Entering Link 1 = C:\G03W\l1.exe PID= 3292. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 14-Dec-2009 ****************************************** %chk=C:\g03W\Scratch\FinalChairOpt.chk %mem=6MW %nproc=1 Will use up to 1 processors via shared memory. -------------------------------------- # opt b3lyp/6-31g(d) geom=connectivity -------------------------------------- 1/14=-1,18=20,26=3,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99//99; 2/9=110/2; 3/5=1,6=6,7=1,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; --------------- Final Chair Opt --------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C H 1 B1 C 1 B2 2 A1 H 3 B3 1 A2 2 D1 0 H 3 B4 1 A3 2 D2 0 C 1 B5 3 A4 5 D3 0 H 6 B6 1 A5 3 D4 0 H 6 B7 1 A6 3 D5 0 H 3 B8 1 A7 6 D6 0 C 3 B9 1 A8 6 D7 0 C 10 B10 3 A9 1 D8 0 H 10 B11 3 A10 1 D9 0 H 11 B12 10 A11 3 D10 0 C 11 B13 10 A12 3 D11 0 H 14 B14 11 A13 10 D12 0 H 14 B15 11 A14 10 D13 0 Variables: B1 1.07586 B2 1.38924 B3 1.07602 B4 1.07426 B5 1.3892 B6 1.07602 B7 1.07426 B8 2.45715 B9 2.02073 B10 1.38924 B11 1.07426 B12 1.07585 B13 1.3892 B14 1.07602 B15 1.07425 A1 118.19259 A2 119.00477 A3 118.87962 A4 120.49217 A5 119.00669 A6 118.88044 A7 127.3314 A8 101.85253 A9 101.8532 A10 96.43448 A11 118.19285 A12 120.4915 A13 119.00688 A14 118.87999 D1 18.07001 D2 164.5098 D3 -35.81367 D4 -177.74809 D5 35.8075 D6 67.30606 D7 68.45883 D8 -54.9777 D9 66.37371 D10 -91.2175 D11 68.45874 D12 -177.74847 D13 35.80713 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0759 estimate D2E/DX2 ! ! R2 R(1,3) 1.3892 estimate D2E/DX2 ! ! R3 R(1,6) 1.3892 estimate D2E/DX2 ! ! R4 R(3,4) 1.076 estimate D2E/DX2 ! ! R5 R(3,5) 1.0743 estimate D2E/DX2 ! ! R6 R(3,9) 2.4571 estimate D2E/DX2 ! ! R7 R(3,10) 2.0207 estimate D2E/DX2 ! ! R8 R(3,12) 2.3925 estimate D2E/DX2 ! ! R9 R(4,10) 2.4571 estimate D2E/DX2 ! ! R10 R(5,10) 2.3925 estimate D2E/DX2 ! ! R11 R(6,7) 1.076 estimate D2E/DX2 ! ! R12 R(6,8) 1.0743 estimate D2E/DX2 ! ! R13 R(6,14) 2.0207 estimate D2E/DX2 ! ! R14 R(6,15) 2.4571 estimate D2E/DX2 ! ! R15 R(6,16) 2.3924 estimate D2E/DX2 ! ! R16 R(7,14) 2.4571 estimate D2E/DX2 ! ! R17 R(8,14) 2.3924 estimate D2E/DX2 ! ! R18 R(9,10) 1.076 estimate D2E/DX2 ! ! R19 R(10,11) 1.3892 estimate D2E/DX2 ! ! R20 R(10,12) 1.0743 estimate D2E/DX2 ! ! R21 R(11,13) 1.0759 estimate D2E/DX2 ! ! R22 R(11,14) 1.3892 estimate D2E/DX2 ! ! R23 R(14,15) 1.076 estimate D2E/DX2 ! ! R24 R(14,16) 1.0743 estimate D2E/DX2 ! ! A1 A(2,1,3) 118.1926 estimate D2E/DX2 ! ! A2 A(2,1,6) 118.1945 estimate D2E/DX2 ! ! A3 A(3,1,6) 120.4922 estimate D2E/DX2 ! ! A4 A(1,3,4) 119.0048 estimate D2E/DX2 ! ! A5 A(1,3,5) 118.8796 estimate D2E/DX2 ! ! A6 A(4,3,5) 113.8267 estimate D2E/DX2 ! ! A7 A(1,6,7) 119.0067 estimate D2E/DX2 ! ! A8 A(1,6,8) 118.8804 estimate D2E/DX2 ! ! A9 A(7,6,8) 113.8266 estimate D2E/DX2 ! ! A10 A(9,10,11) 119.0049 estimate D2E/DX2 ! ! A11 A(9,10,12) 113.8268 estimate D2E/DX2 ! ! A12 A(11,10,12) 118.8792 estimate D2E/DX2 ! ! A13 A(10,11,13) 118.1929 estimate D2E/DX2 ! ! A14 A(10,11,14) 120.4915 estimate D2E/DX2 ! ! A15 A(13,11,14) 118.1948 estimate D2E/DX2 ! ! A16 A(11,14,15) 119.0069 estimate D2E/DX2 ! ! A17 A(11,14,16) 118.88 estimate D2E/DX2 ! ! A18 A(15,14,16) 113.8268 estimate D2E/DX2 ! ! D1 D(2,1,3,4) 18.07 estimate D2E/DX2 ! ! D2 D(2,1,3,5) 164.5098 estimate D2E/DX2 ! ! D3 D(6,1,3,4) 177.7465 estimate D2E/DX2 ! ! D4 D(6,1,3,5) -35.8137 estimate D2E/DX2 ! ! D5 D(2,1,6,7) -18.072 estimate D2E/DX2 ! ! D6 D(2,1,6,8) -164.5164 estimate D2E/DX2 ! ! D7 D(3,1,6,7) -177.7481 estimate D2E/DX2 ! ! D8 D(3,1,6,8) 35.8075 estimate D2E/DX2 ! ! D9 D(9,10,11,13) 18.0706 estimate D2E/DX2 ! ! D10 D(9,10,11,14) 177.7468 estimate D2E/DX2 ! ! D11 D(12,10,11,13) 164.5101 estimate D2E/DX2 ! ! D12 D(12,10,11,14) -35.8137 estimate D2E/DX2 ! ! D13 D(10,11,14,15) -177.7485 estimate D2E/DX2 ! ! D14 D(10,11,14,16) 35.8071 estimate D2E/DX2 ! ! D15 D(13,11,14,15) -18.0726 estimate D2E/DX2 ! ! D16 D(13,11,14,16) -164.517 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 68 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 1.075855 3 6 0 1.224423 0.000000 -0.656326 4 1 0 2.106933 -0.291898 -0.114305 5 1 0 1.253447 -0.251226 -1.700394 6 6 0 -1.151613 0.415766 -0.656350 7 1 0 -2.080847 0.440880 -0.114396 8 1 0 -1.264154 0.189413 -1.700439 9 1 0 2.499543 1.952106 -1.431514 10 6 0 1.570374 1.977204 -0.889450 11 6 0 0.418668 2.392978 -1.545714 12 1 0 1.683023 2.203634 0.154614 13 1 0 0.418610 2.392992 -2.621569 14 6 0 -0.805661 2.392941 -0.889291 15 1 0 -1.688246 2.684860 -1.431182 16 1 0 -0.834585 2.644036 0.154806 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 H 1.075855 0.000000 3 C 1.389236 2.121241 0.000000 4 H 2.130126 2.437387 1.076019 0.000000 5 H 2.127342 3.056437 1.074260 1.801603 0.000000 6 C 1.389197 2.121228 2.412138 3.378273 2.705406 7 H 2.130114 2.437416 3.378295 4.251408 3.756583 8 H 2.127312 3.056432 2.705377 3.756556 2.555871 9 H 3.479607 4.042936 2.457146 2.631489 2.545530 10 C 2.677038 3.199662 2.020733 2.457147 2.392482 11 C 2.879385 3.574109 2.677050 3.479617 2.777156 12 H 2.777135 2.921858 2.392476 2.545525 3.106756 13 H 3.574111 4.424092 3.199676 4.042950 2.921884 14 C 2.676956 3.199540 3.146693 4.036356 3.448105 15 H 3.479501 4.042757 4.036399 4.999864 4.164928 16 H 2.776945 2.921607 3.447952 4.164692 4.022957 6 7 8 9 10 6 C 0.000000 7 H 1.076021 0.000000 8 H 1.074255 1.801599 0.000000 9 H 4.036355 4.999858 4.164712 0.000000 10 C 3.146687 4.036386 3.447963 1.076019 0.000000 11 C 2.676961 3.479502 2.776964 2.130129 1.389236 12 H 3.448086 4.164899 4.022955 1.801603 1.074258 13 H 3.199548 4.042764 2.921632 2.437395 2.121244 14 C 2.020684 2.457051 2.392428 3.378271 2.412132 15 H 2.457057 2.631256 2.545507 4.251412 3.378292 16 H 2.392419 2.545493 3.106709 3.756539 2.705358 11 12 13 14 15 11 C 0.000000 12 H 2.127337 0.000000 13 H 1.075855 3.056434 0.000000 14 C 1.389199 2.705388 2.121232 0.000000 15 H 2.130117 3.756565 2.437426 1.076020 0.000000 16 H 2.127309 2.555837 3.056432 1.074255 1.801600 16 16 H 0.000000 Stoichiometry C6H10 Framework group C1[X(C6H10)] Deg. of freedom 42 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -1.412655 -0.000072 -0.277690 2 1 0 -1.804273 -0.000113 -1.279738 3 6 0 -0.977233 1.206058 0.256758 4 1 0 -1.300699 2.125648 -0.198809 5 1 0 -0.823018 1.277982 1.317456 6 6 0 -0.977119 -1.206080 0.256839 7 1 0 -1.300490 -2.125760 -0.198616 8 1 0 -0.822796 -1.277889 1.317524 9 1 0 1.300579 2.125719 0.198796 10 6 0 0.977163 1.206106 -0.256759 11 6 0 1.412661 0.000004 0.277693 12 1 0 0.822939 1.278008 -1.317455 13 1 0 1.804282 -0.000014 1.279739 14 6 0 0.977184 -1.206026 -0.256838 15 1 0 1.300610 -2.125693 0.198605 16 1 0 0.822855 -1.277829 -1.317522 --------------------------------------------------------------------- Rotational constants (GHZ): 4.5911857 4.0329395 2.4715661 Standard basis: 6-31G(d) (6D, 7F) There are 110 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 110 basis functions, 208 primitive gaussians, 110 cartesian basis functions 23 alpha electrons 23 beta electrons nuclear repulsion energy 231.7571120016 Hartrees. NAtoms= 16 NActive= 16 NUniq= 16 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 110 RedAO= T NBF= 110 NBsUse= 110 1.00D-06 NBFU= 110