Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 22000. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 09-May-2019 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\md5317\Desktop\2ndyearlab\Project\[P(CH3)4]+_OPT_631G_ DP.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------------------- [P(CH3)4]+ Optimisation ----------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 0. 0. 1.81628 H 0.89019 -0.51395 2.18864 H 0. 1.0279 2.18864 H -0.89019 -0.51395 2.18864 C 0. -1.71241 -0.60543 H -0.89019 -2.23479 -0.24499 H 0. -1.72084 -1.69866 H 0.89019 -2.23479 -0.24499 C 1.48299 0.8562 -0.60543 H 1.49029 0.86042 -1.69866 H 1.49029 1.88832 -0.24499 H 2.38048 0.34647 -0.24499 C -1.48299 0.8562 -0.60543 H -1.49029 1.88832 -0.24499 H -1.49029 0.86042 -1.69866 H -2.38048 0.34647 -0.24499 P 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 estimate D2E/DX2 ! ! R2 R(1,3) 1.0933 estimate D2E/DX2 ! ! R3 R(1,4) 1.0933 estimate D2E/DX2 ! ! R4 R(1,17) 1.8163 estimate D2E/DX2 ! ! R5 R(5,6) 1.0933 estimate D2E/DX2 ! ! R6 R(5,7) 1.0933 estimate D2E/DX2 ! ! R7 R(5,8) 1.0933 estimate D2E/DX2 ! ! R8 R(5,17) 1.8163 estimate D2E/DX2 ! ! R9 R(9,10) 1.0933 estimate D2E/DX2 ! ! R10 R(9,11) 1.0933 estimate D2E/DX2 ! ! R11 R(9,12) 1.0933 estimate D2E/DX2 ! ! R12 R(9,17) 1.8163 estimate D2E/DX2 ! ! R13 R(13,14) 1.0933 estimate D2E/DX2 ! ! R14 R(13,15) 1.0933 estimate D2E/DX2 ! ! R15 R(13,16) 1.0933 estimate D2E/DX2 ! ! R16 R(13,17) 1.8163 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.0259 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.0259 estimate D2E/DX2 ! ! A3 A(2,1,17) 109.9129 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.0259 estimate D2E/DX2 ! ! A5 A(3,1,17) 109.9129 estimate D2E/DX2 ! ! A6 A(4,1,17) 109.9129 estimate D2E/DX2 ! ! A7 A(6,5,7) 109.0259 estimate D2E/DX2 ! ! A8 A(6,5,8) 109.0259 estimate D2E/DX2 ! ! A9 A(6,5,17) 109.9129 estimate D2E/DX2 ! ! A10 A(7,5,8) 109.0259 estimate D2E/DX2 ! ! A11 A(7,5,17) 109.9129 estimate D2E/DX2 ! ! A12 A(8,5,17) 109.9129 estimate D2E/DX2 ! ! A13 A(10,9,11) 109.0259 estimate D2E/DX2 ! ! A14 A(10,9,12) 109.0259 estimate D2E/DX2 ! ! A15 A(10,9,17) 109.9129 estimate D2E/DX2 ! ! A16 A(11,9,12) 109.0259 estimate D2E/DX2 ! ! A17 A(11,9,17) 109.9129 estimate D2E/DX2 ! ! A18 A(12,9,17) 109.9129 estimate D2E/DX2 ! ! A19 A(14,13,15) 109.0259 estimate D2E/DX2 ! ! A20 A(14,13,16) 109.0259 estimate D2E/DX2 ! ! A21 A(14,13,17) 109.9129 estimate D2E/DX2 ! ! A22 A(15,13,16) 109.0259 estimate D2E/DX2 ! ! A23 A(15,13,17) 109.9129 estimate D2E/DX2 ! ! A24 A(16,13,17) 109.9129 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 60.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) -60.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) 180.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) 180.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) 60.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) -60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) -60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) 180.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 60.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) 180.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) -60.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) -60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) 60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 60.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 180.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 180.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 60.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) -60.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) 180.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) 60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) -60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) 60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 180.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) -60.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) 180.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) -60.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) 60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) -60.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) 60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816285 2 1 0 0.890191 -0.513952 2.188643 3 1 0 0.000000 1.027904 2.188643 4 1 0 -0.890191 -0.513952 2.188643 5 6 0 0.000000 -1.712410 -0.605428 6 1 0 -0.890191 -2.234789 -0.244989 7 1 0 0.000000 -1.720837 -1.698665 8 1 0 0.890191 -2.234789 -0.244989 9 6 0 1.482990 0.856205 -0.605428 10 1 0 1.490289 0.860419 -1.698665 11 1 0 1.490289 1.888323 -0.244989 12 1 0 2.380480 0.346467 -0.244989 13 6 0 -1.482990 0.856205 -0.605428 14 1 0 -1.490289 1.888323 -0.244989 15 1 0 -1.490289 0.860419 -1.698665 16 1 0 -2.380480 0.346467 -0.244989 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093269 0.000000 3 H 1.093269 1.780382 0.000000 4 H 1.093269 1.780382 1.780382 0.000000 5 C 2.965980 3.167897 3.913585 3.167897 0.000000 6 H 3.167897 3.471830 4.166554 2.980578 1.093269 7 H 3.913585 4.166554 4.760960 4.166554 1.093269 8 H 3.167897 2.980578 4.166554 3.471830 1.093269 9 C 2.965980 3.167897 3.167897 3.913585 2.965980 10 H 3.913585 4.166554 4.166554 4.760960 3.167897 11 H 3.167897 3.471830 2.980578 4.166554 3.913585 12 H 3.167897 2.980578 3.471830 4.166554 3.167897 13 C 2.965980 3.913585 3.167897 3.167897 2.965980 14 H 3.167897 4.166554 2.980578 3.471830 3.913585 15 H 3.913585 4.760960 4.166554 4.166554 3.167897 16 H 3.167897 4.166554 3.471830 2.980578 3.167897 17 P 1.816285 2.418004 2.418004 2.418004 1.816285 6 7 8 9 10 6 H 0.000000 7 H 1.780382 0.000000 8 H 1.780382 1.780382 0.000000 9 C 3.913585 3.167897 3.167897 0.000000 10 H 4.166554 2.980578 3.471830 1.093269 0.000000 11 H 4.760960 4.166554 4.166554 1.093269 1.780382 12 H 4.166554 3.471830 2.980578 1.093269 1.780382 13 C 3.167897 3.167897 3.913585 2.965980 3.167897 14 H 4.166554 4.166554 4.760960 3.167897 3.471830 15 H 3.471830 2.980578 4.166554 3.167897 2.980578 16 H 2.980578 3.471830 4.166554 3.913585 4.166554 17 P 2.418004 2.418004 2.418004 1.816285 2.418004 11 12 13 14 15 11 H 0.000000 12 H 1.780382 0.000000 13 C 3.167897 3.913585 0.000000 14 H 2.980578 4.166554 1.093269 0.000000 15 H 3.471830 4.166554 1.093269 1.780382 0.000000 16 H 4.166554 4.760960 1.093269 1.780382 1.780382 17 P 2.418004 2.418004 1.816285 2.418004 2.418004 16 17 16 H 0.000000 17 P 2.418004 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048632 1.048632 1.048632 2 1 0 1.683254 0.424333 1.683254 3 1 0 1.683254 1.683254 0.424333 4 1 0 0.424333 1.683254 1.683254 5 6 0 -1.048632 -1.048632 1.048632 6 1 0 -1.683254 -0.424333 1.683254 7 1 0 -1.683254 -1.683254 0.424333 8 1 0 -0.424333 -1.683254 1.683254 9 6 0 1.048632 -1.048632 -1.048632 10 1 0 0.424333 -1.683254 -1.683254 11 1 0 1.683254 -0.424333 -1.683254 12 1 0 1.683254 -1.683254 -0.424333 13 6 0 -1.048632 1.048632 -1.048632 14 1 0 -0.424333 1.683254 -1.683254 15 1 0 -1.683254 0.424333 -1.683254 16 1 0 -1.683254 1.683254 -0.424333 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3095241 3.3095241 3.3095241 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6984939401 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284359. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030215 A.U. after 10 cycles NFock= 10 Conv=0.34D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34280 -10.37612 -10.37612 -10.37612 -10.37611 Alpha occ. eigenvalues -- -6.80823 -4.96977 -4.96977 -4.96977 -0.99280 Alpha occ. eigenvalues -- -0.89088 -0.89088 -0.89088 -0.73296 -0.63380 Alpha occ. eigenvalues -- -0.63380 -0.63380 -0.60232 -0.60232 -0.57880 Alpha occ. eigenvalues -- -0.57880 -0.57880 -0.53927 -0.53927 -0.53927 Alpha virt. eigenvalues -- -0.11000 -0.11000 -0.11000 -0.10158 -0.05091 Alpha virt. eigenvalues -- -0.04125 -0.04125 -0.03828 -0.03828 -0.03828 Alpha virt. eigenvalues -- 0.00636 0.00636 0.00636 0.02558 0.02558 Alpha virt. eigenvalues -- 0.02558 0.19727 0.19727 0.19727 0.24759 Alpha virt. eigenvalues -- 0.24759 0.29678 0.43573 0.43573 0.43573 Alpha virt. eigenvalues -- 0.46727 0.46727 0.46727 0.47397 0.56962 Alpha virt. eigenvalues -- 0.56962 0.57691 0.57691 0.57691 0.68546 Alpha virt. eigenvalues -- 0.68546 0.68546 0.69738 0.69738 0.69738 Alpha virt. eigenvalues -- 0.71102 0.71624 0.71624 0.71624 0.74114 Alpha virt. eigenvalues -- 0.74114 0.81625 0.81625 0.81625 1.09580 Alpha virt. eigenvalues -- 1.09580 1.09580 1.22828 1.22828 1.22828 Alpha virt. eigenvalues -- 1.23831 1.30734 1.30734 1.50591 1.50591 Alpha virt. eigenvalues -- 1.50591 1.75124 1.85223 1.85223 1.85223 Alpha virt. eigenvalues -- 1.85321 1.87418 1.87418 1.87992 1.87992 Alpha virt. eigenvalues -- 1.87992 1.93265 1.93265 1.93265 1.96555 Alpha virt. eigenvalues -- 1.96555 1.96555 2.14699 2.14699 2.14699 Alpha virt. eigenvalues -- 2.19136 2.19136 2.19136 2.19438 2.19438 Alpha virt. eigenvalues -- 2.41936 2.47479 2.47479 2.47479 2.61142 Alpha virt. eigenvalues -- 2.61142 2.65373 2.65373 2.65373 2.67392 Alpha virt. eigenvalues -- 2.67392 2.67392 2.95841 3.00670 3.00670 Alpha virt. eigenvalues -- 3.00670 3.22458 3.22458 3.22458 3.24335 Alpha virt. eigenvalues -- 3.24335 3.25151 3.25151 3.25151 3.34978 Alpha virt. eigenvalues -- 4.26253 4.27350 4.27350 4.27350 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.135637 0.377525 0.377525 0.377525 -0.032280 -0.001797 2 H 0.377525 0.484046 -0.016347 -0.016347 -0.001797 -0.000138 3 H 0.377525 -0.016347 0.484046 -0.016347 0.001670 0.000006 4 H 0.377525 -0.016347 -0.016347 0.484046 -0.001797 0.000786 5 C -0.032280 -0.001797 0.001670 -0.001797 5.135637 0.377525 6 H -0.001797 -0.000138 0.000006 0.000786 0.377525 0.484046 7 H 0.001670 0.000006 -0.000029 0.000006 0.377525 -0.016347 8 H -0.001797 0.000786 0.000006 -0.000138 0.377525 -0.016347 9 C -0.032280 -0.001797 -0.001797 0.001670 -0.032280 0.001670 10 H 0.001670 0.000006 0.000006 -0.000029 -0.001797 0.000006 11 H -0.001797 -0.000138 0.000786 0.000006 0.001670 -0.000029 12 H -0.001797 0.000786 -0.000138 0.000006 -0.001797 0.000006 13 C -0.032280 0.001670 -0.001797 -0.001797 -0.032280 -0.001797 14 H -0.001797 0.000006 0.000786 -0.000138 0.001670 0.000006 15 H 0.001670 -0.000029 0.000006 0.000006 -0.001797 -0.000138 16 H -0.001797 0.000006 -0.000138 0.000786 -0.001797 0.000786 17 P 0.345264 -0.021457 -0.021457 -0.021457 0.345264 -0.021457 7 8 9 10 11 12 1 C 0.001670 -0.001797 -0.032280 0.001670 -0.001797 -0.001797 2 H 0.000006 0.000786 -0.001797 0.000006 -0.000138 0.000786 3 H -0.000029 0.000006 -0.001797 0.000006 0.000786 -0.000138 4 H 0.000006 -0.000138 0.001670 -0.000029 0.000006 0.000006 5 C 0.377525 0.377525 -0.032280 -0.001797 0.001670 -0.001797 6 H -0.016347 -0.016347 0.001670 0.000006 -0.000029 0.000006 7 H 0.484046 -0.016347 -0.001797 0.000786 0.000006 -0.000138 8 H -0.016347 0.484046 -0.001797 -0.000138 0.000006 0.000786 9 C -0.001797 -0.001797 5.135637 0.377525 0.377525 0.377525 10 H 0.000786 -0.000138 0.377525 0.484046 -0.016347 -0.016347 11 H 0.000006 0.000006 0.377525 -0.016347 0.484046 -0.016347 12 H -0.000138 0.000786 0.377525 -0.016347 -0.016347 0.484046 13 C -0.001797 0.001670 -0.032280 -0.001797 -0.001797 0.001670 14 H 0.000006 -0.000029 -0.001797 -0.000138 0.000786 0.000006 15 H 0.000786 0.000006 -0.001797 0.000786 -0.000138 0.000006 16 H -0.000138 0.000006 0.001670 0.000006 0.000006 -0.000029 17 P -0.021457 -0.021457 0.345264 -0.021457 -0.021457 -0.021457 13 14 15 16 17 1 C -0.032280 -0.001797 0.001670 -0.001797 0.345264 2 H 0.001670 0.000006 -0.000029 0.000006 -0.021457 3 H -0.001797 0.000786 0.000006 -0.000138 -0.021457 4 H -0.001797 -0.000138 0.000006 0.000786 -0.021457 5 C -0.032280 0.001670 -0.001797 -0.001797 0.345264 6 H -0.001797 0.000006 -0.000138 0.000786 -0.021457 7 H -0.001797 0.000006 0.000786 -0.000138 -0.021457 8 H 0.001670 -0.000029 0.000006 0.000006 -0.021457 9 C -0.032280 -0.001797 -0.001797 0.001670 0.345264 10 H -0.001797 -0.000138 0.000786 0.000006 -0.021457 11 H -0.001797 0.000786 -0.000138 0.000006 -0.021457 12 H 0.001670 0.000006 0.000006 -0.000029 -0.021457 13 C 5.135637 0.377525 0.377525 0.377525 0.345264 14 H 0.377525 0.484046 -0.016347 -0.016347 -0.021457 15 H 0.377525 -0.016347 0.484046 -0.016347 -0.021457 16 H 0.377525 -0.016347 -0.016347 0.484046 -0.021457 17 P 0.345264 -0.021457 -0.021457 -0.021457 13.151555 Mulliken charges: 1 1 C -0.510863 2 H 0.193215 3 H 0.193215 4 H 0.193215 5 C -0.510863 6 H 0.193215 7 H 0.193215 8 H 0.193215 9 C -0.510863 10 H 0.193215 11 H 0.193215 12 H 0.193215 13 C -0.510863 14 H 0.193215 15 H 0.193215 16 H 0.193215 17 P 0.724874 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068782 5 C 0.068782 9 C 0.068782 13 C 0.068782 17 P 0.724874 Electronic spatial extent (au): = 603.0206 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2668 YY= -31.2668 ZZ= -31.2668 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9731 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.8311 YYYY= -246.8311 ZZZZ= -246.8311 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.3998 XXZZ= -74.3998 YYZZ= -74.3998 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626984939401D+02 E-N=-1.693614706716D+03 KE= 4.978553744453D+02 Symmetry A KE= 2.853341537452D+02 Symmetry B1 KE= 7.084040690004D+01 Symmetry B2 KE= 7.084040690004D+01 Symmetry B3 KE= 7.084040690004D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000000000 -0.000060103 2 1 -0.000006440 0.000003718 0.000041230 3 1 0.000000000 -0.000007436 0.000041230 4 1 0.000006440 0.000003718 0.000041230 5 6 0.000000000 0.000056665 0.000020034 6 1 0.000006440 -0.000037633 -0.000017249 7 1 0.000000000 -0.000041351 -0.000006733 8 1 -0.000006440 -0.000037633 -0.000017249 9 6 -0.000049074 -0.000028333 0.000020034 10 1 0.000035811 0.000020675 -0.000006733 11 1 0.000035811 0.000013240 -0.000017249 12 1 0.000029371 0.000024393 -0.000017249 13 6 0.000049074 -0.000028333 0.000020034 14 1 -0.000035811 0.000013240 -0.000017249 15 1 -0.000035811 0.000020675 -0.000006733 16 1 -0.000029371 0.000024393 -0.000017249 17 15 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000060103 RMS 0.000026388 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000063587 RMS 0.000026993 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00949 0.00949 0.00949 0.00949 0.05322 Eigenvalues --- 0.05322 0.05322 0.06106 0.06106 0.06106 Eigenvalues --- 0.06106 0.06106 0.06106 0.06106 0.06106 Eigenvalues --- 0.14692 0.14692 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24875 Eigenvalues --- 0.24875 0.24875 0.24875 0.34438 0.34438 Eigenvalues --- 0.34438 0.34438 0.34438 0.34438 0.34438 Eigenvalues --- 0.34438 0.34438 0.34438 0.34438 0.34438 RFO step: Lambda=-3.35346490D-07 EMin= 9.48837693D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00030729 RMS(Int)= 0.00000003 Iteration 2 RMS(Cart)= 0.00000003 RMS(Int)= 0.00000002 ClnCor: largest displacement from symmetrization is 1.07D-08 for atom 7. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R2 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R3 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R4 3.43228 0.00006 0.00000 0.00026 0.00026 3.43254 R5 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R6 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R7 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R8 3.43228 0.00006 0.00000 0.00026 0.00026 3.43254 R9 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R10 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R11 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R12 3.43228 0.00006 0.00000 0.00026 0.00026 3.43254 R13 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R14 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R15 2.06598 0.00001 0.00000 0.00002 0.00002 2.06600 R16 3.43228 0.00006 0.00000 0.00026 0.00026 3.43254 A1 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A2 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A3 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A4 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A5 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A6 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A7 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A8 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A9 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A10 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A11 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A12 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A13 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A14 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A15 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A16 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A17 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A18 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A19 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A20 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A21 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A22 1.90286 -0.00004 0.00000 -0.00027 -0.00027 1.90260 A23 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A24 1.91834 0.00004 0.00000 0.00026 0.00026 1.91860 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D2 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D6 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D26 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D32 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D33 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D34 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D35 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D36 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000064 0.000450 YES RMS Force 0.000027 0.000300 YES Maximum Displacement 0.000783 0.001800 YES RMS Displacement 0.000307 0.001200 YES Predicted change in Energy=-1.676732D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0933 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0933 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0933 -DE/DX = 0.0 ! ! R4 R(1,17) 1.8163 -DE/DX = 0.0001 ! ! R5 R(5,6) 1.0933 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0933 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0933 -DE/DX = 0.0 ! ! R8 R(5,17) 1.8163 -DE/DX = 0.0001 ! ! R9 R(9,10) 1.0933 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0933 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0933 -DE/DX = 0.0 ! ! R12 R(9,17) 1.8163 -DE/DX = 0.0001 ! ! R13 R(13,14) 1.0933 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(13,17) 1.8163 -DE/DX = 0.0001 ! ! A1 A(2,1,3) 109.0259 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.0259 -DE/DX = 0.0 ! ! A3 A(2,1,17) 109.9129 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.0259 -DE/DX = 0.0 ! ! A5 A(3,1,17) 109.9129 -DE/DX = 0.0 ! ! A6 A(4,1,17) 109.9129 -DE/DX = 0.0 ! ! A7 A(6,5,7) 109.0259 -DE/DX = 0.0 ! ! A8 A(6,5,8) 109.0259 -DE/DX = 0.0 ! ! A9 A(6,5,17) 109.9129 -DE/DX = 0.0 ! ! A10 A(7,5,8) 109.0259 -DE/DX = 0.0 ! ! A11 A(7,5,17) 109.9129 -DE/DX = 0.0 ! ! A12 A(8,5,17) 109.9129 -DE/DX = 0.0 ! ! A13 A(10,9,11) 109.0259 -DE/DX = 0.0 ! ! A14 A(10,9,12) 109.0259 -DE/DX = 0.0 ! ! A15 A(10,9,17) 109.9129 -DE/DX = 0.0 ! ! A16 A(11,9,12) 109.0259 -DE/DX = 0.0 ! ! A17 A(11,9,17) 109.9129 -DE/DX = 0.0 ! ! A18 A(12,9,17) 109.9129 -DE/DX = 0.0 ! ! A19 A(14,13,15) 109.0259 -DE/DX = 0.0 ! ! A20 A(14,13,16) 109.0259 -DE/DX = 0.0 ! ! A21 A(14,13,17) 109.9129 -DE/DX = 0.0 ! ! A22 A(15,13,16) 109.0259 -DE/DX = 0.0 ! ! A23 A(15,13,17) 109.9129 -DE/DX = 0.0 ! ! A24 A(16,13,17) 109.9129 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 60.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) -60.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) 180.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) 180.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) 60.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) -60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) -60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) 180.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 60.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) 180.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) -60.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) -60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) 60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 60.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 180.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 180.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 60.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) -60.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) 180.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) 60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) -60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) -180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) 60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 180.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) -60.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 180.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) -60.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) 60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) -60.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) 60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 1.816285 2 1 0 0.890191 -0.513952 2.188643 3 1 0 0.000000 1.027904 2.188643 4 1 0 -0.890191 -0.513952 2.188643 5 6 0 0.000000 -1.712410 -0.605428 6 1 0 -0.890191 -2.234789 -0.244989 7 1 0 0.000000 -1.720837 -1.698665 8 1 0 0.890191 -2.234789 -0.244989 9 6 0 1.482990 0.856205 -0.605428 10 1 0 1.490289 0.860419 -1.698665 11 1 0 1.490289 1.888323 -0.244989 12 1 0 2.380480 0.346467 -0.244989 13 6 0 -1.482990 0.856205 -0.605428 14 1 0 -1.490289 1.888323 -0.244989 15 1 0 -1.490289 0.860419 -1.698665 16 1 0 -2.380480 0.346467 -0.244989 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093269 0.000000 3 H 1.093269 1.780382 0.000000 4 H 1.093269 1.780382 1.780382 0.000000 5 C 2.965980 3.167897 3.913585 3.167897 0.000000 6 H 3.167897 3.471830 4.166554 2.980578 1.093269 7 H 3.913585 4.166554 4.760960 4.166554 1.093269 8 H 3.167897 2.980578 4.166554 3.471830 1.093269 9 C 2.965980 3.167897 3.167897 3.913585 2.965980 10 H 3.913585 4.166554 4.166554 4.760960 3.167897 11 H 3.167897 3.471830 2.980578 4.166554 3.913585 12 H 3.167897 2.980578 3.471830 4.166554 3.167897 13 C 2.965980 3.913585 3.167897 3.167897 2.965980 14 H 3.167897 4.166554 2.980578 3.471830 3.913585 15 H 3.913585 4.760960 4.166554 4.166554 3.167897 16 H 3.167897 4.166554 3.471830 2.980578 3.167897 17 P 1.816285 2.418004 2.418004 2.418004 1.816285 6 7 8 9 10 6 H 0.000000 7 H 1.780382 0.000000 8 H 1.780382 1.780382 0.000000 9 C 3.913585 3.167897 3.167897 0.000000 10 H 4.166554 2.980578 3.471830 1.093269 0.000000 11 H 4.760960 4.166554 4.166554 1.093269 1.780382 12 H 4.166554 3.471830 2.980578 1.093269 1.780382 13 C 3.167897 3.167897 3.913585 2.965980 3.167897 14 H 4.166554 4.166554 4.760960 3.167897 3.471830 15 H 3.471830 2.980578 4.166554 3.167897 2.980578 16 H 2.980578 3.471830 4.166554 3.913585 4.166554 17 P 2.418004 2.418004 2.418004 1.816285 2.418004 11 12 13 14 15 11 H 0.000000 12 H 1.780382 0.000000 13 C 3.167897 3.913585 0.000000 14 H 2.980578 4.166554 1.093269 0.000000 15 H 3.471830 4.166554 1.093269 1.780382 0.000000 16 H 4.166554 4.760960 1.093269 1.780382 1.780382 17 P 2.418004 2.418004 1.816285 2.418004 2.418004 16 17 16 H 0.000000 17 P 2.418004 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048632 1.048632 1.048632 2 1 0 1.683254 0.424333 1.683254 3 1 0 1.683254 1.683254 0.424333 4 1 0 0.424333 1.683254 1.683254 5 6 0 -1.048632 -1.048632 1.048632 6 1 0 -1.683254 -0.424333 1.683254 7 1 0 -1.683254 -1.683254 0.424333 8 1 0 -0.424333 -1.683254 1.683254 9 6 0 1.048632 -1.048632 -1.048632 10 1 0 0.424333 -1.683254 -1.683254 11 1 0 1.683254 -0.424333 -1.683254 12 1 0 1.683254 -1.683254 -0.424333 13 6 0 -1.048632 1.048632 -1.048632 14 1 0 -0.424333 1.683254 -1.683254 15 1 0 -1.683254 0.424333 -1.683254 16 1 0 -1.683254 1.683254 -0.424333 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3095241 3.3095241 3.3095241 1|1| IMPERIAL COLLEGE-SKCH-135-036|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)| MD5317|09-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integra l=grid=ultrafine||[P(CH3)4]+ Optimisation||1,1|C,0.0000000007,-0.00000 00001,1.81628464|H,0.8901909989,-0.513952012,2.18864268|H,0.0000000005 ,1.0279040243,2.1886426804|H,-0.8901909967,-0.5139520127,2.1886426807| C,0.0000000004,-1.712409579,-0.6054282111|H,-0.890190997,-2.2347894439 ,-0.2449889535|H,0.,-1.7208374313,-1.698664766|H,0.8901909986,-2.23478 94432,-0.2449889542|C,1.4829901965,0.8562047901,-0.6054282115|H,1.4902 889304,0.8604187164,-1.6986647664|H,1.4902889305,1.8883227407,-0.24498 89542|H,2.3804799289,0.3464667044,-0.2449889546|C,-1.4829901977,0.8562 04789,-0.6054282103|H,-1.4902889322,1.8883227395,-0.244988953|H,-1.490 2889324,0.8604187152,-1.6986647652|H,-2.3804799294,0.3464667026,-0.244 9889528|P,0.,0.,0.0000000018||Version=EM64W-G09RevD.01|State=1-A1|HF=- 500.8270302|RMSD=3.362e-009|RMSF=2.639e-005|Dipole=0.,0.,0.|Quadrupole =0.,0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2)]||@ 10 WHATSOEVER THY HAND FINDETH TO DO, DO IT WITH THY MIGHT. FOR THERE IS NO WORK, NOR DEVICE, NOR KNOWLEDGE, NOR WISDOM, IN THE GRAVE, WHITHER THOU GOEST. 11 I RETURNED AND SAW UNDER THE SUN, THAT THE RACE IS NOT TO THE SWIFT, NOR THE BATTLE TO THE STRONG, NEITHER YET BREAD TO THE WISE, NOR YET RICHES TO MEN OF UNDERSTANDING, NOR YET FAVOR TO MEN OF SKILL. BUT TIME AND CHANCE HAPPEN TO THEM ALL. 12 FOR MAN ALSO KNOWETH NOT HIS TIME. AS THE FISHES THAT ARE TAKEN IN AN EVIL NET, AND AS THE BIRDS THAT ARE CAUGHT IN THE SNARE. SO ARE THE SONS OF MEN SNARED IN AN EVIL TIME, WHEN IT FALLETH SUDDENLY UPON THEM. ECCLESIASTES 9 Job cpu time: 0 days 0 hours 0 minutes 20.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Thu May 09 14:04:30 2019.