1 -2.00975 0.03131 0.00000 0.04659 0.04515 -1.96460 Item Value Threshold Converged? Maximum Force 0.100606 0.000015 NO RMS Force 0.068265 0.000010 NO Maximum Displacement 0.288590 0.000060 NO RMS Displacement 0.193724 0.000040 NO Predicted change in Energy=-9.424737D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.022665 -0.256610 -0.008894 2 1 0 0.532293 0.358740 -1.021697 3 1 0 0.534924 -1.448832 0.017923 4 1 0 0.541441 0.342116 1.028998 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.290018 0.000000 3 H 1.297891 2.085218 0.000000 4 H 1.305689 2.050783 2.056651 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.000541 0.008602 -0.153928 2 1 0 -0.991059 0.647803 0.369944 3 1 0 1.088002 0.487735 0.365713 4 1 0 -0.093152 -1.195749 0.341839 --------------------------------------------------------------------- Rotational constants (GHZ): 183.1347106 177.5305416 117.6346981 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 9.3316246893 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 3.61D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.990387 -0.005225 0.001052 -0.138218 Ang= -15.90 deg. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.4523329553 A.U. after 11 cycles NFock= 11 Conv=0.14D-08 -V/T= 2.0218 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.081788069 0.003000447 0.006487079 2 1 -0.026278603 -0.051206469 0.080377097 3 1 -0.026629445 0.095944121 -0.004151676 4 1 -0.028880021 -0.047738099 -0.082712501 ------------------------------------------------------------------- Cartesian Forces: Max 0.095944121 RMS 0.055075324 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.099113226 RMS 0.065770481 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -9.07D-02 DEPred=-9.42D-02 R= 9.62D-01 TightC=F SS= 1.41D+00 RLast= 5.07D-01 DXNew= 8.4853D-01 1.5199D+00 Trust test= 9.62D-01 RLast= 5.07D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.07386 R2 -0.03258 0.07072 R3 -0.03273 -0.03289 0.06844 A1 -0.00339 -0.00234 -0.00149 0.17280 A2 0.00165 -0.00013 -0.00054 -0.00211 0.17398 A3 0.00146 -0.00031 -0.00073 -0.00207 0.01406 D1 -0.01033 -0.00743 -0.00607 0.02014 -0.01272 A3 D1 A3 0.17412 D1 -0.01283 0.03826 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00457 0.07850 0.10237 0.10518 0.16000 Eigenvalues --- 0.19214 RFO step: Lambda=-1.69120547D-01 EMin= 4.56812939D-03 Skip linear search -- no minimum in search direction. Maximum step size ( 0.849) exceeded in Quadratic search. -- Step size scaled by 0.870 Iteration 1 RMS(Cart)= 0.13774397 RMS(Int)= 0.18981713 Iteration 2 RMS(Cart)= 0.12077687 RMS(Int)= 0.05897878 Iteration 3 RMS(Cart)= 0.05495915 RMS(Int)= 0.00072372 Iteration 4 RMS(Cart)= 0.00001140 RMS(Int)= 0.00072358 Iteration 5 RMS(Cart)= 0.00000002 RMS(Int)= 0.00072358 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.43778 -0.09791 0.00000 -0.48064 -0.48064 1.95714 R2 2.45266 -0.09873 0.00000 -0.48999 -0.48999 1.96267 R3 2.46739 -0.09911 0.00000 -0.49592 -0.49592 1.97147 A1 1.87389 -0.00800 0.00000 -0.02226 -0.02360 1.85029 A2 1.82181 -0.01701 0.00000 -0.03445 -0.03484 1.78697 A3 1.82139 -0.01705 0.00000 -0.03535 -0.03574 1.78564 D1 -1.96460 0.02188 0.00000 0.05131 0.05006 -1.91454 Item Value Threshold Converged? Maximum Force 0.099113 0.000015 NO RMS Force 0.065770 0.000010 NO Maximum Displacement 0.471671 0.000060 NO RMS Displacement 0.311845 0.000040 NO Predicted change in Energy=-1.442368D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.080132 -0.256792 -0.007104 2 1 0 0.514094 0.236002 -0.808011 3 1 0 0.515770 -1.199235 0.019565 4 1 0 0.521328 0.215439 0.811880 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.035674 0.000000 3 H 1.038600 1.656740 0.000000 4 H 1.043259 1.620037 1.621448 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.000458 0.008126 -0.130923 2 1 0 -0.819530 0.458088 0.315481 3 1 0 0.837010 0.432398 0.313296 4 1 0 -0.014273 -0.947369 0.287681 --------------------------------------------------------------------- Rotational constants (GHZ): 284.0415959 272.1196815 187.9872477 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.6662770090 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.24D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999510 -0.002437 0.000764 -0.031200 Ang= -3.59 deg. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.5565305593 A.U. after 11 cycles NFock= 11 Conv=0.21D-09 -V/T= 2.0105 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.021396269 0.003220852 0.009162942 2 1 -0.005268052 -0.009330416 0.007018398 3 1 -0.006212300 0.012707544 -0.004658900 4 1 -0.009915916 -0.006597980 -0.011522439 ------------------------------------------------------------------- Cartesian Forces: Max 0.021396269 RMS 0.010052387 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.016225459 RMS 0.009998705 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -1.04D-01 DEPred=-1.44D-01 R= 7.22D-01 TightC=F SS= 1.41D+00 RLast= 8.50D-01 DXNew= 1.4270D+00 2.5502D+00 Trust test= 7.22D-01 RLast= 8.50D-01 DXMaxT set to 1.43D+00 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.12948 R2 0.02270 0.12554 R3 0.02193 0.02123 0.12179 A1 -0.00029 0.00063 0.00136 0.17286 A2 0.01203 0.01117 0.01137 -0.00060 0.16793 A3 0.01202 0.01114 0.01131 -0.00056 0.00818 D1 -0.01530 -0.01430 -0.01432 0.01802 0.00214 A3 D1 A3 0.16843 D1 0.00171 0.00752 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05440 0.10221 0.10493 0.15031 0.16000 Eigenvalues --- 0.20210 RFO step: Lambda=-1.01303902D-03 EMin= 5.43991704D-02 Quartic linear search produced a step of 0.07228. Iteration 1 RMS(Cart)= 0.03091039 RMS(Int)= 0.00160034 Iteration 2 RMS(Cart)= 0.00128236 RMS(Int)= 0.00105143 Iteration 3 RMS(Cart)= 0.00000234 RMS(Int)= 0.00105143 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00105143 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.95714 -0.01207 -0.03474 0.00735 -0.02739 1.92975 R2 1.96267 -0.01426 -0.03542 -0.01193 -0.04735 1.91532 R3 1.97147 -0.01623 -0.03585 -0.03209 -0.06794 1.90354 A1 1.85029 -0.00402 -0.00171 -0.00234 -0.00598 1.84431 A2 1.78697 0.00591 -0.00252 0.05223 0.04902 1.83599 A3 1.78564 0.00600 -0.00258 0.05273 0.04945 1.83509 D1 -1.91454 0.00060 0.00362 -0.03012 -0.02824 -1.94278 Item Value Threshold Converged? Maximum Force 0.016225 0.000015 NO RMS Force 0.009999 0.000010 NO Maximum Displacement 0.049810 0.000060 NO RMS Displacement 0.031011 0.000040 NO Predicted change in Energy=-1.879335D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.106491 -0.252050 0.006509 2 1 0 0.508080 0.219905 -0.805154 3 1 0 0.508344 -1.182522 0.008738 4 1 0 0.508409 0.210081 0.806237 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.021181 0.000000 3 H 1.013543 1.621487 0.000000 4 H 1.007307 1.611421 1.604788 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.001201 -0.000643 -0.120533 2 1 0 -0.891530 0.293595 0.278550 3 1 0 0.697598 0.615901 0.282177 4 1 0 0.185523 -0.904995 0.283003 --------------------------------------------------------------------- Rotational constants (GHZ): 297.9813239 292.5315693 192.8335869 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.9440135708 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.16D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.993917 0.015549 0.004273 -0.108948 Ang= 12.65 deg. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.5576247678 A.U. after 10 cycles NFock= 10 Conv=0.95D-09 -V/T= 2.0087 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.002489407 0.000728851 -0.008677709 2 1 -0.001436068 -0.001599664 0.001368766 3 1 0.001025597 -0.004115001 -0.000899975 4 1 0.002899877 0.004985814 0.008208918 ------------------------------------------------------------------- Cartesian Forces: Max 0.008677709 RMS 0.004163079 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.009961755 RMS 0.004297515 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 DE= -1.09D-03 DEPred=-1.88D-03 R= 5.82D-01 TightC=F SS= 1.41D+00 RLast= 1.15D-01 DXNew= 2.4000D+00 3.4584D-01 Trust test= 5.82D-01 RLast= 1.15D-01 DXMaxT set to 1.43D+00 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.14545 R2 0.05870 0.20219 R3 0.07545 0.13357 0.28580 A1 0.00492 0.01269 0.01941 0.17454 A2 0.01806 0.01401 0.01169 0.00211 0.14452 A3 0.01950 0.01661 0.01530 0.00266 -0.01623 D1 -0.01369 -0.01364 -0.01442 0.01875 -0.00436 A3 D1 A3 0.14306 D1 -0.00507 0.00572 ITU= 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05005 0.10304 0.10494 0.14204 0.16003 Eigenvalues --- 0.42372 RFO step: Lambda=-5.19041893D-04 EMin= 5.00475802D-02 Quartic linear search produced a step of -0.17252. Iteration 1 RMS(Cart)= 0.02361868 RMS(Int)= 0.00014812 Iteration 2 RMS(Cart)= 0.00011472 RMS(Int)= 0.00004429 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00004429 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92975 -0.00239 0.00472 -0.05006 -0.04534 1.88441 R2 1.91532 0.00418 0.00817 -0.00693 0.00124 1.91656 R3 1.90354 0.00996 0.01172 0.03173 0.04346 1.94699 A1 1.84431 -0.00063 0.00103 -0.00505 -0.00394 1.84037 A2 1.83599 0.00147 -0.00846 0.02477 0.01634 1.85233 A3 1.83509 0.00196 -0.00853 0.02743 0.01893 1.85402 D1 -1.94278 -0.00066 0.00487 -0.01511 -0.01016 -1.95294 Item Value Threshold Converged? Maximum Force 0.009962 0.000015 NO RMS Force 0.004298 0.000010 NO Maximum Displacement 0.030249 0.000060 NO RMS Displacement 0.023652 0.000040 NO Predicted change in Energy=-3.092379D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.113051 -0.250279 -0.001965 2 1 0 0.503554 0.205396 -0.798365 3 1 0 0.506643 -1.184984 -0.005584 4 1 0 0.508077 0.225281 0.822244 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 0.997189 0.000000 3 H 1.014199 1.600521 0.000000 4 H 1.030303 1.620738 1.635283 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.002308 0.002896 -0.117879 2 1 0 0.282373 0.872455 0.281892 3 1 0 0.631378 -0.689531 0.273806 4 1 0 -0.929906 -0.203193 0.269457 --------------------------------------------------------------------- Rotational constants (GHZ): 302.2593418 290.8387160 191.3096322 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.9430833657 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.17D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.711341 -0.008472 -0.001432 0.702795 Ang= -89.31 deg. ExpMin= 1.61D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.5572577372 A.U. after 9 cycles NFock= 9 Conv=0.41D-08 -V/T= 2.0088 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.004351030 -0.001440290 0.021527877 2 1 0.006912859 0.009728995 -0.014637712 3 1 0.000994556 -0.002930679 0.001564796 4 1 -0.003556385 -0.005358026 -0.008454961 ------------------------------------------------------------------- Cartesian Forces: Max 0.021527877 RMS 0.008972311 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.018843185 RMS 0.008306718 Search for a local minimum. Step number 6 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 6 5 DE= 3.67D-04 DEPred=-3.09D-04 R=-1.19D+00 Trust test=-1.19D+00 RLast= 6.85D-02 DXMaxT set to 7.14D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.36429 R2 0.06293 0.17646 R3 -0.10714 0.08147 0.34678 A1 0.02709 0.01254 -0.00019 0.17678 A2 0.00146 0.00348 0.00634 0.00020 0.14174 A3 -0.01089 0.00370 0.01748 -0.00070 -0.01879 D1 -0.01457 -0.01156 -0.00972 0.01871 -0.00347 A3 D1 A3 0.14140 D1 -0.00394 0.00555 ITU= -1 1 1 1 1 0 Use linear search instead of GDIIS. Energy rises -- skip Quadratic/GDIIS search. Quartic linear search produced a step of -0.68581. Iteration 1 RMS(Cart)= 0.01622053 RMS(Int)= 0.00007146 Iteration 2 RMS(Cart)= 0.00005131 RMS(Int)= 0.00002729 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00002729 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.88441 0.01884 0.03109 0.00000 0.03109 1.91551 R2 1.91656 0.00308 -0.00085 0.00000 -0.00085 1.91571 R3 1.94699 -0.01060 -0.02980 0.00000 -0.02980 1.91719 A1 1.84037 0.00149 0.00270 0.00000 0.00275 1.84312 A2 1.85233 -0.00074 -0.01121 0.00000 -0.01119 1.84114 A3 1.85402 -0.00171 -0.01298 0.00000 -0.01296 1.84106 D1 -1.95294 -0.00062 0.00697 0.00000 0.00701 -1.94593 Item Value Threshold Converged? Maximum Force 0.018843 0.000015 NO RMS Force 0.008307 0.000010 NO Maximum Displacement 0.020712 0.000060 NO RMS Displacement 0.016221 0.000040 NO Predicted change in Energy=-9.859574D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.108540 -0.251492 0.003831 2 1 0 0.506658 0.215352 -0.803034 3 1 0 0.507814 -1.183300 0.004248 4 1 0 0.508312 0.214854 0.811284 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.013643 0.000000 3 H 1.013749 1.614910 0.000000 4 H 1.014532 1.614319 1.614355 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.000013 0.000334 -0.119716 2 1 0 -0.794477 0.486913 0.279709 3 1 0 0.819839 0.443111 0.279633 4 1 0 -0.025271 -0.932364 0.278670 --------------------------------------------------------------------- Rotational constants (GHZ): 295.7330471 295.5181311 192.3713236 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.9428424319 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.16D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Lowest energy guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.993414 -0.001902 -0.001987 0.114545 Ang= -13.16 deg. B after Tr= 0.000000 0.000000 0.000000 Rot= 0.787176 0.005831 0.000376 -0.616700 Ang= 76.16 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -56.5577216421 A.U. after 5 cycles NFock= 5 Conv=0.79D-08 -V/T= 2.0088 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.002762760 0.000337288 0.000741688 2 1 0.001052624 0.001800916 -0.003361058 3 1 0.001019055 -0.003727319 -0.000125780 4 1 0.000691080 0.001589115 0.002745151 ------------------------------------------------------------------- Cartesian Forces: Max 0.003727319 RMS 0.002029587 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.003918269 RMS 0.002443951 Search for a local minimum. Step number 7 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 6 5 7 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.36663 R2 0.09004 0.20400 R3 -0.08115 0.10721 0.39002 A1 0.03049 0.01707 0.00255 0.17739 A2 0.00371 0.00627 0.01277 0.00145 0.13661 A3 -0.00854 0.00656 0.02548 0.00050 -0.02389 D1 -0.01691 -0.01376 -0.01159 0.01830 -0.00351 A3 D1 A3 0.13645 D1 -0.00397 0.00572 ITU= 0 -1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.04873 0.10325 0.12342 0.15992 0.39849 Eigenvalues --- 0.46649 RFO step: Lambda=-1.10450970D-04 EMin= 4.87288343D-02 Quartic linear search produced a step of -0.00046. Iteration 1 RMS(Cart)= 0.00725103 RMS(Int)= 0.00002169 Iteration 2 RMS(Cart)= 0.00001444 RMS(Int)= 0.00001471 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00001471 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.91551 0.00392 0.00001 0.00955 0.00955 1.92506 R2 1.91571 0.00383 0.00000 0.01057 0.01057 1.92627 R3 1.91719 0.00319 -0.00001 0.00657 0.00657 1.92375 A1 1.84312 0.00002 0.00000 -0.00114 -0.00117 1.84195 A2 1.84114 0.00078 0.00000 0.00586 0.00585 1.84699 A3 1.84106 0.00078 0.00000 0.00609 0.00608 1.84714 D1 -1.94593 -0.00066 0.00000 -0.00359 -0.00361 -1.94954 Item Value Threshold Converged? Maximum Force 0.003918 0.000015 NO RMS Force 0.002444 0.000010 NO Maximum Displacement 0.010423 0.000060 NO RMS Displacement 0.007253 0.000040 NO Predicted change in Energy=-5.525551D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.109395 -0.250559 0.005244 2 1 0 0.506584 0.216723 -0.808166 3 1 0 0.507795 -1.188816 0.002712 4 1 0 0.507550 0.218067 0.816540 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.018699 0.000000 3 H 1.019341 1.622672 0.000000 4 H 1.018007 1.624706 1.625311 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 -0.000659 0.000008 -0.119374 2 1 0 0.378506 0.857943 0.278030 3 1 0 0.557530 -0.754823 0.277754 4 1 0 -0.931425 -0.103175 0.279832 --------------------------------------------------------------------- Rotational constants (GHZ): 293.7422146 292.8509613 190.0795268 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.8863273579 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.19D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.754003 0.001164 -0.001205 0.656869 Ang= 82.12 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -56.5577656022 A.U. after 7 cycles NFock= 7 Conv=0.53D-08 -V/T= 2.0092 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000587227 -0.000943279 -0.000819963 2 1 -0.000262387 0.000035956 0.000589333 3 1 -0.000462458 0.001001788 0.000349767 4 1 0.000137617 -0.000094465 -0.000119137 ------------------------------------------------------------------- Cartesian Forces: Max 0.001001788 RMS 0.000555746 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001103716 RMS 0.000524758 Search for a local minimum. Step number 8 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 4 6 5 7 8 DE= -4.40D-05 DEPred=-5.53D-05 R= 7.96D-01 TightC=F SS= 1.41D+00 RLast= 1.82D-02 DXNew= 1.2000D+00 5.4627D-02 Trust test= 7.96D-01 RLast= 1.82D-02 DXMaxT set to 7.14D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.39171 R2 0.11101 0.25558 R3 -0.07824 0.12765 0.36085 A1 0.02024 -0.00446 -0.01589 0.18129 A2 0.00816 0.02029 0.01330 -0.00639 0.14040 A3 -0.00298 0.02322 0.02640 -0.00819 -0.01937 D1 -0.01849 -0.01853 -0.01245 0.02090 -0.00469 A3 D1 A3 0.14174 D1 -0.00543 0.00611 ITU= 1 0 -1 1 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.04661 0.10372 0.13992 0.15993 0.45258 Eigenvalues --- 0.45940 RFO step: Lambda=-4.51291256D-06 EMin= 4.66104535D-02 Quartic linear search produced a step of -0.16737. Iteration 1 RMS(Cart)= 0.00193713 RMS(Int)= 0.00000427 Iteration 2 RMS(Cart)= 0.00000349 RMS(Int)= 0.00000247 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000247 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92506 -0.00056 -0.00160 0.00169 0.00009 1.92515 R2 1.92627 -0.00110 -0.00177 -0.00344 -0.00521 1.92106 R3 1.92375 -0.00008 -0.00110 0.00294 0.00184 1.92559 A1 1.84195 0.00035 0.00020 0.00349 0.00369 1.84564 A2 1.84699 -0.00033 -0.00098 -0.00028 -0.00126 1.84572 A3 1.84714 -0.00038 -0.00102 -0.00058 -0.00160 1.84554 D1 -1.94954 -0.00010 0.00060 -0.00355 -0.00294 -1.95248 Item Value Threshold Converged? Maximum Force 0.001104 0.000015 NO RMS Force 0.000525 0.000010 NO Maximum Displacement 0.002509 0.000060 NO RMS Displacement 0.001936 0.000040 NO Predicted change in Energy=-4.063455D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.109738 -0.251873 0.004269 2 1 0 0.506417 0.217441 -0.808280 3 1 0 0.507310 -1.187488 0.003877 4 1 0 0.507860 0.217335 0.816464 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.018746 0.000000 3 H 1.016582 1.622783 0.000000 4 H 1.018979 1.624744 1.622907 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000052 -0.000368 -0.119237 2 1 0 0.798655 0.491911 0.277926 3 1 0 0.026418 -0.935349 0.278951 4 1 0 -0.825440 0.446013 0.277782 --------------------------------------------------------------------- Rotational constants (GHZ): 294.0144676 293.3066093 190.2561078 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.8930004079 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.19D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.954499 0.000910 0.001324 0.298211 Ang= 34.70 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -56.5577658498 A.U. after 7 cycles NFock= 7 Conv=0.41D-08 -V/T= 2.0091 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000094234 0.001724261 0.000159357 2 1 -0.000235826 -0.000268029 0.000564207 3 1 0.000456448 -0.001100909 -0.000003212 4 1 -0.000314856 -0.000355324 -0.000720352 ------------------------------------------------------------------- Cartesian Forces: Max 0.001724261 RMS 0.000684214 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001191738 RMS 0.000611170 Search for a local minimum. Step number 9 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 6 5 7 8 9 DE= -2.48D-07 DEPred=-4.06D-06 R= 6.09D-02 Trust test= 6.09D-02 RLast= 7.55D-03 DXMaxT set to 3.57D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.38820 R2 0.03692 0.42644 R3 -0.00441 -0.00061 0.45829 A1 0.05325 0.01167 -0.03950 0.12806 A2 0.00275 0.02030 0.01288 -0.00416 0.14007 A3 -0.01416 0.03977 0.01272 -0.00622 -0.01935 D1 -0.02024 0.00975 -0.03860 0.00923 -0.00327 A3 D1 A3 0.14367 D1 -0.00172 0.00718 ITU= -1 1 0 -1 1 1 1 1 Eigenvalues --- 0.03849 0.11847 0.15971 0.37704 0.45181 Eigenvalues --- 0.46291 En-DIIS/RFO-DIIS IScMMF= 0 using points: 9 8 RFO step: Lambda=-4.17665844D-06. DidBck=T Rises=F RFO-DIIS coefs: 0.51476 0.48524 Iteration 1 RMS(Cart)= 0.00157425 RMS(Int)= 0.00000088 Iteration 2 RMS(Cart)= 0.00000053 RMS(Int)= 0.00000002 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92515 -0.00067 -0.00004 -0.00230 -0.00234 1.92281 R2 1.92106 0.00119 0.00253 0.00051 0.00304 1.92410 R3 1.92559 -0.00086 -0.00089 -0.00097 -0.00186 1.92373 A1 1.84564 0.00002 -0.00179 0.00347 0.00168 1.84732 A2 1.84572 -0.00010 0.00061 -0.00113 -0.00052 1.84521 A3 1.84554 0.00002 0.00077 -0.00110 -0.00032 1.84522 D1 -1.95248 0.00001 0.00143 -0.00295 -0.00153 -1.95401 Item Value Threshold Converged? Maximum Force 0.001192 0.000015 NO RMS Force 0.000611 0.000010 NO Maximum Displacement 0.002308 0.000060 NO RMS Displacement 0.001574 0.000040 NO Predicted change in Energy=-3.424010D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.109972 -0.251286 0.003923 2 1 0 0.506172 0.218053 -0.807291 3 1 0 0.507398 -1.188710 0.004334 4 1 0 0.507783 0.217357 0.815364 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.017507 0.000000 3 H 1.018190 1.624105 0.000000 4 H 1.017997 1.622656 1.623205 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000054 -0.000239 -0.119143 2 1 0 0.707454 -0.614137 0.278392 3 1 0 -0.886811 -0.304239 0.278055 4 1 0 0.178982 0.920049 0.277557 --------------------------------------------------------------------- Rotational constants (GHZ): 294.0454551 293.5733392 190.2928223 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.8952774855 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.18D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.805760 -0.000281 0.000608 0.592242 Ang= -72.63 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -56.5577682796 A.U. after 6 cycles NFock= 6 Conv=0.76D-08 -V/T= 2.0091 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 -0.000096085 -0.000247807 0.000469509 2 1 0.000181656 0.000025969 -0.000344955 3 1 -0.000037675 0.000229916 -0.000136791 4 1 -0.000047897 -0.000008079 0.000012238 ------------------------------------------------------------------- Cartesian Forces: Max 0.000469509 RMS 0.000208016 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000357748 RMS 0.000184685 Search for a local minimum. Step number 10 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 6 5 7 8 9 10 DE= -2.43D-06 DEPred=-3.42D-06 R= 7.10D-01 TightC=F SS= 1.41D+00 RLast= 4.87D-03 DXNew= 6.0000D-01 1.4596D-02 Trust test= 7.10D-01 RLast= 4.87D-03 DXMaxT set to 3.57D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.43241 R2 -0.01717 0.44262 R3 -0.01208 -0.00355 0.45596 A1 0.04319 0.01573 -0.02362 0.08956 A2 0.03314 0.00055 0.01767 -0.01674 0.15394 A3 0.01122 0.02388 0.01788 -0.01794 -0.00806 D1 0.02127 -0.00538 -0.02341 -0.01766 0.01000 A3 D1 A3 0.15285 D1 0.00862 0.01086 ITU= 1 -1 1 0 -1 1 1 1 Eigenvalues --- 0.04398 0.15071 0.15972 0.41917 0.45459 Eigenvalues --- 0.46494 En-DIIS/RFO-DIIS IScMMF= 0 using points: 10 9 8 RFO step: Lambda=-4.34798698D-07. DidBck=T Rises=F RFO-DIIS coefs: 0.61234 0.20180 0.18586 Iteration 1 RMS(Cart)= 0.00074131 RMS(Int)= 0.00000047 Iteration 2 RMS(Cart)= 0.00000042 RMS(Int)= 0.00000001 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92281 0.00036 0.00089 -0.00004 0.00085 1.92366 R2 1.92410 -0.00023 -0.00021 -0.00021 -0.00042 1.92368 R3 1.92373 -0.00001 0.00038 -0.00042 -0.00005 1.92369 A1 1.84732 -0.00016 -0.00134 -0.00043 -0.00177 1.84555 A2 1.84521 0.00013 0.00043 -0.00007 0.00036 1.84557 A3 1.84522 0.00010 0.00042 -0.00007 0.00035 1.84557 D1 -1.95401 0.00008 0.00114 0.00054 0.00168 -1.95232 Item Value Threshold Converged? Maximum Force 0.000358 0.000015 NO RMS Force 0.000185 0.000010 NO Maximum Displacement 0.000958 0.000060 NO RMS Displacement 0.000742 0.000040 NO Predicted change in Energy=-4.528122D-07 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.109732 -0.251238 0.004340 2 1 0 0.506347 0.217546 -0.807557 3 1 0 0.507491 -1.188277 0.003887 4 1 0 0.507754 0.217383 0.815660 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.017958 0.000000 3 H 1.017967 1.623201 0.000000 4 H 1.017972 1.623218 1.623225 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 -0.000001 -0.119240 2 1 0 -0.348267 -0.870040 0.278228 3 1 0 -0.579361 0.736626 0.278224 4 1 0 0.927625 0.133423 0.278226 --------------------------------------------------------------------- Rotational constants (GHZ): 293.7350320 293.7271869 190.3181451 Standard basis: 6-31G(d,p) (6D, 7F) There are 30 symmetry adapted cartesian basis functions of A symmetry. There are 30 symmetry adapted basis functions of A symmetry. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 5 alpha electrons 5 beta electrons nuclear repulsion energy 11.8946137862 Hartrees. NAtoms= 4 NActive= 4 NUniq= 4 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 30 RedAO= T EigKep= 2.18D-02 NBF= 30 NBsUse= 30 1.00D-06 EigRej= -1.00D+00 NBFU= 30 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.815108 -0.000380 0.000162 0.579308 Ang= -70.80 deg. Keep R1 ints in memory in canonical form, NReq=992426. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -56.5577687188 A.U. after 6 cycles NFock= 6 Conv=0.54D-08 -V/T= 2.0091 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=0 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 7 0.000000228 -0.000001899 0.000008401 2 1 0.000002201 0.000006890 -0.000009388 3 1 -0.000000627 -0.000004658 0.000001459 4 1 -0.000001803 -0.000000334 -0.000000471 ------------------------------------------------------------------- Cartesian Forces: Max 0.000009388 RMS 0.000004495 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000011529 RMS 0.000004910 Search for a local minimum. Step number 11 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 4 6 5 7 8 9 10 11 DE= -4.39D-07 DEPred=-4.53D-07 R= 9.70D-01 Trust test= 9.70D-01 RLast= 2.67D-03 DXMaxT set to 3.57D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.45079 R2 -0.00233 0.45083 R3 -0.00406 -0.00244 0.45469 A1 0.02829 0.00413 -0.02594 0.07257 A2 0.02708 -0.00278 0.01893 -0.02270 0.15129 A3 0.00464 0.02012 0.01880 -0.02362 -0.01058 D1 -0.00019 -0.02223 -0.02828 -0.02418 0.00854 A3 D1 A3 0.15049 D1 0.00751 0.01643 ITU= 0 1 -1 1 0 -1 1 1 Eigenvalues --- 0.04414 0.14983 0.15972 0.45080 0.45466 Eigenvalues --- 0.46021 En-DIIS/RFO-DIIS IScMMF= 0 using points: 11 10 9 8 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.97374 0.01427 0.00569 0.00630 Iteration 1 RMS(Cart)= 0.00002270 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 1.92366 0.00001 0.00001 0.00002 0.00002 1.92368 R2 1.92368 0.00000 0.00001 0.00000 0.00001 1.92368 R3 1.92369 0.00000 0.00001 -0.00002 -0.00001 1.92368 A1 1.84555 0.00000 0.00000 0.00003 0.00004 1.84559 A2 1.84557 0.00000 0.00000 0.00002 0.00002 1.84559 A3 1.84557 0.00000 0.00000 0.00002 0.00002 1.84559 D1 -1.95232 0.00000 -0.00001 -0.00005 -0.00006 -1.95239 Item Value Threshold Converged? Maximum Force 0.000012 0.000015 YES RMS Force 0.000005 0.000010 YES Maximum Displacement 0.000030 0.000060 YES RMS Displacement 0.000023 0.000040 YES Predicted change in Energy=-3.027354D-10 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.018 -DE/DX = 0.0 ! ! R2 R(1,3) 1.018 -DE/DX = 0.0 ! ! R3 R(1,4) 1.018 -DE/DX = 0.0 ! ! A1 A(2,1,3) 105.7422 -DE/DX = 0.0 ! ! A2 A(2,1,4) 105.7433 -DE/DX = 0.0 ! ! A3 A(3,1,4) 105.7433 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) -111.86 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.109732 -0.251238 0.004340 2 1 0 0.506347 0.217546 -0.807557 3 1 0 0.507491 -1.188277 0.003887 4 1 0 0.507754 0.217383 0.815660 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 N 0.000000 2 H 1.017958 0.000000 3 H 1.017967 1.623201 0.000000 4 H 1.017972 1.623218 1.623225 0.000000 Stoichiometry H3N Framework group C1[X(H3N)] Deg. of freedom 6 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 7 0 0.000000 -0.000001 -0.119240 2 1 0 -0.348267 -0.870040 0.278228 3 1 0 -0.579361 0.736626 0.278224 4 1 0 0.927625 0.133423 0.278226 --------------------------------------------------------------------- Rotational constants (GHZ): 293.7350320 293.7271869 190.3181451 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -14.30568 -0.84467 -0.45030 -0.45030 -0.25318 Alpha virt. eigenvalues -- 0.07985 0.16923 0.16923 0.67850 0.67851 Alpha virt. eigenvalues -- 0.71437 0.87556 0.87556 0.88555 1.13374 Alpha virt. eigenvalues -- 1.41878 1.41878 1.83049 2.09379 2.24224 Alpha virt. eigenvalues -- 2.24225 2.34638 2.34639 2.79262 2.95068 Alpha virt. eigenvalues -- 2.95070 3.19854 3.42897 3.42899 3.90461 Condensed to atoms (all electrons): 1 2 3 4 1 N 6.703104 0.337975 0.337973 0.337973 2 H 0.337975 0.487756 -0.032371 -0.032370 3 H 0.337973 -0.032371 0.487759 -0.032369 4 H 0.337973 -0.032370 -0.032369 0.487758 Mulliken charges: 1 1 N -0.717025 2 H 0.239009 3 H 0.239008 4 H 0.239008 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 N 0.000000 Electronic spatial extent (au): = 26.2372 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 1.8465 Tot= 1.8465 Quadrupole moment (field-independent basis, Debye-Ang): XX= -6.1591 YY= -6.1592 ZZ= -8.7224 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.8544 YY= 0.8544 ZZ= -1.7088 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.6993 YYY= -0.3195 ZZZ= 1.6141 XYY= -0.6993 XXY= 0.3195 XXZ= 0.8495 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.8495 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -9.7162 YYYY= -9.7161 ZZZZ= -9.7131 XXXY= 0.0000 XXXZ= 0.2834 YYYX= 0.0000 YYYZ= -0.1295 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -3.2387 XXZZ= -3.2735 YYZZ= -3.2735 XXYZ= 0.1295 YYXZ= -0.2834 ZZXY= 0.0000 N-N= 1.189461378620D+01 E-N=-1.556687774972D+02 KE= 5.604589120515D+01 1\1\GINC-CX1-29-15-3\FOpt\RB3LYP\6-31G(d,p)\H3N1\SCAN-USER-1\13-Nov-20 14\0\\# opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=grid=ult rafine\\NH3_optimisation\\0,1\N,0.1097318435,-0.2512376175,0.004339901 4\H,0.5063471877,0.217546098,-0.8075569104\H,0.5074913218,-1.188277454 4,0.0038866023\H,0.507753987,0.2173831839,0.8156603368\\Version=ES64L- G09RevD.01\State=1-A\HF=-56.5577687\RMSD=5.365e-09\RMSF=4.495e-06\Dipo le=0.7264862,0.0002254,-0.0006315\Quadrupole=-1.270458,0.6352191,0.635 2388,-0.0005992,0.0016472,0.0000268\PG=C01 [X(H3N1)]\\@ If your ship doesn't come in, swim out to it! -- Jonathan Winters Job cpu time: 0 days 0 hours 1 minutes 15.7 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Thu Nov 13 14:59:50 2014.