Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 3820. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 11-Mar-2016 ****************************************** %chk=H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_op tf_pop.chk Default route: MaxDisk=10GB ---------------------------------------------------------------------- # opt freq b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine pop=nbo ---------------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1,40=1/1,7; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1,40=1/1,7; 99/9=1/99; ------------------- Title Card Required ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 S 0. 0. 1.25 S 0. 0. -1.25 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.5 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 1.250000 2 16 0 0.000000 0.000000 -1.250000 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 1.250000 2 16 0 0.000000 0.000000 -1.250000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 5.0582046 5.0582046 Standard basis: 6-31G(d,p) (6D, 7F) There are 10 symmetry adapted cartesian basis functions of AG symmetry. There are 1 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 1 symmetry adapted cartesian basis functions of AU symmetry. There are 10 symmetry adapted cartesian basis functions of B1U symmetry. There are 4 symmetry adapted cartesian basis functions of B2U symmetry. There are 4 symmetry adapted cartesian basis functions of B3U symmetry. There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 4 symmetry adapted basis functions of B2U symmetry. There are 4 symmetry adapted basis functions of B3U symmetry. 38 basis functions, 104 primitive gaussians, 38 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 54.1877461596 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 38 RedAO= T EigKep= 2.14D-02 NBF= 10 1 4 4 1 10 4 4 NBsUse= 38 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 4 4 1 10 4 4 ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGU) (SGG) (SGU) (SGG) (PIG) (PIG) (PIU) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) Virtual (PIG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (SGG) (PIU) (PIU) (DLTG) (DLTG) (DLTU) (DLTU) (PIG) (PIG) (SGU) (SGU) (SGG) Keep R1 ints in memory in symmetry-blocked form, NReq=1164811. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -796.251126837 A.U. after 11 cycles NFock= 11 Conv=0.36D-09 -V/T= 2.0037 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGU) (SGG) (SGU) (SGG) (PIG) (PIU) (SGU) (SGG) (PIG) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) Virtual (PIG) (SGU) (SGG) (SGU) (PIU) (PIU) (PIG) (PIG) (SGU) (SGG) (?A) (PIU) (PIU) (?A) (?A) (?B) (?B) (PIG) (PIG) (?B) (SGU) (SGG) Unable to determine electronic state: partially filled degenerate orbitals. Alpha occ. eigenvalues -- -88.96152 -88.96151 -8.01562 -8.01559 -5.98127 Alpha occ. eigenvalues -- -5.98126 -5.98047 -5.98043 -5.96739 -5.96737 Alpha occ. eigenvalues -- -0.73754 -0.66453 -0.36018 -0.31507 -0.30860 Alpha occ. eigenvalues -- -0.25875 Alpha virt. eigenvalues -- -0.22672 -0.14743 0.25099 0.29153 0.31693 Alpha virt. eigenvalues -- 0.33312 0.36720 0.38145 0.40534 0.42132 Alpha virt. eigenvalues -- 0.65054 0.69182 0.71118 0.73251 0.73554 Alpha virt. eigenvalues -- 0.73863 0.73958 0.76552 0.78461 0.98314 Alpha virt. eigenvalues -- 3.79727 3.86488 Condensed to atoms (all electrons): 1 2 1 S 15.782326 0.217674 2 S 0.217674 15.782326 Mulliken charges: 1 1 S 0.000000 2 S 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 0.000000 2 S 0.000000 Electronic spatial extent (au): = 235.6555 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -29.2399 YY= -24.3027 ZZ= -23.2619 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -3.6384 YY= 1.2988 ZZ= 2.3396 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -41.0305 YYYY= -30.6621 ZZZZ= -248.5816 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -11.9487 XXZZ= -57.5212 YYZZ= -46.6623 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 5.418774615962D+01 E-N=-1.999926530871D+03 KE= 7.932776517560D+02 Symmetry AG KE= 3.226202865350D+02 Symmetry B1G KE= 2.115667195005D-35 Symmetry B2G KE= 3.904827141105D+01 Symmetry B3G KE= 3.504356399731D+01 Symmetry AU KE= 3.107944653032D-35 Symmetry B1U KE= 3.196086040564D+02 Symmetry B2U KE= 3.845050408397D+01 Symmetry B3U KE= 3.850642167237D+01 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: Title Card Required Storage needed: 4604 in NPA, 5913 in NBO ( 268435428 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 S 1 S Cor( 1S) 2.00000 -88.70741 2 S 1 S Cor( 2S) 1.99998 -8.17737 3 S 1 S Val( 3S) 1.96849 -0.77531 4 S 1 S Ryd( 4S) 0.00046 0.37318 5 S 1 S Ryd( 5S) 0.00000 3.82561 6 S 1 px Cor( 2p) 2.00000 -5.96725 7 S 1 px Val( 3p) 1.99900 -0.28336 8 S 1 px Ryd( 4p) 0.00031 0.36182 9 S 1 py Cor( 2p) 1.99999 -5.98109 10 S 1 py Val( 3p) 0.99930 -0.27041 11 S 1 py Ryd( 4p) 0.00005 0.34644 12 S 1 pz Cor( 2p) 1.99998 -5.98004 13 S 1 pz Val( 3p) 1.02778 -0.26736 14 S 1 pz Ryd( 4p) 0.00063 0.36467 15 S 1 dxy Ryd( 3d) 0.00000 0.73557 16 S 1 dxz Ryd( 3d) 0.00069 0.74292 17 S 1 dyz Ryd( 3d) 0.00067 0.72365 18 S 1 dx2y2 Ryd( 3d) 0.00022 0.73675 19 S 1 dz2 Ryd( 3d) 0.00245 0.76495 20 S 2 S Cor( 1S) 2.00000 -88.70741 21 S 2 S Cor( 2S) 1.99998 -8.17737 22 S 2 S Val( 3S) 1.96849 -0.77531 23 S 2 S Ryd( 4S) 0.00046 0.37318 24 S 2 S Ryd( 5S) 0.00000 3.82561 25 S 2 px Cor( 2p) 2.00000 -5.96725 26 S 2 px Val( 3p) 1.99900 -0.28336 27 S 2 px Ryd( 4p) 0.00031 0.36182 28 S 2 py Cor( 2p) 1.99999 -5.98109 29 S 2 py Val( 3p) 0.99930 -0.27041 30 S 2 py Ryd( 4p) 0.00005 0.34644 31 S 2 pz Cor( 2p) 1.99998 -5.98004 32 S 2 pz Val( 3p) 1.02778 -0.26736 33 S 2 pz Ryd( 4p) 0.00063 0.36467 34 S 2 dxy Ryd( 3d) 0.00000 0.73557 35 S 2 dxz Ryd( 3d) 0.00069 0.74292 36 S 2 dyz Ryd( 3d) 0.00067 0.72365 37 S 2 dx2y2 Ryd( 3d) 0.00022 0.73675 38 S 2 dz2 Ryd( 3d) 0.00245 0.76495 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- S 1 0.00000 9.99995 5.99457 0.00548 16.00000 S 2 0.00000 9.99995 5.99457 0.00548 16.00000 ======================================================================= * Total * 0.00000 19.99990 11.98914 0.01096 32.00000 Natural Population -------------------------------------------------------- Core 19.99990 ( 99.9995% of 20) Valence 11.98914 ( 99.9095% of 12) Natural Minimal Basis 31.98904 ( 99.9657% of 32) Natural Rydberg Basis 0.01096 ( 0.0343% of 32) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- S 1 [core]3S( 1.97)3p( 4.03) S 2 [core]3S( 1.97)3p( 4.03) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 31.99802 0.00198 10 2 0 4 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 19.99990 (100.000% of 20) Valence Lewis 11.99812 ( 99.984% of 12) ================== ============================ Total Lewis 31.99802 ( 99.994% of 32) ----------------------------------------------------- Valence non-Lewis 0.00004 ( 0.000% of 32) Rydberg non-Lewis 0.00194 ( 0.006% of 32) ================== ============================ Total non-Lewis 0.00198 ( 0.006% of 32) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (2.00000) BD ( 1) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 3.14%)p30.80( 96.63%)d 0.08( 0.24%) 0.0000 0.0000 -0.1759 0.0209 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9827 -0.0244 0.0000 0.0000 0.0000 0.0012 -0.0485 ( 50.00%) 0.7071* S 2 s( 3.14%)p30.80( 96.63%)d 0.08( 0.24%) 0.0000 0.0000 -0.1759 0.0209 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9827 0.0244 0.0000 0.0000 0.0000 0.0012 -0.0485 2. (2.00000) BD ( 2) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 0.00%)p 1.00( 99.93%)d 0.00( 0.07%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9996 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0258 0.0000 0.0000 ( 50.00%) 0.7071* S 2 s( 0.00%)p 1.00( 99.93%)d 0.00( 0.07%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9996 0.0067 0.0000 0.0000 0.0000 0.0000 0.0000 0.0258 0.0000 0.0000 3. (2.00000) CR ( 1) S 1 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4. (1.99998) CR ( 2) S 1 s(100.00%) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5. (2.00000) CR ( 3) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6. (1.99999) CR ( 4) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7. (1.99998) CR ( 5) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8. (2.00000) CR ( 1) S 2 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9. (1.99998) CR ( 2) S 2 s(100.00%) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10. (2.00000) CR ( 3) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11. (1.99999) CR ( 4) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12. (1.99998) CR ( 5) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13. (1.99989) LP ( 1) S 1 s( 96.88%)p 0.03( 3.11%)d 0.00( 0.01%) 0.0000 0.0000 0.9843 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1762 -0.0013 0.0000 0.0000 0.0000 -0.0105 0.0019 14. (1.99918) LP ( 2) S 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0089 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0032 0.0000 0.0000 0.0000 15. (1.99989) LP ( 1) S 2 s( 96.88%)p 0.03( 3.11%)d 0.00( 0.01%) 0.0000 0.0000 0.9843 0.0019 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1762 0.0013 0.0000 0.0000 0.0000 -0.0105 0.0019 16. (1.99918) LP ( 2) S 2 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0089 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0032 0.0000 0.0000 0.0000 17. (0.00082) RY*( 1) S 1 s( 0.00%)p 1.00( 18.42%)d 4.43( 81.58%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0009 0.4292 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9032 0.0000 0.0000 0.0000 18. (0.00012) RY*( 2) S 1 s( 9.11%)p 1.91( 17.38%)d 8.07( 73.51%) 0.0000 0.0000 0.0083 0.2993 -0.0382 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0369 0.4152 0.0000 0.0000 0.0000 -0.0004 -0.8574 19. (0.00002) RY*( 3) S 1 s( 21.51%)p 3.36( 72.24%)d 0.29( 6.25%) 20. (0.00000) RY*( 4) S 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 21. (0.00000) RY*( 5) S 1 s( 69.65%)p 0.15( 10.39%)d 0.29( 19.96%) 22. (0.00000) RY*( 6) S 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 23. (0.00000) RY*( 7) S 1 s( 99.70%)p 0.00( 0.25%)d 0.00( 0.05%) 24. (0.00000) RY*( 8) S 1 s( 0.00%)p 1.00( 0.07%)d99.99( 99.93%) 25. (0.00000) RY*( 9) S 1 s( 0.01%)p 0.51( 0.01%)d99.99( 99.98%) 26. (0.00000) RY*(10) S 1 s( 0.00%)p 1.00( 81.58%)d 0.23( 18.42%) 27. (0.00082) RY*( 1) S 2 s( 0.00%)p 1.00( 18.42%)d 4.43( 81.58%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 -0.4292 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9032 0.0000 0.0000 0.0000 28. (0.00012) RY*( 2) S 2 s( 9.11%)p 1.91( 17.38%)d 8.07( 73.51%) 0.0000 0.0000 0.0083 0.2993 -0.0382 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0369 -0.4152 0.0000 0.0000 0.0000 -0.0004 -0.8574 29. (0.00002) RY*( 3) S 2 s( 21.51%)p 3.36( 72.24%)d 0.29( 6.25%) 30. (0.00000) RY*( 4) S 2 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 31. (0.00000) RY*( 5) S 2 s( 69.65%)p 0.15( 10.39%)d 0.29( 19.96%) 32. (0.00000) RY*( 6) S 2 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 33. (0.00000) RY*( 7) S 2 s( 99.70%)p 0.00( 0.25%)d 0.00( 0.05%) 34. (0.00000) RY*( 8) S 2 s( 0.00%)p 1.00( 0.07%)d99.99( 99.93%) 35. (0.00000) RY*( 9) S 2 s( 0.01%)p 0.51( 0.01%)d99.99( 99.98%) 36. (0.00000) RY*(10) S 2 s( 0.00%)p 1.00( 81.58%)d 0.23( 18.42%) 37. (0.00002) BD*( 1) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 3.14%)p30.80( 96.63%)d 0.08( 0.24%) ( 50.00%) -0.7071* S 2 s( 3.14%)p30.80( 96.63%)d 0.08( 0.24%) 38. (0.00002) BD*( 2) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 0.00%)p 1.00( 99.93%)d 0.00( 0.07%) ( 50.00%) -0.7071* S 2 s( 0.00%)p 1.00( 99.93%)d 0.00( 0.07%) NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== 2. BD ( 2) S 1 - S 2 180.0 0.0 90.0 90.0 90.0 90.0 90.0 90.0 14. LP ( 2) S 1 -- -- 90.0 0.0 -- -- -- -- 16. LP ( 2) S 2 -- -- 90.0 0.0 -- -- -- -- Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 None above threshold Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (S2) 1. BD ( 1) S 1 - S 2 2.00000 -0.42055 2. BD ( 2) S 1 - S 2 2.00000 -0.31535 3. CR ( 1) S 1 2.00000 -88.70741 4. CR ( 2) S 1 1.99998 -8.17736 5. CR ( 3) S 1 2.00000 -5.96725 6. CR ( 4) S 1 1.99999 -5.98109 7. CR ( 5) S 1 1.99998 -5.98004 8. CR ( 1) S 2 2.00000 -88.70741 9. CR ( 2) S 2 1.99998 -8.17736 10. CR ( 3) S 2 2.00000 -5.96725 11. CR ( 4) S 2 1.99999 -5.98109 12. CR ( 5) S 2 1.99998 -5.98004 13. LP ( 1) S 1 1.99989 -0.76338 14. LP ( 2) S 1 1.99918 -0.28341 15. LP ( 1) S 2 1.99989 -0.76338 16. LP ( 2) S 2 1.99918 -0.28341 17. RY*( 1) S 1 0.00082 0.66252 18. RY*( 2) S 1 0.00012 0.63132 19. RY*( 3) S 1 0.00002 0.37805 20. RY*( 4) S 1 0.00000 0.34652 21. RY*( 5) S 1 0.00000 0.49814 22. RY*( 6) S 1 0.00000 0.73557 23. RY*( 7) S 1 0.00000 3.81789 24. RY*( 8) S 1 0.00000 0.72326 25. RY*( 9) S 1 0.00000 0.73684 26. RY*( 10) S 1 0.00000 0.44227 27. RY*( 1) S 2 0.00082 0.66252 28. RY*( 2) S 2 0.00012 0.63132 29. RY*( 3) S 2 0.00002 0.37805 30. RY*( 4) S 2 0.00000 0.34652 31. RY*( 5) S 2 0.00000 0.49814 32. RY*( 6) S 2 0.00000 0.73557 33. RY*( 7) S 2 0.00000 3.81789 34. RY*( 8) S 2 0.00000 0.72326 35. RY*( 9) S 2 0.00000 0.73684 36. RY*( 10) S 2 0.00000 0.44227 37. BD*( 1) S 1 - S 2 0.00002 -0.13221 38. BD*( 2) S 1 - S 2 0.00002 -0.22488 ------------------------------- Total Lewis 31.99802 ( 99.9938%) Valence non-Lewis 0.00004 ( 0.0001%) Rydberg non-Lewis 0.00194 ( 0.0061%) ------------------------------- Total unit 1 32.00000 (100.0000%) Charge unit 1 0.00000 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 -0.087855462 2 16 0.000000000 0.000000000 0.087855462 ------------------------------------------------------------------- Cartesian Forces: Max 0.087855462 RMS 0.050723374 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.087855462 RMS 0.087855462 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R1 0.09251 ITU= 0 Eigenvalues --- 0.09251 RFO step: Lambda=-5.30317765D-02 EMin= 9.25145852D-02 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.497 Iteration 1 RMS(Cart)= 0.14142136 RMS(Int)= 0.10000000 Iteration 2 RMS(Cart)= 0.07071068 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.18D-18 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.72432 -0.08786 0.00000 -0.30000 -0.30000 4.42432 Item Value Threshold Converged? Maximum Force 0.087855 0.000450 NO RMS Force 0.087855 0.000300 NO Maximum Displacement 0.150000 0.001800 NO RMS Displacement 0.212132 0.001200 NO Predicted change in Energy=-2.219348D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 1.170623 2 16 0 0.000000 0.000000 -1.170623 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 1.170623 2 16 0 0.000000 0.000000 -1.170623 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 5.7674257 5.7674257 Standard basis: 6-31G(d,p) (6D, 7F) There are 10 symmetry adapted cartesian basis functions of AG symmetry. There are 1 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 1 symmetry adapted cartesian basis functions of AU symmetry. There are 10 symmetry adapted cartesian basis functions of B1U symmetry. There are 4 symmetry adapted cartesian basis functions of B2U symmetry. There are 4 symmetry adapted cartesian basis functions of B3U symmetry. There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 4 symmetry adapted basis functions of B2U symmetry. There are 4 symmetry adapted basis functions of B3U symmetry. 38 basis functions, 104 primitive gaussians, 38 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 57.8620601782 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 38 RedAO= T EigKep= 2.13D-02 NBF= 10 1 4 4 1 10 4 4 NBsUse= 38 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 4 4 1 10 4 4 Initial guess from the checkpoint file: "H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGU) (SGG) (PIG) (PIU) (SGU) (SGG) (PIG) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (?A) Virtual (?B) (?B) (SGG) (?B) (SGG) (?B) (?A) (?A) (?A) (?A) (?A) (?C) (?C) (?C) (SGU) (SGU) (?C) (SGU) (PIU) (PIU) (PIU) (PIU) ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1164811. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -796.277817578 A.U. after 9 cycles NFock= 9 Conv=0.97D-08 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 -0.088779206 2 16 0.000000000 0.000000000 0.088779206 ------------------------------------------------------------------- Cartesian Forces: Max 0.088779206 RMS 0.051256698 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.088779206 RMS 0.088779206 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -2.67D-02 DEPred=-2.22D-02 R= 1.20D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0000D-01 Trust test= 1.20D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R1 -0.00308 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- -0.00308 RFO step: Lambda=-9.03321272D-02 EMin=-3.07914666D-03 Skip linear search -- no minimum in search direction. Maximum step size ( 0.505) exceeded in Quadratic search. -- Step size scaled by 0.505 Iteration 1 RMS(Cart)= 0.14142136 RMS(Int)= 0.30453785 Iteration 2 RMS(Cart)= 0.14142136 RMS(Int)= 0.10453785 Iteration 3 RMS(Cart)= 0.07391942 RMS(Int)= 0.00000000 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.54D-17 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.42432 -0.08878 0.00000 -0.50454 -0.50454 3.91978 Item Value Threshold Converged? Maximum Force 0.088779 0.000450 NO RMS Force 0.088779 0.000300 NO Maximum Displacement 0.252269 0.001800 NO RMS Displacement 0.356762 0.001200 NO Predicted change in Energy=-4.518438D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 1.037128 2 16 0 0.000000 0.000000 -1.037128 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 1.037128 2 16 0 0.000000 0.000000 -1.037128 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 7.3476984 7.3476984 Standard basis: 6-31G(d,p) (6D, 7F) There are 10 symmetry adapted cartesian basis functions of AG symmetry. There are 1 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 1 symmetry adapted cartesian basis functions of AU symmetry. There are 10 symmetry adapted cartesian basis functions of B1U symmetry. There are 4 symmetry adapted cartesian basis functions of B2U symmetry. There are 4 symmetry adapted cartesian basis functions of B3U symmetry. There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 4 symmetry adapted basis functions of B2U symmetry. There are 4 symmetry adapted basis functions of B3U symmetry. 38 basis functions, 104 primitive gaussians, 38 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 65.3098297304 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 38 RedAO= T EigKep= 2.12D-02 NBF= 10 1 4 4 1 10 4 4 NBsUse= 38 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 4 4 1 10 4 4 Initial guess from the checkpoint file: "H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGU) (SGG) (PIG) (PIU) (SGU) (SGG) (PIG) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (?A) Virtual (?B) (?B) (SGG) (?B) (SGG) (?B) (?A) (PIG) (?A) (?A) (PIG) (?C) (?C) (?C) (SGU) (?C) (?C) (SGU) (PIU) (PIU) (PIU) (PIU) ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1164811. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -796.317223984 A.U. after 10 cycles NFock= 10 Conv=0.82D-08 -V/T= 2.0034 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 -0.057019927 2 16 0.000000000 0.000000000 0.057019927 ------------------------------------------------------------------- Cartesian Forces: Max 0.057019927 RMS 0.032920470 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.057019927 RMS 0.057019927 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 DE= -3.94D-02 DEPred=-4.52D-02 R= 8.72D-01 TightC=F SS= 1.41D+00 RLast= 5.05D-01 DXNew= 8.4853D-01 1.5136D+00 Trust test= 8.72D-01 RLast= 5.05D-01 DXMaxT set to 8.49D-01 The second derivative matrix: R1 R1 0.06295 ITU= 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.06295 RFO step: Lambda= 0.00000000D+00 EMin= 6.29472661D-02 Quartic linear search produced a step of 0.57166. Iteration 1 RMS(Cart)= 0.14142136 RMS(Int)= 0.08842369 Iteration 2 RMS(Cart)= 0.06252499 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.83D-18 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.91978 -0.05702 -0.28842 0.00000 -0.28842 3.63135 Item Value Threshold Converged? Maximum Force 0.057020 0.000450 NO RMS Force 0.057020 0.000300 NO Maximum Displacement 0.144212 0.001800 NO RMS Displacement 0.203946 0.001200 NO Predicted change in Energy=-1.382766D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.960815 2 16 0 0.000000 0.000000 -0.960815 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.960815 2 16 0 0.000000 0.000000 -0.960815 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 8.5612470 8.5612470 Standard basis: 6-31G(d,p) (6D, 7F) There are 10 symmetry adapted cartesian basis functions of AG symmetry. There are 1 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 1 symmetry adapted cartesian basis functions of AU symmetry. There are 10 symmetry adapted cartesian basis functions of B1U symmetry. There are 4 symmetry adapted cartesian basis functions of B2U symmetry. There are 4 symmetry adapted cartesian basis functions of B3U symmetry. There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 4 symmetry adapted basis functions of B2U symmetry. There are 4 symmetry adapted basis functions of B3U symmetry. 38 basis functions, 104 primitive gaussians, 38 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 70.4971244611 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 38 RedAO= T EigKep= 2.03D-02 NBF= 10 1 4 4 1 10 4 4 NBsUse= 38 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 4 4 1 10 4 4 Initial guess from the checkpoint file: "H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGU) (PIG) (PIU) (SGG) (SGU) (PIG) (PIU) (SGG) (SGU) (SGG) (PIU) (PIU) (?A) Virtual (?B) (?B) (SGG) (?B) (SGG) (?B) (?A) (?A) (?A) (?A) (?A) (?C) (?C) (?C) (SGU) (?C) (?C) (SGU) (PIU) (PIU) (PIU) (PIU) ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1164811. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -796.325965329 A.U. after 10 cycles NFock= 10 Conv=0.15D-08 -V/T= 2.0031 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 0.004423510 2 16 0.000000000 0.000000000 -0.004423510 ------------------------------------------------------------------- Cartesian Forces: Max 0.004423510 RMS 0.002553915 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.004423510 RMS 0.004423510 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 3 4 DE= -8.74D-03 DEPred=-1.38D-02 R= 6.32D-01 TightC=F SS= 1.41D+00 RLast= 2.88D-01 DXNew= 1.4270D+00 8.6527D-01 Trust test= 6.32D-01 RLast= 2.88D-01 DXMaxT set to 8.65D-01 The second derivative matrix: R1 R1 0.21303 ITU= 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.21303 RFO step: Lambda= 0.00000000D+00 EMin= 2.13031864D-01 Quartic linear search produced a step of -0.05167. Iteration 1 RMS(Cart)= 0.01053835 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.56D-19 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.63135 0.00442 0.01490 0.00000 0.01490 3.64626 Item Value Threshold Converged? Maximum Force 0.004424 0.000450 NO RMS Force 0.004424 0.000300 NO Maximum Displacement 0.007452 0.001800 NO RMS Displacement 0.010538 0.001200 NO Predicted change in Energy=-4.226705D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.964758 2 16 0 0.000000 0.000000 -0.964758 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.964758 2 16 0 0.000000 0.000000 -0.964758 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 8.4914046 8.4914046 Standard basis: 6-31G(d,p) (6D, 7F) There are 10 symmetry adapted cartesian basis functions of AG symmetry. There are 1 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 1 symmetry adapted cartesian basis functions of AU symmetry. There are 10 symmetry adapted cartesian basis functions of B1U symmetry. There are 4 symmetry adapted cartesian basis functions of B2U symmetry. There are 4 symmetry adapted cartesian basis functions of B3U symmetry. There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 4 symmetry adapted basis functions of B2U symmetry. There are 4 symmetry adapted basis functions of B3U symmetry. 38 basis functions, 104 primitive gaussians, 38 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 70.2089789349 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 38 RedAO= T EigKep= 2.04D-02 NBF= 10 1 4 4 1 10 4 4 NBsUse= 38 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 4 4 1 10 4 4 Initial guess from the checkpoint file: "H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (?A) Virtual (?B) (?B) (SGG) (?B) (SGG) (?B) (?A) (?A) (?A) (?A) (?A) (?C) (?C) (SGU) (SGU) (?C) (?C) (SGU) (PIU) (PIU) (PIU) (PIU) Keep R1 ints in memory in symmetry-blocked form, NReq=1164811. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -796.325997790 A.U. after 7 cycles NFock= 7 Conv=0.58D-09 -V/T= 2.0031 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 -0.000039267 2 16 0.000000000 0.000000000 0.000039267 ------------------------------------------------------------------- Cartesian Forces: Max 0.000039267 RMS 0.000022671 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Internal Forces: Max 0.000039267 RMS 0.000039267 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 4 5 DE= -3.25D-05 DEPred=-4.23D-05 R= 7.68D-01 TightC=F SS= 1.41D+00 RLast= 1.49D-02 DXNew= 1.4552D+00 4.4710D-02 Trust test= 7.68D-01 RLast= 1.49D-02 DXMaxT set to 8.65D-01 The second derivative matrix: R1 R1 0.29945 ITU= 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.29945 RFO step: Lambda= 0.00000000D+00 EMin= 2.99445223D-01 Quartic linear search produced a step of -0.00897. Iteration 1 RMS(Cart)= 0.00009449 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.09D-21 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.64626 -0.00004 -0.00013 0.00000 -0.00013 3.64612 Item Value Threshold Converged? Maximum Force 0.000039 0.000450 YES RMS Force 0.000039 0.000300 YES Maximum Displacement 0.000067 0.001800 YES RMS Displacement 0.000094 0.001200 YES Predicted change in Energy=-2.573641D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.9295 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.964758 2 16 0 0.000000 0.000000 -0.964758 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.964758 2 16 0 0.000000 0.000000 -0.964758 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 8.4914046 8.4914046 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) Virtual (PIG) (SGU) (SGG) (SGG) (PIU) (SGU) (PIU) (PIG) (PIG) (SGU) (PIU) (PIU) (?A) (?A) (?A) (DLTU) (DLTU) (PIG) (PIG) (SGU) (SGG) (SGU) Unable to determine electronic state: partially filled degenerate orbitals. Alpha occ. eigenvalues -- -88.93664 -88.93662 -7.99779 -7.99770 -5.96350 Alpha occ. eigenvalues -- -5.96349 -5.96135 -5.96078 -5.94946 -5.94946 Alpha occ. eigenvalues -- -0.83210 -0.61536 -0.39516 -0.36283 -0.34958 Alpha occ. eigenvalues -- -0.21843 Alpha virt. eigenvalues -- -0.18464 -0.01308 0.22031 0.28201 0.32398 Alpha virt. eigenvalues -- 0.32720 0.34268 0.37359 0.38766 0.47622 Alpha virt. eigenvalues -- 0.56900 0.58846 0.70643 0.70693 0.76239 Alpha virt. eigenvalues -- 0.76645 0.76778 0.92619 0.94772 1.26461 Alpha virt. eigenvalues -- 3.75665 3.92229 Condensed to atoms (all electrons): 1 2 1 S 15.857888 0.142112 2 S 0.142112 15.857888 Mulliken charges: 1 1 S 0.000000 2 S 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 0.000000 2 S 0.000000 Electronic spatial extent (au): = 163.2633 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -28.4367 YY= -23.3784 ZZ= -24.7198 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.9250 YY= 2.1333 ZZ= 0.7918 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -39.1585 YYYY= -28.1734 ZZZZ= -163.2416 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -11.2219 XXZZ= -40.0166 YYZZ= -31.2223 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.020897893493D+01 E-N=-2.032718972357D+03 KE= 7.938286366150D+02 Symmetry AG KE= 3.231626342706D+02 Symmetry B1G KE= 6.505493284841D-35 Symmetry B2G KE= 3.912005932697D+01 Symmetry B3G KE= 3.502913415450D+01 Symmetry AU KE= 1.603285303233D-34 Symmetry B1U KE= 3.195445689815D+02 Symmetry B2U KE= 3.846349881999D+01 Symmetry B3U KE= 3.850874106143D+01 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: Title Card Required Storage needed: 4604 in NPA, 5913 in NBO ( 268435428 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 S 1 S Cor( 1S) 2.00000 -88.22385 2 S 1 S Cor( 2S) 1.99978 -8.54934 3 S 1 S Val( 3S) 1.87032 -0.79340 4 S 1 S Ryd( 4S) 0.00993 0.37294 5 S 1 S Ryd( 5S) 0.00000 3.79946 6 S 1 px Cor( 2p) 1.99999 -5.94862 7 S 1 px Val( 3p) 1.98727 -0.27998 8 S 1 px Ryd( 4p) 0.00681 0.36607 9 S 1 py Cor( 2p) 1.99995 -5.96255 10 S 1 py Val( 3p) 0.99418 -0.26906 11 S 1 py Ryd( 4p) 0.00001 0.34960 12 S 1 pz Cor( 2p) 1.99989 -5.95886 13 S 1 pz Val( 3p) 1.10353 -0.25857 14 S 1 pz Ryd( 4p) 0.00755 0.33939 15 S 1 dxy Ryd( 3d) 0.00000 0.73669 16 S 1 dxz Ryd( 3d) 0.00593 0.76232 17 S 1 dyz Ryd( 3d) 0.00586 0.74116 18 S 1 dx2y2 Ryd( 3d) 0.00024 0.73793 19 S 1 dz2 Ryd( 3d) 0.00877 0.95397 20 S 2 S Cor( 1S) 2.00000 -88.22385 21 S 2 S Cor( 2S) 1.99978 -8.54934 22 S 2 S Val( 3S) 1.87032 -0.79340 23 S 2 S Ryd( 4S) 0.00993 0.37294 24 S 2 S Ryd( 5S) 0.00000 3.79946 25 S 2 px Cor( 2p) 1.99999 -5.94862 26 S 2 px Val( 3p) 1.98727 -0.27998 27 S 2 px Ryd( 4p) 0.00681 0.36607 28 S 2 py Cor( 2p) 1.99995 -5.96255 29 S 2 py Val( 3p) 0.99418 -0.26906 30 S 2 py Ryd( 4p) 0.00001 0.34960 31 S 2 pz Cor( 2p) 1.99989 -5.95886 32 S 2 pz Val( 3p) 1.10353 -0.25857 33 S 2 pz Ryd( 4p) 0.00755 0.33939 34 S 2 dxy Ryd( 3d) 0.00000 0.73669 35 S 2 dxz Ryd( 3d) 0.00593 0.76232 36 S 2 dyz Ryd( 3d) 0.00586 0.74116 37 S 2 dx2y2 Ryd( 3d) 0.00024 0.73793 38 S 2 dz2 Ryd( 3d) 0.00877 0.95397 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- S 1 0.00000 9.99962 5.95529 0.04510 16.00000 S 2 0.00000 9.99962 5.95529 0.04510 16.00000 ======================================================================= * Total * 0.00000 19.99923 11.91057 0.09020 32.00000 Natural Population -------------------------------------------------------- Core 19.99923 ( 99.9962% of 20) Valence 11.91057 ( 99.2548% of 12) Natural Minimal Basis 31.90980 ( 99.7181% of 32) Natural Rydberg Basis 0.09020 ( 0.2819% of 32) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- S 1 [core]3S( 1.87)3p( 4.08)4S( 0.01)3d( 0.02)4p( 0.01) S 2 [core]3S( 1.87)3p( 4.08)4S( 0.01)3d( 0.02)4p( 0.01) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 31.98067 0.01933 10 2 0 4 0 0 0.04 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 19.99923 ( 99.996% of 20) Valence Lewis 11.98144 ( 99.845% of 12) ================== ============================ Total Lewis 31.98067 ( 99.940% of 32) ----------------------------------------------------- Valence non-Lewis 0.00019 ( 0.001% of 32) Rydberg non-Lewis 0.01913 ( 0.060% of 32) ================== ============================ Total non-Lewis 0.01933 ( 0.060% of 32) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (2.00000) BD ( 1) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9971 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0765 0.0000 0.0000 ( 50.00%) 0.7071* S 2 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9971 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765 0.0000 0.0000 2. (2.00000) BD ( 2) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9214 -0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 ( 50.00%) 0.7071* S 2 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9214 0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 3. (2.00000) CR ( 1) S 1 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4. (1.99978) CR ( 2) S 1 s(100.00%) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5. (1.99999) CR ( 3) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6. (1.99995) CR ( 4) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7. (1.99989) CR ( 5) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8. (2.00000) CR ( 1) S 2 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9. (1.99978) CR ( 2) S 2 s(100.00%) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10. (1.99999) CR ( 3) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11. (1.99995) CR ( 4) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12. (1.99989) CR ( 5) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13. (1.99971) LP ( 1) S 1 s( 87.24%)p 0.15( 12.73%)d 0.00( 0.02%) 0.0000 0.0000 0.9339 0.0182 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3568 -0.0062 0.0000 0.0000 0.0000 -0.0107 -0.0112 14. (1.99101) LP ( 2) S 1 s( 0.00%)p 1.00( 99.97%)d 0.00( 0.03%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.9991 0.0402 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0163 0.0000 0.0000 0.0000 15. (1.99971) LP ( 1) S 2 s( 87.24%)p 0.15( 12.73%)d 0.00( 0.02%) 0.0000 0.0000 0.9339 0.0182 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3568 0.0062 0.0000 0.0000 0.0000 -0.0107 -0.0112 16. (1.99101) LP ( 2) S 2 s( 0.00%)p 1.00( 99.97%)d 0.00( 0.03%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.9991 0.0402 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0163 0.0000 0.0000 0.0000 17. (0.00899) RY*( 1) S 1 s( 0.00%)p 1.00( 39.95%)d 1.50( 60.05%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0128 0.6319 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7749 0.0000 0.0000 0.0000 18. (0.00047) RY*( 2) S 1 s( 33.89%)p 1.90( 64.48%)d 0.05( 1.63%) 0.0000 0.0000 0.0330 0.5807 -0.0249 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1328 -0.7919 0.0000 0.0000 0.0000 0.0235 -0.1253 19. (0.00009) RY*( 3) S 1 s( 4.27%)p 0.12( 0.49%)d22.30( 95.24%) 20. (0.00000) RY*( 4) S 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 21. (0.00000) RY*( 5) S 1 s( 61.25%)p 0.60( 36.61%)d 0.04( 2.15%) 22. (0.00000) RY*( 6) S 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 23. (0.00000) RY*( 7) S 1 s( 99.79%)p 0.00( 0.04%)d 0.00( 0.17%) 24. (0.00000) RY*( 8) S 1 s( 0.00%)p 1.00( 0.59%)d99.99( 99.41%) 25. (0.00000) RY*( 9) S 1 s( 0.01%)p 3.10( 0.04%)d99.99( 99.95%) 26. (0.00000) RY*(10) S 1 s( 0.00%)p 1.00( 60.08%)d 0.66( 39.92%) 27. (0.00899) RY*( 1) S 2 s( 0.00%)p 1.00( 39.95%)d 1.50( 60.05%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0128 -0.6319 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7749 0.0000 0.0000 0.0000 28. (0.00047) RY*( 2) S 2 s( 33.89%)p 1.90( 64.48%)d 0.05( 1.63%) 0.0000 0.0000 0.0330 0.5807 -0.0249 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1328 0.7919 0.0000 0.0000 0.0000 0.0235 -0.1253 29. (0.00009) RY*( 3) S 2 s( 4.27%)p 0.12( 0.49%)d22.30( 95.24%) 30. (0.00000) RY*( 4) S 2 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 31. (0.00000) RY*( 5) S 2 s( 61.25%)p 0.60( 36.61%)d 0.04( 2.15%) 32. (0.00000) RY*( 6) S 2 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 33. (0.00000) RY*( 7) S 2 s( 99.79%)p 0.00( 0.04%)d 0.00( 0.17%) 34. (0.00000) RY*( 8) S 2 s( 0.00%)p 1.00( 0.59%)d99.99( 99.41%) 35. (0.00000) RY*( 9) S 2 s( 0.01%)p 3.10( 0.04%)d99.99( 99.95%) 36. (0.00000) RY*(10) S 2 s( 0.00%)p 1.00( 60.08%)d 0.66( 39.92%) 37. (0.00008) BD*( 1) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) ( 50.00%) -0.7071* S 2 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) 38. (0.00011) BD*( 2) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9214 -0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 ( 50.00%) -0.7071* S 2 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9214 0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== 1. BD ( 1) S 1 - S 2 180.0 0.0 90.0 90.0 90.0 90.0 90.0 90.0 14. LP ( 2) S 1 -- -- 90.0 0.0 -- -- -- -- 16. LP ( 2) S 2 -- -- 90.0 0.0 -- -- -- -- Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 4. CR ( 2) S 1 / 28. RY*( 2) S 2 1.20 8.90 0.092 9. CR ( 2) S 2 / 18. RY*( 2) S 1 1.20 8.90 0.092 13. LP ( 1) S 1 / 28. RY*( 2) S 2 0.54 1.10 0.022 14. LP ( 2) S 1 / 27. RY*( 1) S 2 4.84 0.85 0.057 15. LP ( 1) S 2 / 18. RY*( 2) S 1 0.54 1.10 0.022 16. LP ( 2) S 2 / 17. RY*( 1) S 1 4.84 0.85 0.057 Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (S2) 1. BD ( 1) S 1 - S 2 2.00000 -0.36444 2. BD ( 2) S 1 - S 2 2.00000 -0.66842 3. CR ( 1) S 1 2.00000 -88.22385 4. CR ( 2) S 1 1.99978 -8.54943 28(v) 5. CR ( 3) S 1 1.99999 -5.94861 6. CR ( 4) S 1 1.99995 -5.96255 7. CR ( 5) S 1 1.99989 -5.95886 8. CR ( 1) S 2 2.00000 -88.22385 9. CR ( 2) S 2 1.99978 -8.54943 18(v) 10. CR ( 3) S 2 1.99999 -5.94861 11. CR ( 4) S 2 1.99995 -5.96255 12. CR ( 5) S 2 1.99989 -5.95886 13. LP ( 1) S 1 1.99971 -0.74873 28(v) 14. LP ( 2) S 1 1.99101 -0.28099 27(v) 15. LP ( 1) S 2 1.99971 -0.74873 18(v) 16. LP ( 2) S 2 1.99101 -0.28099 17(v) 17. RY*( 1) S 1 0.00899 0.56938 18. RY*( 2) S 1 0.00047 0.35454 19. RY*( 3) S 1 0.00009 0.97933 20. RY*( 4) S 1 0.00000 0.34972 21. RY*( 5) S 1 0.00000 0.33430 22. RY*( 6) S 1 0.00000 0.73669 23. RY*( 7) S 1 0.00000 3.77260 24. RY*( 8) S 1 0.00000 0.73798 25. RY*( 9) S 1 0.00000 0.73711 26. RY*( 10) S 1 0.00000 0.56002 27. RY*( 1) S 2 0.00899 0.56938 28. RY*( 2) S 2 0.00047 0.35454 29. RY*( 3) S 2 0.00009 0.97933 30. RY*( 4) S 2 0.00000 0.34972 31. RY*( 5) S 2 0.00000 0.33430 32. RY*( 6) S 2 0.00000 0.73669 33. RY*( 7) S 2 0.00000 3.77260 34. RY*( 8) S 2 0.00000 0.73798 35. RY*( 9) S 2 0.00000 0.73711 36. RY*( 10) S 2 0.00000 0.56002 37. BD*( 1) S 1 - S 2 0.00008 -0.16754 38. BD*( 2) S 1 - S 2 0.00011 0.11372 ------------------------------- Total Lewis 31.98067 ( 99.9396%) Valence non-Lewis 0.00019 ( 0.0006%) Rydberg non-Lewis 0.01913 ( 0.0598%) ------------------------------- Total unit 1 32.00000 (100.0000%) Charge unit 1 0.00000 1|1| IMPERIAL COLLEGE-CHWS-118|FOpt|RB3LYP|6-31G(d,p)|S2|HB915|11-Mar- 2016|0||# opt freq b3lyp/6-31g(d,p) geom=connectivity integral=grid=ul trafine pop=nbo||Title Card Required||0,1|S,0.,0.,0.9647581225|S,0.,0. ,-0.9647581225||Version=EM64W-G09RevD.01|HF=-796.3259978|RMSD=5.835e-0 10|RMSF=2.267e-005|Dipole=0.,0.,0.|Quadrupole=-2.1746965,1.5860205,0.5 88676,0.,0.,0.|PG=D*H [C*(S1.S1)]||@ Sacred cows make the best hamburger. -- Mark Twain Job cpu time: 0 days 0 hours 0 minutes 24.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Fri Mar 11 13:53:16 2016. Link1: Proceeding to internal job step number 2. ---------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/6-31G(d,p) Freq ---------------------------------------------------------------------- 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=1,6=6,7=101,11=2,14=-4,16=1,25=1,30=1,70=2,71=2,74=-5,75=-5,116=1,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1,40=1/1,7; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_optf_pop.chk" ------------------- Title Card Required ------------------- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. S,0,0.,0.,0.9647581225 S,0,0.,0.,-0.9647581225 Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.9295 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.964758 2 16 0 0.000000 0.000000 -0.964758 --------------------------------------------------------------------- Stoichiometry S2 Framework group D*H[C*(S.S)] Deg. of freedom 1 Full point group D*H NOp 8 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 16 0 0.000000 0.000000 0.964758 2 16 0 0.000000 0.000000 -0.964758 --------------------------------------------------------------------- Rotational constants (GHZ): 0.0000000 8.4914046 8.4914046 Standard basis: 6-31G(d,p) (6D, 7F) There are 10 symmetry adapted cartesian basis functions of AG symmetry. There are 1 symmetry adapted cartesian basis functions of B1G symmetry. There are 4 symmetry adapted cartesian basis functions of B2G symmetry. There are 4 symmetry adapted cartesian basis functions of B3G symmetry. There are 1 symmetry adapted cartesian basis functions of AU symmetry. There are 10 symmetry adapted cartesian basis functions of B1U symmetry. There are 4 symmetry adapted cartesian basis functions of B2U symmetry. There are 4 symmetry adapted cartesian basis functions of B3U symmetry. There are 10 symmetry adapted basis functions of AG symmetry. There are 1 symmetry adapted basis functions of B1G symmetry. There are 4 symmetry adapted basis functions of B2G symmetry. There are 4 symmetry adapted basis functions of B3G symmetry. There are 1 symmetry adapted basis functions of AU symmetry. There are 10 symmetry adapted basis functions of B1U symmetry. There are 4 symmetry adapted basis functions of B2U symmetry. There are 4 symmetry adapted basis functions of B3U symmetry. 38 basis functions, 104 primitive gaussians, 38 cartesian basis functions 16 alpha electrons 16 beta electrons nuclear repulsion energy 70.2089789349 Hartrees. NAtoms= 2 NActive= 2 NUniq= 1 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 38 RedAO= T EigKep= 2.04D-02 NBF= 10 1 4 4 1 10 4 4 NBsUse= 38 1.00D-06 EigRej= -1.00D+00 NBFU= 10 1 4 4 1 10 4 4 Initial guess from the checkpoint file: "H:\1st Year\Labs\Computational\Molecular Modelling 2\3rdyearlab\HB915_s2_optf_pop.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) Virtual (PIG) (SGU) (SGG) (SGG) (PIU) (SGU) (PIU) (PIG) (PIG) (SGU) (PIU) (PIU) (?A) (?A) (?A) (DLTU) (DLTU) (PIG) (PIG) (SGU) (SGG) (SGU) Keep R1 ints in memory in symmetry-blocked form, NReq=1164811. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Skip diagonalization as Alpha Fock matrix is already diagonal. SCF Done: E(RB3LYP) = -796.325997790 A.U. after 1 cycles NFock= 1 Conv=0.00D+00 -V/T= 2.0031 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 38 NBasis= 38 NAE= 16 NBE= 16 NFC= 0 NFV= 0 NROrb= 38 NOA= 16 NOB= 16 NVA= 22 NVB= 22 **** Warning!!: The smallest alpha delta epsilon is 0.33794153D-01 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 3 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=11 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=1139318. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=4 NUNeed= 6. 6 vectors produced by pass 0 Test12= 5.87D-15 1.67D-08 XBig12= 1.32D+02 1.02D+01. AX will form 6 AO Fock derivatives at one time. 6 vectors produced by pass 1 Test12= 5.87D-15 1.67D-08 XBig12= 5.83D+01 3.58D+00. 6 vectors produced by pass 2 Test12= 5.87D-15 1.67D-08 XBig12= 1.35D+00 5.75D-01. 6 vectors produced by pass 3 Test12= 5.87D-15 1.67D-08 XBig12= 1.11D-02 4.28D-02. 6 vectors produced by pass 4 Test12= 5.87D-15 1.67D-08 XBig12= 5.17D-05 3.32D-03. 6 vectors produced by pass 5 Test12= 5.87D-15 1.67D-08 XBig12= 1.53D-07 1.09D-04. 3 vectors produced by pass 6 Test12= 5.87D-15 1.67D-08 XBig12= 7.06D-10 1.33D-05. 1 vectors produced by pass 7 Test12= 5.87D-15 1.67D-08 XBig12= 3.09D-12 9.82D-07. 1 vectors produced by pass 8 Test12= 5.87D-15 1.67D-08 XBig12= 2.49D-15 1.93D-08. InvSVY: IOpt=1 It= 1 EMax= 4.44D-16 Solved reduced A of dimension 41 with 6 vectors. Isotropic polarizability for W= 0.000000 26.48 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (SGU) (SGG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (PIU) (PIG) (SGG) (SGU) (SGG) (PIU) (PIU) (PIG) Virtual (PIG) (SGU) (SGG) (SGG) (PIU) (SGU) (PIU) (PIG) (PIG) (SGU) (PIU) (PIU) (?A) (?A) (?A) (DLTU) (DLTU) (PIG) (PIG) (SGU) (SGG) (SGU) Unable to determine electronic state: partially filled degenerate orbitals. Alpha occ. eigenvalues -- -88.93664 -88.93662 -7.99779 -7.99770 -5.96350 Alpha occ. eigenvalues -- -5.96349 -5.96135 -5.96078 -5.94946 -5.94946 Alpha occ. eigenvalues -- -0.83210 -0.61536 -0.39516 -0.36283 -0.34958 Alpha occ. eigenvalues -- -0.21843 Alpha virt. eigenvalues -- -0.18464 -0.01308 0.22031 0.28201 0.32398 Alpha virt. eigenvalues -- 0.32720 0.34268 0.37359 0.38766 0.47622 Alpha virt. eigenvalues -- 0.56900 0.58846 0.70643 0.70693 0.76239 Alpha virt. eigenvalues -- 0.76645 0.76778 0.92619 0.94772 1.26461 Alpha virt. eigenvalues -- 3.75665 3.92229 Condensed to atoms (all electrons): 1 2 1 S 15.857888 0.142112 2 S 0.142112 15.857888 Mulliken charges: 1 1 S 0.000000 2 S 0.000000 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 S 0.000000 2 S 0.000000 APT charges: 1 1 S 0.000000 2 S 0.000000 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 S 0.000000 2 S 0.000000 Electronic spatial extent (au): = 163.2633 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -28.4367 YY= -23.3784 ZZ= -24.7198 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -2.9250 YY= 2.1333 ZZ= 0.7918 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -39.1585 YYYY= -28.1734 ZZZZ= -163.2416 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -11.2219 XXZZ= -40.0166 YYZZ= -31.2223 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.020897893493D+01 E-N=-2.032718972357D+03 KE= 7.938286366150D+02 Symmetry AG KE= 3.231626342706D+02 Symmetry B1G KE= 6.505493284841D-35 Symmetry B2G KE= 3.912005932697D+01 Symmetry B3G KE= 3.502913415450D+01 Symmetry AU KE= 1.603285303233D-34 Symmetry B1U KE= 3.195445689815D+02 Symmetry B2U KE= 3.846349881998D+01 Symmetry B3U KE= 3.850874106143D+01 Exact polarizability: 15.339 0.000 15.149 0.000 0.000 48.967 Approx polarizability: 19.159 0.000 23.719 0.000 0.000 120.059 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: Title Card Required Storage needed: 4604 in NPA, 5913 in NBO ( 268435428 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 S 1 S Cor( 1S) 2.00000 -88.22385 2 S 1 S Cor( 2S) 1.99978 -8.54934 3 S 1 S Val( 3S) 1.87032 -0.79340 4 S 1 S Ryd( 4S) 0.00993 0.37294 5 S 1 S Ryd( 5S) 0.00000 3.79946 6 S 1 px Cor( 2p) 1.99999 -5.94862 7 S 1 px Val( 3p) 1.98727 -0.27998 8 S 1 px Ryd( 4p) 0.00681 0.36607 9 S 1 py Cor( 2p) 1.99995 -5.96255 10 S 1 py Val( 3p) 0.99418 -0.26906 11 S 1 py Ryd( 4p) 0.00001 0.34960 12 S 1 pz Cor( 2p) 1.99989 -5.95886 13 S 1 pz Val( 3p) 1.10353 -0.25857 14 S 1 pz Ryd( 4p) 0.00755 0.33939 15 S 1 dxy Ryd( 3d) 0.00000 0.73669 16 S 1 dxz Ryd( 3d) 0.00593 0.76232 17 S 1 dyz Ryd( 3d) 0.00586 0.74116 18 S 1 dx2y2 Ryd( 3d) 0.00024 0.73793 19 S 1 dz2 Ryd( 3d) 0.00877 0.95397 20 S 2 S Cor( 1S) 2.00000 -88.22385 21 S 2 S Cor( 2S) 1.99978 -8.54934 22 S 2 S Val( 3S) 1.87032 -0.79340 23 S 2 S Ryd( 4S) 0.00993 0.37294 24 S 2 S Ryd( 5S) 0.00000 3.79946 25 S 2 px Cor( 2p) 1.99999 -5.94862 26 S 2 px Val( 3p) 1.98727 -0.27998 27 S 2 px Ryd( 4p) 0.00681 0.36607 28 S 2 py Cor( 2p) 1.99995 -5.96255 29 S 2 py Val( 3p) 0.99418 -0.26906 30 S 2 py Ryd( 4p) 0.00001 0.34960 31 S 2 pz Cor( 2p) 1.99989 -5.95886 32 S 2 pz Val( 3p) 1.10353 -0.25857 33 S 2 pz Ryd( 4p) 0.00755 0.33939 34 S 2 dxy Ryd( 3d) 0.00000 0.73669 35 S 2 dxz Ryd( 3d) 0.00593 0.76232 36 S 2 dyz Ryd( 3d) 0.00586 0.74116 37 S 2 dx2y2 Ryd( 3d) 0.00024 0.73793 38 S 2 dz2 Ryd( 3d) 0.00877 0.95397 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- S 1 0.00000 9.99962 5.95529 0.04510 16.00000 S 2 0.00000 9.99962 5.95529 0.04510 16.00000 ======================================================================= * Total * 0.00000 19.99923 11.91057 0.09020 32.00000 Natural Population -------------------------------------------------------- Core 19.99923 ( 99.9962% of 20) Valence 11.91057 ( 99.2548% of 12) Natural Minimal Basis 31.90980 ( 99.7181% of 32) Natural Rydberg Basis 0.09020 ( 0.2819% of 32) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- S 1 [core]3S( 1.87)3p( 4.08)4S( 0.01)3d( 0.02)4p( 0.01) S 2 [core]3S( 1.87)3p( 4.08)4S( 0.01)3d( 0.02)4p( 0.01) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 31.98067 0.01933 10 2 0 4 0 0 0.04 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 19.99923 ( 99.996% of 20) Valence Lewis 11.98144 ( 99.845% of 12) ================== ============================ Total Lewis 31.98067 ( 99.940% of 32) ----------------------------------------------------- Valence non-Lewis 0.00019 ( 0.001% of 32) Rydberg non-Lewis 0.01913 ( 0.060% of 32) ================== ============================ Total non-Lewis 0.01933 ( 0.060% of 32) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (2.00000) BD ( 1) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9971 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0765 0.0000 0.0000 ( 50.00%) 0.7071* S 2 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9971 0.0025 0.0000 0.0000 0.0000 0.0000 0.0000 0.0765 0.0000 0.0000 2. (2.00000) BD ( 2) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9214 -0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 ( 50.00%) 0.7071* S 2 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9214 0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 3. (2.00000) CR ( 1) S 1 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 4. (1.99978) CR ( 2) S 1 s(100.00%) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5. (1.99999) CR ( 3) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 6. (1.99995) CR ( 4) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 7. (1.99989) CR ( 5) S 1 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 8. (2.00000) CR ( 1) S 2 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 9. (1.99978) CR ( 2) S 2 s(100.00%) 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 10. (1.99999) CR ( 3) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 11. (1.99995) CR ( 4) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 12. (1.99989) CR ( 5) S 2 s( 0.00%)p 1.00(100.00%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 13. (1.99971) LP ( 1) S 1 s( 87.24%)p 0.15( 12.73%)d 0.00( 0.02%) 0.0000 0.0000 0.9339 0.0182 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3568 -0.0062 0.0000 0.0000 0.0000 -0.0107 -0.0112 14. (1.99101) LP ( 2) S 1 s( 0.00%)p 1.00( 99.97%)d 0.00( 0.03%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.9991 0.0402 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0163 0.0000 0.0000 0.0000 15. (1.99971) LP ( 1) S 2 s( 87.24%)p 0.15( 12.73%)d 0.00( 0.02%) 0.0000 0.0000 0.9339 0.0182 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3568 0.0062 0.0000 0.0000 0.0000 -0.0107 -0.0112 16. (1.99101) LP ( 2) S 2 s( 0.00%)p 1.00( 99.97%)d 0.00( 0.03%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.9991 0.0402 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0163 0.0000 0.0000 0.0000 17. (0.00899) RY*( 1) S 1 s( 0.00%)p 1.00( 39.95%)d 1.50( 60.05%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.0128 0.6319 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7749 0.0000 0.0000 0.0000 18. (0.00047) RY*( 2) S 1 s( 33.89%)p 1.90( 64.48%)d 0.05( 1.63%) 0.0000 0.0000 0.0330 0.5807 -0.0249 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.1328 -0.7919 0.0000 0.0000 0.0000 0.0235 -0.1253 19. (0.00009) RY*( 3) S 1 s( 4.27%)p 0.12( 0.49%)d22.30( 95.24%) 20. (0.00000) RY*( 4) S 1 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 21. (0.00000) RY*( 5) S 1 s( 61.25%)p 0.60( 36.61%)d 0.04( 2.15%) 22. (0.00000) RY*( 6) S 1 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 23. (0.00000) RY*( 7) S 1 s( 99.79%)p 0.00( 0.04%)d 0.00( 0.17%) 24. (0.00000) RY*( 8) S 1 s( 0.00%)p 1.00( 0.59%)d99.99( 99.41%) 25. (0.00000) RY*( 9) S 1 s( 0.01%)p 3.10( 0.04%)d99.99( 99.95%) 26. (0.00000) RY*(10) S 1 s( 0.00%)p 1.00( 60.08%)d 0.66( 39.92%) 27. (0.00899) RY*( 1) S 2 s( 0.00%)p 1.00( 39.95%)d 1.50( 60.05%) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0128 -0.6319 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.7749 0.0000 0.0000 0.0000 28. (0.00047) RY*( 2) S 2 s( 33.89%)p 1.90( 64.48%)d 0.05( 1.63%) 0.0000 0.0000 0.0330 0.5807 -0.0249 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1328 0.7919 0.0000 0.0000 0.0000 0.0235 -0.1253 29. (0.00009) RY*( 3) S 2 s( 4.27%)p 0.12( 0.49%)d22.30( 95.24%) 30. (0.00000) RY*( 4) S 2 s( 0.00%)p 1.00(100.00%)d 0.00( 0.00%) 31. (0.00000) RY*( 5) S 2 s( 61.25%)p 0.60( 36.61%)d 0.04( 2.15%) 32. (0.00000) RY*( 6) S 2 s( 0.00%)p 0.00( 0.00%)d 1.00(100.00%) 33. (0.00000) RY*( 7) S 2 s( 99.79%)p 0.00( 0.04%)d 0.00( 0.17%) 34. (0.00000) RY*( 8) S 2 s( 0.00%)p 1.00( 0.59%)d99.99( 99.41%) 35. (0.00000) RY*( 9) S 2 s( 0.01%)p 3.10( 0.04%)d99.99( 99.95%) 36. (0.00000) RY*(10) S 2 s( 0.00%)p 1.00( 60.08%)d 0.66( 39.92%) 37. (0.00008) BD*( 1) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) ( 50.00%) -0.7071* S 2 s( 0.00%)p 1.00( 99.41%)d 0.01( 0.59%) 38. (0.00011) BD*( 2) S 1 - S 2 ( 50.00%) 0.7071* S 1 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.9214 -0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 ( 50.00%) -0.7071* S 2 s( 13.55%)p 6.32( 85.61%)d 0.06( 0.84%) 0.0000 0.0000 -0.3555 0.0954 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.9214 0.0847 0.0000 0.0000 0.0000 0.0036 -0.0918 NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== 1. BD ( 1) S 1 - S 2 180.0 0.0 90.0 90.0 90.0 90.0 90.0 90.0 14. LP ( 2) S 1 -- -- 90.0 0.0 -- -- -- -- 16. LP ( 2) S 2 -- -- 90.0 0.0 -- -- -- -- Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 4. CR ( 2) S 1 / 28. RY*( 2) S 2 1.20 8.90 0.092 9. CR ( 2) S 2 / 18. RY*( 2) S 1 1.20 8.90 0.092 13. LP ( 1) S 1 / 28. RY*( 2) S 2 0.54 1.10 0.022 14. LP ( 2) S 1 / 27. RY*( 1) S 2 4.84 0.85 0.057 15. LP ( 1) S 2 / 18. RY*( 2) S 1 0.54 1.10 0.022 16. LP ( 2) S 2 / 17. RY*( 1) S 1 4.84 0.85 0.057 Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (S2) 1. BD ( 1) S 1 - S 2 2.00000 -0.36444 2. BD ( 2) S 1 - S 2 2.00000 -0.66842 3. CR ( 1) S 1 2.00000 -88.22385 4. CR ( 2) S 1 1.99978 -8.54943 28(v) 5. CR ( 3) S 1 1.99999 -5.94861 6. CR ( 4) S 1 1.99995 -5.96255 7. CR ( 5) S 1 1.99989 -5.95886 8. CR ( 1) S 2 2.00000 -88.22385 9. CR ( 2) S 2 1.99978 -8.54943 18(v) 10. CR ( 3) S 2 1.99999 -5.94861 11. CR ( 4) S 2 1.99995 -5.96255 12. CR ( 5) S 2 1.99989 -5.95886 13. LP ( 1) S 1 1.99971 -0.74873 28(v) 14. LP ( 2) S 1 1.99101 -0.28099 27(v) 15. LP ( 1) S 2 1.99971 -0.74873 18(v) 16. LP ( 2) S 2 1.99101 -0.28099 17(v) 17. RY*( 1) S 1 0.00899 0.56938 18. RY*( 2) S 1 0.00047 0.35454 19. RY*( 3) S 1 0.00009 0.97933 20. RY*( 4) S 1 0.00000 0.34972 21. RY*( 5) S 1 0.00000 0.33430 22. RY*( 6) S 1 0.00000 0.73669 23. RY*( 7) S 1 0.00000 3.77260 24. RY*( 8) S 1 0.00000 0.73798 25. RY*( 9) S 1 0.00000 0.73711 26. RY*( 10) S 1 0.00000 0.56002 27. RY*( 1) S 2 0.00899 0.56938 28. RY*( 2) S 2 0.00047 0.35454 29. RY*( 3) S 2 0.00009 0.97933 30. RY*( 4) S 2 0.00000 0.34972 31. RY*( 5) S 2 0.00000 0.33430 32. RY*( 6) S 2 0.00000 0.73669 33. RY*( 7) S 2 0.00000 3.77260 34. RY*( 8) S 2 0.00000 0.73798 35. RY*( 9) S 2 0.00000 0.73711 36. RY*( 10) S 2 0.00000 0.56002 37. BD*( 1) S 1 - S 2 0.00008 -0.16754 38. BD*( 2) S 1 - S 2 0.00011 0.11372 ------------------------------- Total Lewis 31.98067 ( 99.9396%) Valence non-Lewis 0.00019 ( 0.0006%) Rydberg non-Lewis 0.01913 ( 0.0598%) ------------------------------- Total unit 1 32.00000 (100.0000%) Charge unit 1 0.00000 Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- -0.0067 -0.0008 -0.0008 4.2140 5.0855 696.8916 Diagonal vibrational polarizability: 0.0000000 0.0000000 0.0000000 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 SGG Frequencies -- 696.8916 Red. masses -- 31.9721 Frc consts -- 9.1485 IR Inten -- 0.0000 Atom AN X Y Z 1 16 0.00 0.00 0.71 2 16 0.00 0.00 -0.71 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 16 and mass 31.97207 Atom 2 has atomic number 16 and mass 31.97207 Molecular mass: 63.94414 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 0.00000 212.53742 212.53742 X 0.00000 1.00000 0.00000 Y 0.00000 0.00000 1.00000 Z 1.00000 0.00000 0.00000 This molecule is a prolate symmetric top. Rotational symmetry number 2. Rotational temperature (Kelvin) 0.40752 Rotational constant (GHZ): 8.491405 Zero-point vibrational energy 4168.3 (Joules/Mol) 0.99626 (Kcal/Mol) Vibrational temperatures: 1002.67 (Kelvin) Zero-point correction= 0.001588 (Hartree/Particle) Thermal correction to Energy= 0.004062 Thermal correction to Enthalpy= 0.005006 Thermal correction to Gibbs Free Energy= -0.019896 Sum of electronic and zero-point Energies= -796.324410 Sum of electronic and thermal Energies= -796.321936 Sum of electronic and thermal Enthalpies= -796.320992 Sum of electronic and thermal Free Energies= -796.345894 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 2.549 5.803 52.411 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 38.385 Rotational 0.592 1.987 13.716 Vibrational 1.068 0.835 0.310 Q Log10(Q) Ln(Q) Total Bot 0.141728D+10 9.151456 21.072007 Total V=0 0.761582D+10 9.881717 22.753493 Vib (Bot) 0.192773D+00 -0.714953 -1.646240 Vib (V=0) 0.103587D+01 0.015307 0.035246 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.200982D+08 7.303156 16.816139 Rotational 0.365808D+03 2.563253 5.902108 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 16 0.000000000 0.000000000 -0.000039267 2 16 0.000000000 0.000000000 0.000039267 ------------------------------------------------------------------- Cartesian Forces: Max 0.000039267 RMS 0.000022671 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000039267 RMS 0.000039267 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R1 0.29381 ITU= 0 Eigenvalues --- 0.29381 Angle between quadratic step and forces= 0.00 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00009450 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.09D-21 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.64626 -0.00004 0.00000 -0.00013 -0.00013 3.64612 Item Value Threshold Converged? Maximum Force 0.000039 0.000450 YES RMS Force 0.000039 0.000300 YES Maximum Displacement 0.000067 0.001800 YES RMS Displacement 0.000095 0.001200 YES Predicted change in Energy=-2.624039D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.9295 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1|1| IMPERIAL COLLEGE-CHWS-118|Freq|RB3LYP|6-31G(d,p)|S2|HB915|11-Mar- 2016|0||#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/6-31G(d ,p) Freq||Title Card Required||0,1|S,0.,0.,0.9647581225|S,0.,0.,-0.964 7581225||Version=EM64W-G09RevD.01|HF=-796.3259978|RMSD=0.000e+000|RMSF =2.267e-005|ZeroPoint=0.0015876|Thermal=0.004062|Dipole=0.,0.,0.|Dipol eDeriv=0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.,0.|Polar=15. 3390099,0.,15.1491207,0.,0.,48.966631|PG=D*H [C*(S1.S1)]|NImag=0||0.00 001565,0.,0.00001074,0.,0.,0.29380735,-0.00001565,0.,0.,0.00001565,0., -0.00001074,0.,0.,0.00001074,0.,0.,-0.29380735,0.,0.,0.29380735||0.,0. ,0.00003927,0.,0.,-0.00003927|||@ The number of Unix installations has grown to 10, with more expected. -- The Unix Programmer's Manual, 2nd Edition, June, 1972. Job cpu time: 0 days 0 hours 0 minutes 9.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Fri Mar 11 13:53:25 2016.