Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/106045/Gau-24714.inp" -scrdir="/home/scan-user-1/run/106045/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 24715. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 15-Feb-2015 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.8813608.cx1b/rwf ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; -------- PMe4 opt -------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 C 1.0487 1.0487 1.0487 H 1.6834 1.6834 0.4246 H 0.4246 1.6834 1.6834 H 1.6834 0.4246 1.6834 C -1.0487 -1.0487 1.0487 H -1.6834 -0.4246 1.6834 H -1.6834 -1.6834 0.4246 H -0.4246 -1.6834 1.6834 C 1.0487 -1.0487 -1.0487 H 0.4246 -1.6834 -1.6834 H 1.6834 -0.4246 -1.6834 H 1.6834 -1.6834 -0.4246 C -1.0487 1.0487 -1.0487 H -1.6834 1.6834 -0.4246 H -0.4246 1.6834 -1.6834 H -1.6834 0.4246 -1.6834 P 0. 0. 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0932 estimate D2E/DX2 ! ! R2 R(1,3) 1.0932 estimate D2E/DX2 ! ! R3 R(1,4) 1.0932 estimate D2E/DX2 ! ! R4 R(1,17) 1.8164 estimate D2E/DX2 ! ! R5 R(5,6) 1.0932 estimate D2E/DX2 ! ! R6 R(5,7) 1.0932 estimate D2E/DX2 ! ! R7 R(5,8) 1.0932 estimate D2E/DX2 ! ! R8 R(5,17) 1.8164 estimate D2E/DX2 ! ! R9 R(9,10) 1.0932 estimate D2E/DX2 ! ! R10 R(9,11) 1.0932 estimate D2E/DX2 ! ! R11 R(9,12) 1.0932 estimate D2E/DX2 ! ! R12 R(9,17) 1.8164 estimate D2E/DX2 ! ! R13 R(13,14) 1.0932 estimate D2E/DX2 ! ! R14 R(13,15) 1.0932 estimate D2E/DX2 ! ! R15 R(13,16) 1.0932 estimate D2E/DX2 ! ! R16 R(13,17) 1.8164 estimate D2E/DX2 ! ! A1 A(2,1,3) 109.0138 estimate D2E/DX2 ! ! A2 A(2,1,4) 109.0138 estimate D2E/DX2 ! ! A3 A(2,1,17) 109.9248 estimate D2E/DX2 ! ! A4 A(3,1,4) 109.0138 estimate D2E/DX2 ! ! A5 A(3,1,17) 109.9248 estimate D2E/DX2 ! ! A6 A(4,1,17) 109.9248 estimate D2E/DX2 ! ! A7 A(6,5,7) 109.0138 estimate D2E/DX2 ! ! A8 A(6,5,8) 109.0138 estimate D2E/DX2 ! ! A9 A(6,5,17) 109.9248 estimate D2E/DX2 ! ! A10 A(7,5,8) 109.0138 estimate D2E/DX2 ! ! A11 A(7,5,17) 109.9248 estimate D2E/DX2 ! ! A12 A(8,5,17) 109.9248 estimate D2E/DX2 ! ! A13 A(10,9,11) 109.0138 estimate D2E/DX2 ! ! A14 A(10,9,12) 109.0138 estimate D2E/DX2 ! ! A15 A(10,9,17) 109.9248 estimate D2E/DX2 ! ! A16 A(11,9,12) 109.0138 estimate D2E/DX2 ! ! A17 A(11,9,17) 109.9248 estimate D2E/DX2 ! ! A18 A(12,9,17) 109.9248 estimate D2E/DX2 ! ! A19 A(14,13,15) 109.0138 estimate D2E/DX2 ! ! A20 A(14,13,16) 109.0138 estimate D2E/DX2 ! ! A21 A(14,13,17) 109.9248 estimate D2E/DX2 ! ! A22 A(15,13,16) 109.0138 estimate D2E/DX2 ! ! A23 A(15,13,17) 109.9248 estimate D2E/DX2 ! ! A24 A(16,13,17) 109.9248 estimate D2E/DX2 ! ! A25 A(1,17,5) 109.4712 estimate D2E/DX2 ! ! A26 A(1,17,9) 109.4712 estimate D2E/DX2 ! ! A27 A(1,17,13) 109.4712 estimate D2E/DX2 ! ! A28 A(5,17,9) 109.4712 estimate D2E/DX2 ! ! A29 A(5,17,13) 109.4712 estimate D2E/DX2 ! ! A30 A(9,17,13) 109.4712 estimate D2E/DX2 ! ! D1 D(2,1,17,5) 180.0 estimate D2E/DX2 ! ! D2 D(2,1,17,9) 60.0 estimate D2E/DX2 ! ! D3 D(2,1,17,13) -60.0 estimate D2E/DX2 ! ! D4 D(3,1,17,5) -60.0 estimate D2E/DX2 ! ! D5 D(3,1,17,9) 180.0 estimate D2E/DX2 ! ! D6 D(3,1,17,13) 60.0 estimate D2E/DX2 ! ! D7 D(4,1,17,5) 60.0 estimate D2E/DX2 ! ! D8 D(4,1,17,9) -60.0 estimate D2E/DX2 ! ! D9 D(4,1,17,13) 180.0 estimate D2E/DX2 ! ! D10 D(6,5,17,1) 60.0 estimate D2E/DX2 ! ! D11 D(6,5,17,9) 180.0 estimate D2E/DX2 ! ! D12 D(6,5,17,13) -60.0 estimate D2E/DX2 ! ! D13 D(7,5,17,1) 180.0 estimate D2E/DX2 ! ! D14 D(7,5,17,9) -60.0 estimate D2E/DX2 ! ! D15 D(7,5,17,13) 60.0 estimate D2E/DX2 ! ! D16 D(8,5,17,1) -60.0 estimate D2E/DX2 ! ! D17 D(8,5,17,9) 60.0 estimate D2E/DX2 ! ! D18 D(8,5,17,13) 180.0 estimate D2E/DX2 ! ! D19 D(10,9,17,1) 180.0 estimate D2E/DX2 ! ! D20 D(10,9,17,5) 60.0 estimate D2E/DX2 ! ! D21 D(10,9,17,13) -60.0 estimate D2E/DX2 ! ! D22 D(11,9,17,1) -60.0 estimate D2E/DX2 ! ! D23 D(11,9,17,5) 180.0 estimate D2E/DX2 ! ! D24 D(11,9,17,13) 60.0 estimate D2E/DX2 ! ! D25 D(12,9,17,1) 60.0 estimate D2E/DX2 ! ! D26 D(12,9,17,5) -60.0 estimate D2E/DX2 ! ! D27 D(12,9,17,13) 180.0 estimate D2E/DX2 ! ! D28 D(14,13,17,1) -60.0 estimate D2E/DX2 ! ! D29 D(14,13,17,5) 60.0 estimate D2E/DX2 ! ! D30 D(14,13,17,9) 180.0 estimate D2E/DX2 ! ! D31 D(15,13,17,1) 60.0 estimate D2E/DX2 ! ! D32 D(15,13,17,5) 180.0 estimate D2E/DX2 ! ! D33 D(15,13,17,9) -60.0 estimate D2E/DX2 ! ! D34 D(16,13,17,1) 180.0 estimate D2E/DX2 ! ! D35 D(16,13,17,5) -60.0 estimate D2E/DX2 ! ! D36 D(16,13,17,9) 60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048700 1.048700 1.048700 2 1 0 1.683400 1.683400 0.424600 3 1 0 0.424600 1.683400 1.683400 4 1 0 1.683400 0.424600 1.683400 5 6 0 -1.048700 -1.048700 1.048700 6 1 0 -1.683400 -0.424600 1.683400 7 1 0 -1.683400 -1.683400 0.424600 8 1 0 -0.424600 -1.683400 1.683400 9 6 0 1.048700 -1.048700 -1.048700 10 1 0 0.424600 -1.683400 -1.683400 11 1 0 1.683400 -0.424600 -1.683400 12 1 0 1.683400 -1.683400 -0.424600 13 6 0 -1.048700 1.048700 -1.048700 14 1 0 -1.683400 1.683400 -0.424600 15 1 0 -0.424600 1.683400 -1.683400 16 1 0 -1.683400 0.424600 -1.683400 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093247 0.000000 3 H 1.093247 1.780212 0.000000 4 H 1.093247 1.780212 1.780212 0.000000 5 C 2.966172 3.913853 3.168253 3.168253 0.000000 6 H 3.168253 4.166963 2.981162 3.472245 1.093247 7 H 3.913853 4.761374 4.166963 4.166963 1.093247 8 H 3.168253 4.166963 3.472245 2.981162 1.093247 9 C 2.966172 3.168253 3.913853 3.168253 2.966172 10 H 3.913853 4.166963 4.761374 4.166963 3.168253 11 H 3.168253 2.981162 4.166963 3.472245 3.913853 12 H 3.168253 3.472245 4.166963 2.981162 3.168253 13 C 2.966172 3.168253 3.168253 3.913853 2.966172 14 H 3.168253 3.472245 2.981162 4.166963 3.168253 15 H 3.168253 2.981162 3.472245 4.166963 3.913853 16 H 3.913853 4.166963 4.166963 4.761374 3.168253 17 P 1.816402 2.418255 2.418255 2.418255 1.816402 6 7 8 9 10 6 H 0.000000 7 H 1.780212 0.000000 8 H 1.780212 1.780212 0.000000 9 C 3.913853 3.168253 3.168253 0.000000 10 H 4.166963 2.981162 3.472245 1.093247 0.000000 11 H 4.761374 4.166963 4.166963 1.093247 1.780212 12 H 4.166963 3.472245 2.981162 1.093247 1.780212 13 C 3.168253 3.168253 3.913853 2.966172 3.168253 14 H 2.981162 3.472245 4.166963 3.913853 4.166963 15 H 4.166963 4.166963 4.761374 3.168253 3.472245 16 H 3.472245 2.981162 4.166963 3.168253 2.981162 17 P 2.418255 2.418255 2.418255 1.816402 2.418255 11 12 13 14 15 11 H 0.000000 12 H 1.780212 0.000000 13 C 3.168253 3.913853 0.000000 14 H 4.166963 4.761374 1.093247 0.000000 15 H 2.981162 4.166963 1.093247 1.780212 0.000000 16 H 3.472245 4.166963 1.093247 1.780212 1.780212 17 P 2.418255 2.418255 1.816402 2.418255 2.418255 16 17 16 H 0.000000 17 P 2.418255 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048700 1.048700 1.048700 2 1 0 1.683400 1.683400 0.424600 3 1 0 0.424600 1.683400 1.683400 4 1 0 1.683400 0.424600 1.683400 5 6 0 -1.048700 -1.048700 1.048700 6 1 0 -1.683400 -0.424600 1.683400 7 1 0 -1.683400 -1.683400 0.424600 8 1 0 -0.424600 -1.683400 1.683400 9 6 0 1.048700 -1.048700 -1.048700 10 1 0 0.424600 -1.683400 -1.683400 11 1 0 1.683400 -0.424600 -1.683400 12 1 0 1.683400 -1.683400 -0.424600 13 6 0 -1.048700 1.048700 -1.048700 14 1 0 -1.683400 1.683400 -0.424600 15 1 0 -0.424600 1.683400 -1.683400 16 1 0 -1.683400 0.424600 -1.683400 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3090174 3.3090174 3.3090174 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6818506917 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284081. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030366 A.U. after 10 cycles NFock= 10 Conv=0.33D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34284 -10.37611 -10.37611 -10.37611 -10.37610 Alpha occ. eigenvalues -- -6.80826 -4.96980 -4.96980 -4.96980 -0.99276 Alpha occ. eigenvalues -- -0.89087 -0.89087 -0.89087 -0.73300 -0.63376 Alpha occ. eigenvalues -- -0.63376 -0.63376 -0.60228 -0.60228 -0.57878 Alpha occ. eigenvalues -- -0.57878 -0.57878 -0.53928 -0.53928 -0.53928 Alpha virt. eigenvalues -- -0.11004 -0.11004 -0.11004 -0.10154 -0.05100 Alpha virt. eigenvalues -- -0.04126 -0.04126 -0.03824 -0.03824 -0.03824 Alpha virt. eigenvalues -- 0.00638 0.00638 0.00638 0.02558 0.02558 Alpha virt. eigenvalues -- 0.02558 0.19722 0.19722 0.19722 0.24759 Alpha virt. eigenvalues -- 0.24759 0.29674 0.43578 0.43578 0.43578 Alpha virt. eigenvalues -- 0.46736 0.46736 0.46736 0.47402 0.56966 Alpha virt. eigenvalues -- 0.56966 0.57688 0.57688 0.57688 0.68548 Alpha virt. eigenvalues -- 0.68548 0.68548 0.69740 0.69740 0.69740 Alpha virt. eigenvalues -- 0.71110 0.71620 0.71620 0.71620 0.74112 Alpha virt. eigenvalues -- 0.74112 0.81619 0.81619 0.81619 1.09572 Alpha virt. eigenvalues -- 1.09572 1.09572 1.22825 1.22825 1.22825 Alpha virt. eigenvalues -- 1.23838 1.30724 1.30724 1.50577 1.50577 Alpha virt. eigenvalues -- 1.50577 1.75112 1.85231 1.85231 1.85231 Alpha virt. eigenvalues -- 1.85329 1.87434 1.87434 1.88009 1.88009 Alpha virt. eigenvalues -- 1.88009 1.93278 1.93278 1.93278 1.96541 Alpha virt. eigenvalues -- 1.96541 1.96541 2.14688 2.14688 2.14688 Alpha virt. eigenvalues -- 2.19115 2.19115 2.19115 2.19418 2.19418 Alpha virt. eigenvalues -- 2.41964 2.47508 2.47508 2.47508 2.61145 Alpha virt. eigenvalues -- 2.61145 2.65376 2.65376 2.65376 2.67396 Alpha virt. eigenvalues -- 2.67396 2.67396 2.95842 3.00669 3.00669 Alpha virt. eigenvalues -- 3.00669 3.22467 3.22467 3.22467 3.24341 Alpha virt. eigenvalues -- 3.24341 3.25164 3.25164 3.25164 3.34972 Alpha virt. eigenvalues -- 4.26250 4.27344 4.27344 4.27344 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.135666 0.377523 0.377523 0.377523 -0.032265 -0.001795 2 H 0.377523 0.484047 -0.016359 -0.016359 0.001668 0.000006 3 H 0.377523 -0.016359 0.484047 -0.016359 -0.001795 0.000785 4 H 0.377523 -0.016359 -0.016359 0.484047 -0.001795 -0.000137 5 C -0.032265 0.001668 -0.001795 -0.001795 5.135666 0.377523 6 H -0.001795 0.000006 0.000785 -0.000137 0.377523 0.484047 7 H 0.001668 -0.000029 0.000006 0.000006 0.377523 -0.016359 8 H -0.001795 0.000006 -0.000137 0.000785 0.377523 -0.016359 9 C -0.032265 -0.001795 0.001668 -0.001795 -0.032265 0.001668 10 H 0.001668 0.000006 -0.000029 0.000006 -0.001795 0.000006 11 H -0.001795 0.000785 0.000006 -0.000137 0.001668 -0.000029 12 H -0.001795 -0.000137 0.000006 0.000785 -0.001795 0.000006 13 C -0.032265 -0.001795 -0.001795 0.001668 -0.032265 -0.001795 14 H -0.001795 -0.000137 0.000785 0.000006 -0.001795 0.000785 15 H -0.001795 0.000785 -0.000137 0.000006 0.001668 0.000006 16 H 0.001668 0.000006 0.000006 -0.000029 -0.001795 -0.000137 17 P 0.345277 -0.021442 -0.021442 -0.021442 0.345277 -0.021442 7 8 9 10 11 12 1 C 0.001668 -0.001795 -0.032265 0.001668 -0.001795 -0.001795 2 H -0.000029 0.000006 -0.001795 0.000006 0.000785 -0.000137 3 H 0.000006 -0.000137 0.001668 -0.000029 0.000006 0.000006 4 H 0.000006 0.000785 -0.001795 0.000006 -0.000137 0.000785 5 C 0.377523 0.377523 -0.032265 -0.001795 0.001668 -0.001795 6 H -0.016359 -0.016359 0.001668 0.000006 -0.000029 0.000006 7 H 0.484047 -0.016359 -0.001795 0.000785 0.000006 -0.000137 8 H -0.016359 0.484047 -0.001795 -0.000137 0.000006 0.000785 9 C -0.001795 -0.001795 5.135666 0.377523 0.377523 0.377523 10 H 0.000785 -0.000137 0.377523 0.484047 -0.016359 -0.016359 11 H 0.000006 0.000006 0.377523 -0.016359 0.484047 -0.016359 12 H -0.000137 0.000785 0.377523 -0.016359 -0.016359 0.484047 13 C -0.001795 0.001668 -0.032265 -0.001795 -0.001795 0.001668 14 H -0.000137 0.000006 0.001668 0.000006 0.000006 -0.000029 15 H 0.000006 -0.000029 -0.001795 -0.000137 0.000785 0.000006 16 H 0.000785 0.000006 -0.001795 0.000785 -0.000137 0.000006 17 P -0.021442 -0.021442 0.345277 -0.021442 -0.021442 -0.021442 13 14 15 16 17 1 C -0.032265 -0.001795 -0.001795 0.001668 0.345277 2 H -0.001795 -0.000137 0.000785 0.000006 -0.021442 3 H -0.001795 0.000785 -0.000137 0.000006 -0.021442 4 H 0.001668 0.000006 0.000006 -0.000029 -0.021442 5 C -0.032265 -0.001795 0.001668 -0.001795 0.345277 6 H -0.001795 0.000785 0.000006 -0.000137 -0.021442 7 H -0.001795 -0.000137 0.000006 0.000785 -0.021442 8 H 0.001668 0.000006 -0.000029 0.000006 -0.021442 9 C -0.032265 0.001668 -0.001795 -0.001795 0.345277 10 H -0.001795 0.000006 -0.000137 0.000785 -0.021442 11 H -0.001795 0.000006 0.000785 -0.000137 -0.021442 12 H 0.001668 -0.000029 0.000006 0.000006 -0.021442 13 C 5.135666 0.377523 0.377523 0.377523 0.345277 14 H 0.377523 0.484047 -0.016359 -0.016359 -0.021442 15 H 0.377523 -0.016359 0.484047 -0.016359 -0.021442 16 H 0.377523 -0.016359 -0.016359 0.484047 -0.021442 17 P 0.345277 -0.021442 -0.021442 -0.021442 13.151076 Mulliken charges: 1 1 C -0.510949 2 H 0.193223 3 H 0.193223 4 H 0.193223 5 C -0.510949 6 H 0.193223 7 H 0.193223 8 H 0.193223 9 C -0.510949 10 H 0.193223 11 H 0.193223 12 H 0.193223 13 C -0.510949 14 H 0.193223 15 H 0.193223 16 H 0.193223 17 P 0.725120 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C 0.068720 5 C 0.068720 9 C 0.068720 13 C 0.068720 17 P 0.725120 Electronic spatial extent (au): = 603.1032 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2641 YY= -31.2641 ZZ= -31.2641 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9834 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.8495 YYYY= -246.8495 ZZZZ= -246.8495 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.3980 XXZZ= -74.3980 YYZZ= -74.3980 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626818506917D+02 E-N=-1.693581102692D+03 KE= 4.978548497233D+02 Symmetry A KE= 2.853341356894D+02 Symmetry B1 KE= 7.084023801129D+01 Symmetry B2 KE= 7.084023801129D+01 Symmetry B3 KE= 7.084023801129D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000032994 -0.000032994 -0.000032994 2 1 0.000018281 0.000018281 -0.000005686 3 1 -0.000005686 0.000018281 0.000018281 4 1 0.000018281 -0.000005686 0.000018281 5 6 0.000032994 0.000032994 -0.000032994 6 1 -0.000018281 0.000005686 0.000018281 7 1 -0.000018281 -0.000018281 -0.000005686 8 1 0.000005686 -0.000018281 0.000018281 9 6 -0.000032994 0.000032994 0.000032994 10 1 -0.000005686 -0.000018281 -0.000018281 11 1 0.000018281 0.000005686 -0.000018281 12 1 0.000018281 -0.000018281 0.000005686 13 6 0.000032994 -0.000032994 0.000032994 14 1 -0.000018281 0.000018281 0.000005686 15 1 0.000005686 0.000018281 -0.000018281 16 1 -0.000018281 -0.000005686 -0.000018281 17 15 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000032994 RMS 0.000020519 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000024472 RMS 0.000010935 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00947 0.00947 0.00947 0.00947 0.05321 Eigenvalues --- 0.05321 0.05321 0.06103 0.06103 0.06103 Eigenvalues --- 0.06103 0.06103 0.06103 0.06103 0.06103 Eigenvalues --- 0.14692 0.14692 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24866 Eigenvalues --- 0.24866 0.24866 0.24866 0.34440 0.34440 Eigenvalues --- 0.34440 0.34440 0.34440 0.34440 0.34440 Eigenvalues --- 0.34440 0.34440 0.34440 0.34440 0.34440 RFO step: Lambda=-3.71116686D-08 EMin= 9.47289430D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00005199 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.37D-08 for atom 7. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R2 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R3 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R4 3.43250 0.00000 0.00000 -0.00001 -0.00001 3.43249 R5 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R6 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R7 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R8 3.43250 0.00000 0.00000 -0.00001 -0.00001 3.43249 R9 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R10 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R11 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R12 3.43250 0.00000 0.00000 -0.00001 -0.00001 3.43249 R13 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R14 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R15 2.06594 0.00002 0.00000 0.00007 0.00007 2.06601 R16 3.43250 0.00000 0.00000 -0.00001 -0.00001 3.43249 A1 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A2 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A3 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A4 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A5 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A6 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A7 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A8 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A9 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A10 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A11 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A12 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A13 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A14 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A15 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A16 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A17 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A18 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A19 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A20 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A21 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A22 1.90265 -0.00001 0.00000 -0.00007 -0.00007 1.90259 A23 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A24 1.91855 0.00001 0.00000 0.00006 0.00006 1.91861 A25 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A26 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A27 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A28 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A29 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A30 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D8 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D15 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D16 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D17 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D26 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D28 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D29 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D30 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D31 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D32 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D33 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D34 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D35 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D36 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 Item Value Threshold Converged? Maximum Force 0.000024 0.000450 YES RMS Force 0.000011 0.000300 YES Maximum Displacement 0.000086 0.001800 YES RMS Displacement 0.000052 0.001200 YES Predicted change in Energy=-1.855583D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0932 -DE/DX = 0.0 ! ! R2 R(1,3) 1.0932 -DE/DX = 0.0 ! ! R3 R(1,4) 1.0932 -DE/DX = 0.0 ! ! R4 R(1,17) 1.8164 -DE/DX = 0.0 ! ! R5 R(5,6) 1.0932 -DE/DX = 0.0 ! ! R6 R(5,7) 1.0932 -DE/DX = 0.0 ! ! R7 R(5,8) 1.0932 -DE/DX = 0.0 ! ! R8 R(5,17) 1.8164 -DE/DX = 0.0 ! ! R9 R(9,10) 1.0932 -DE/DX = 0.0 ! ! R10 R(9,11) 1.0932 -DE/DX = 0.0 ! ! R11 R(9,12) 1.0932 -DE/DX = 0.0 ! ! R12 R(9,17) 1.8164 -DE/DX = 0.0 ! ! R13 R(13,14) 1.0932 -DE/DX = 0.0 ! ! R14 R(13,15) 1.0932 -DE/DX = 0.0 ! ! R15 R(13,16) 1.0932 -DE/DX = 0.0 ! ! R16 R(13,17) 1.8164 -DE/DX = 0.0 ! ! A1 A(2,1,3) 109.0138 -DE/DX = 0.0 ! ! A2 A(2,1,4) 109.0138 -DE/DX = 0.0 ! ! A3 A(2,1,17) 109.9248 -DE/DX = 0.0 ! ! A4 A(3,1,4) 109.0138 -DE/DX = 0.0 ! ! A5 A(3,1,17) 109.9248 -DE/DX = 0.0 ! ! A6 A(4,1,17) 109.9248 -DE/DX = 0.0 ! ! A7 A(6,5,7) 109.0138 -DE/DX = 0.0 ! ! A8 A(6,5,8) 109.0138 -DE/DX = 0.0 ! ! A9 A(6,5,17) 109.9248 -DE/DX = 0.0 ! ! A10 A(7,5,8) 109.0138 -DE/DX = 0.0 ! ! A11 A(7,5,17) 109.9248 -DE/DX = 0.0 ! ! A12 A(8,5,17) 109.9248 -DE/DX = 0.0 ! ! A13 A(10,9,11) 109.0138 -DE/DX = 0.0 ! ! A14 A(10,9,12) 109.0138 -DE/DX = 0.0 ! ! A15 A(10,9,17) 109.9248 -DE/DX = 0.0 ! ! A16 A(11,9,12) 109.0138 -DE/DX = 0.0 ! ! A17 A(11,9,17) 109.9248 -DE/DX = 0.0 ! ! A18 A(12,9,17) 109.9248 -DE/DX = 0.0 ! ! A19 A(14,13,15) 109.0138 -DE/DX = 0.0 ! ! A20 A(14,13,16) 109.0138 -DE/DX = 0.0 ! ! A21 A(14,13,17) 109.9248 -DE/DX = 0.0 ! ! A22 A(15,13,16) 109.0138 -DE/DX = 0.0 ! ! A23 A(15,13,17) 109.9248 -DE/DX = 0.0 ! ! A24 A(16,13,17) 109.9248 -DE/DX = 0.0 ! ! A25 A(1,17,5) 109.4712 -DE/DX = 0.0 ! ! A26 A(1,17,9) 109.4712 -DE/DX = 0.0 ! ! A27 A(1,17,13) 109.4712 -DE/DX = 0.0 ! ! A28 A(5,17,9) 109.4712 -DE/DX = 0.0 ! ! A29 A(5,17,13) 109.4712 -DE/DX = 0.0 ! ! A30 A(9,17,13) 109.4712 -DE/DX = 0.0 ! ! D1 D(2,1,17,5) 180.0 -DE/DX = 0.0 ! ! D2 D(2,1,17,9) 60.0 -DE/DX = 0.0 ! ! D3 D(2,1,17,13) -60.0 -DE/DX = 0.0 ! ! D4 D(3,1,17,5) -60.0 -DE/DX = 0.0 ! ! D5 D(3,1,17,9) 180.0 -DE/DX = 0.0 ! ! D6 D(3,1,17,13) 60.0 -DE/DX = 0.0 ! ! D7 D(4,1,17,5) 60.0 -DE/DX = 0.0 ! ! D8 D(4,1,17,9) -60.0 -DE/DX = 0.0 ! ! D9 D(4,1,17,13) 180.0 -DE/DX = 0.0 ! ! D10 D(6,5,17,1) 60.0 -DE/DX = 0.0 ! ! D11 D(6,5,17,9) 180.0 -DE/DX = 0.0 ! ! D12 D(6,5,17,13) -60.0 -DE/DX = 0.0 ! ! D13 D(7,5,17,1) 180.0 -DE/DX = 0.0 ! ! D14 D(7,5,17,9) -60.0 -DE/DX = 0.0 ! ! D15 D(7,5,17,13) 60.0 -DE/DX = 0.0 ! ! D16 D(8,5,17,1) -60.0 -DE/DX = 0.0 ! ! D17 D(8,5,17,9) 60.0 -DE/DX = 0.0 ! ! D18 D(8,5,17,13) 180.0 -DE/DX = 0.0 ! ! D19 D(10,9,17,1) 180.0 -DE/DX = 0.0 ! ! D20 D(10,9,17,5) 60.0 -DE/DX = 0.0 ! ! D21 D(10,9,17,13) -60.0 -DE/DX = 0.0 ! ! D22 D(11,9,17,1) -60.0 -DE/DX = 0.0 ! ! D23 D(11,9,17,5) 180.0 -DE/DX = 0.0 ! ! D24 D(11,9,17,13) 60.0 -DE/DX = 0.0 ! ! D25 D(12,9,17,1) 60.0 -DE/DX = 0.0 ! ! D26 D(12,9,17,5) -60.0 -DE/DX = 0.0 ! ! D27 D(12,9,17,13) 180.0 -DE/DX = 0.0 ! ! D28 D(14,13,17,1) -60.0 -DE/DX = 0.0 ! ! D29 D(14,13,17,5) 60.0 -DE/DX = 0.0 ! ! D30 D(14,13,17,9) 180.0 -DE/DX = 0.0 ! ! D31 D(15,13,17,1) 60.0 -DE/DX = 0.0 ! ! D32 D(15,13,17,5) 180.0 -DE/DX = 0.0 ! ! D33 D(15,13,17,9) -60.0 -DE/DX = 0.0 ! ! D34 D(16,13,17,1) 180.0 -DE/DX = 0.0 ! ! D35 D(16,13,17,5) -60.0 -DE/DX = 0.0 ! ! D36 D(16,13,17,9) 60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048700 1.048700 1.048700 2 1 0 1.683400 1.683400 0.424600 3 1 0 0.424600 1.683400 1.683400 4 1 0 1.683400 0.424600 1.683400 5 6 0 -1.048700 -1.048700 1.048700 6 1 0 -1.683400 -0.424600 1.683400 7 1 0 -1.683400 -1.683400 0.424600 8 1 0 -0.424600 -1.683400 1.683400 9 6 0 1.048700 -1.048700 -1.048700 10 1 0 0.424600 -1.683400 -1.683400 11 1 0 1.683400 -0.424600 -1.683400 12 1 0 1.683400 -1.683400 -0.424600 13 6 0 -1.048700 1.048700 -1.048700 14 1 0 -1.683400 1.683400 -0.424600 15 1 0 -0.424600 1.683400 -1.683400 16 1 0 -1.683400 0.424600 -1.683400 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.093247 0.000000 3 H 1.093247 1.780212 0.000000 4 H 1.093247 1.780212 1.780212 0.000000 5 C 2.966172 3.913853 3.168253 3.168253 0.000000 6 H 3.168253 4.166963 2.981162 3.472245 1.093247 7 H 3.913853 4.761374 4.166963 4.166963 1.093247 8 H 3.168253 4.166963 3.472245 2.981162 1.093247 9 C 2.966172 3.168253 3.913853 3.168253 2.966172 10 H 3.913853 4.166963 4.761374 4.166963 3.168253 11 H 3.168253 2.981162 4.166963 3.472245 3.913853 12 H 3.168253 3.472245 4.166963 2.981162 3.168253 13 C 2.966172 3.168253 3.168253 3.913853 2.966172 14 H 3.168253 3.472245 2.981162 4.166963 3.168253 15 H 3.168253 2.981162 3.472245 4.166963 3.913853 16 H 3.913853 4.166963 4.166963 4.761374 3.168253 17 P 1.816402 2.418255 2.418255 2.418255 1.816402 6 7 8 9 10 6 H 0.000000 7 H 1.780212 0.000000 8 H 1.780212 1.780212 0.000000 9 C 3.913853 3.168253 3.168253 0.000000 10 H 4.166963 2.981162 3.472245 1.093247 0.000000 11 H 4.761374 4.166963 4.166963 1.093247 1.780212 12 H 4.166963 3.472245 2.981162 1.093247 1.780212 13 C 3.168253 3.168253 3.913853 2.966172 3.168253 14 H 2.981162 3.472245 4.166963 3.913853 4.166963 15 H 4.166963 4.166963 4.761374 3.168253 3.472245 16 H 3.472245 2.981162 4.166963 3.168253 2.981162 17 P 2.418255 2.418255 2.418255 1.816402 2.418255 11 12 13 14 15 11 H 0.000000 12 H 1.780212 0.000000 13 C 3.168253 3.913853 0.000000 14 H 4.166963 4.761374 1.093247 0.000000 15 H 2.981162 4.166963 1.093247 1.780212 0.000000 16 H 3.472245 4.166963 1.093247 1.780212 1.780212 17 P 2.418255 2.418255 1.816402 2.418255 2.418255 16 17 16 H 0.000000 17 P 2.418255 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.048700 1.048700 1.048700 2 1 0 1.683400 1.683400 0.424600 3 1 0 0.424600 1.683400 1.683400 4 1 0 1.683400 0.424600 1.683400 5 6 0 -1.048700 -1.048700 1.048700 6 1 0 -1.683400 -0.424600 1.683400 7 1 0 -1.683400 -1.683400 0.424600 8 1 0 -0.424600 -1.683400 1.683400 9 6 0 1.048700 -1.048700 -1.048700 10 1 0 0.424600 -1.683400 -1.683400 11 1 0 1.683400 -0.424600 -1.683400 12 1 0 1.683400 -1.683400 -0.424600 13 6 0 -1.048700 1.048700 -1.048700 14 1 0 -1.683400 1.683400 -0.424600 15 1 0 -0.424600 1.683400 -1.683400 16 1 0 -1.683400 0.424600 -1.683400 17 15 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3090174 3.3090174 3.3090174 1\1\GINC-CX1-29-15-2\FOpt\RB3LYP\6-31G(d,p)\C4H12P1(1+)\SCAN-USER-1\15 -Feb-2015\0\\# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ul trafine\\PMe4 opt\\1,1\C,1.0487,1.0487,1.0487\H,1.6834,1.6834,0.4246\H ,0.4246,1.6834,1.6834\H,1.6834,0.4246,1.6834\C,-1.0487,-1.0487,1.0487\ H,-1.6834,-0.4246,1.6834\H,-1.6834,-1.6834,0.4246\H,-0.4246,-1.6834,1. 6834\C,1.0487,-1.0487,-1.0487\H,0.4246,-1.6834,-1.6834\H,1.6834,-0.424 6,-1.6834\H,1.6834,-1.6834,-0.4246\C,-1.0487,1.0487,-1.0487\H,-1.6834, 1.6834,-0.4246\H,-0.4246,1.6834,-1.6834\H,-1.6834,0.4246,-1.6834\P,0., 0.,0.\\Version=ES64L-G09RevD.01\State=1-A1\HF=-500.8270304\RMSD=3.348e -09\RMSF=2.052e-05\Dipole=0.,0.,0.\Quadrupole=0.,0.,0.,0.,0.,0.\PG=TD [O(P1),4C3(C1),6SGD(H2)]\\@ IF THERE IS ONE WAY BETTER THAN ANOTHER IT IS THE WAY OF NATURE. -- ARISTOTLE Job cpu time: 0 days 0 hours 0 minutes 24.1 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 2 Normal termination of Gaussian 09 at Sun Feb 15 21:59:11 2015.