Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 6452. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 16-Oct-2014 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\am2912\Desktop\3rdyearlab\AM_Br_PP_LANL2DZdp.chk Default route: MaxDisk=10GB ------------------------------------------------- # opt=tight b3lyp/lanl2dz integral=grid=ultrafine ------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=6,6=3,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=6,6=3,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------- Br lanl2dz ---------- Symbolic Z-matrix: Charge = 0 Multiplicity = 2 Br -0.06557 -1.42623 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. No Z-matrix variables, so optimization will use Cartesian coordinates. Trust Radius=1.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 -0.065574 -1.426229 0.000000 --------------------------------------------------------------------- Stoichiometry Br(2) Framework group OH[O(Br)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: LANL2DZ (5D, 7F) There are 2 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 0 symmetry adapted cartesian basis functions of B2G symmetry. There are 0 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 2 symmetry adapted cartesian basis functions of B1U symmetry. There are 2 symmetry adapted cartesian basis functions of B2U symmetry. There are 2 symmetry adapted cartesian basis functions of B3U symmetry. There are 2 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 0 symmetry adapted basis functions of B2G symmetry. There are 0 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 2 symmetry adapted basis functions of B1U symmetry. There are 2 symmetry adapted basis functions of B2U symmetry. There are 2 symmetry adapted basis functions of B3U symmetry. 8 basis functions, 12 primitive gaussians, 8 cartesian basis functions 4 alpha electrons 3 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 10 NPrTT= 23 LenC2= 11 LenP2D= 23. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 8 RedAO= T EigKep= 7.87D-01 NBF= 2 0 0 0 0 2 2 2 NBsUse= 8 1.00D-06 EigRej= -1.00D+00 NBFU= 2 0 0 0 0 2 2 2 ExpMin= 1.38D-01 ExpMax= 2.69D+00 ExpMxC= 2.69D+00 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) (T1U) (T1U) (T1U) Virtual (T1U) (T1U) (T1U) (A1G) Beta Orbitals: Occupied (A1G) (T1U) (T1U) Virtual (T1U) (T1U) (T1U) (T1U) (A1G) Initial guess = 0.0000 = 0.0000 = 0.5000 = 0.7500 S= 0.5000 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=875081. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. SCF Done: E(UB3LYP) = -13.1304465869 A.U. after 8 cycles NFock= 8 Conv=0.60D-08 -V/T= 4.0755 = 0.0000 = 0.0000 = 0.5000 = 0.7501 S= 0.5001 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.7501, after 0.7500 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) (?A) (?A) (?A) Virtual (?A) (?A) (?A) (A1G) Beta Orbitals: Occupied (A1G) (?A) (?A) Virtual (?A) (?A) (?A) (?A) (A1G) Unable to determine electronic state: an orbital has unidentified symmetry. Alpha occ. eigenvalues -- -0.78010 -0.36968 -0.32036 -0.32036 Alpha virt. eigenvalues -- 0.45234 0.48482 0.48482 16.46526 Beta occ. eigenvalues -- -0.73211 -0.30452 -0.30452 Beta virt. eigenvalues -- -0.22950 0.49240 0.49240 0.49551 16.45894 Condensed to atoms (all electrons): 1 1 Br 7.000000 Atomic-Atomic Spin Densities. 1 1 Br 1.000000 Mulliken charges and spin densities: 1 2 1 Br 0.000000 1.000000 Sum of Mulliken charges = 0.00000 1.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 1 Br 0.000000 1.000000 Electronic spatial extent (au): = 32.9923 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -12.8467 YY= -15.7646 ZZ= -15.7646 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.9453 YY= -0.9726 ZZ= -0.9726 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -15.9303 YYYY= -22.3442 ZZZZ= -22.3442 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -6.3791 XXZZ= -6.3791 YYZZ= -7.4481 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 0.000000000000D+00 E-N=-2.592679475218D+01 KE= 4.269347462787D+00 Symmetry AG KE= 9.438937717774D-01 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 0.000000000000D+00 Symmetry B3G KE= 0.000000000000D+00 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 1.320242217035D+00 Symmetry B2U KE= 1.320242217035D+00 Symmetry B3U KE= 6.849692569392D-01 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 Br(79) 0.00000 0.00370 0.00132 0.00123 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom 0.215566 -0.107783 -0.107783 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa -0.1078 -14.458 -5.159 -4.823 0.0000 1.0000 0.0000 1 Br(79) Bbb -0.1078 -14.458 -5.159 -4.823 0.0000 0.0000 1.0000 Bcc 0.2156 28.915 10.318 9.645 1.0000 0.0000 0.0000 --------------------------------------------------------------------------------- Density matrix has only Abelian symmetry. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 10 NPrTT= 23 LenC2= 11 LenP2D= 23. LDataN: DoStor=T MaxTD1= 5 Len= 102 Density matrix has only Abelian symmetry. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 1 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 35 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. The second derivative matrix: X1 Y1 Z1 X1 0.00000 Y1 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 ITU= 0 Eigenvalues --- RFO step: Lambda=-1.23916470D-01 EMin=-1.23916467D-01 Mixed 0 eigenvectors in step. Raw Step.Grad= 0.00D+00. RFO eigenvector is Hessian eigenvector with negative curvature. Taking step of 0.00D+00 in eigenvector direction(s). Step.Grad= 0.00D+00. Linear search not attempted -- first point. TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) X1 -0.12392 0.00000 0.00000 0.00000 0.00000 -0.12392 Y1 -2.69518 0.00000 0.00000 0.00000 0.00000 -2.69518 Z1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000000 0.000015 YES RMS Force 0.000000 0.000010 YES Maximum Displacement 0.000000 0.000060 YES RMS Displacement 0.000000 0.000040 YES Predicted change in Energy= 0.000000D+00 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 -0.065574 -1.426229 0.000000 --------------------------------------------------------------------- Stoichiometry Br(2) Framework group OH[O(Br)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- Standard basis: LANL2DZ (5D, 7F) There are 2 symmetry adapted cartesian basis functions of AG symmetry. There are 0 symmetry adapted cartesian basis functions of B1G symmetry. There are 0 symmetry adapted cartesian basis functions of B2G symmetry. There are 0 symmetry adapted cartesian basis functions of B3G symmetry. There are 0 symmetry adapted cartesian basis functions of AU symmetry. There are 2 symmetry adapted cartesian basis functions of B1U symmetry. There are 2 symmetry adapted cartesian basis functions of B2U symmetry. There are 2 symmetry adapted cartesian basis functions of B3U symmetry. There are 2 symmetry adapted basis functions of AG symmetry. There are 0 symmetry adapted basis functions of B1G symmetry. There are 0 symmetry adapted basis functions of B2G symmetry. There are 0 symmetry adapted basis functions of B3G symmetry. There are 0 symmetry adapted basis functions of AU symmetry. There are 2 symmetry adapted basis functions of B1U symmetry. There are 2 symmetry adapted basis functions of B2U symmetry. There are 2 symmetry adapted basis functions of B3U symmetry. 8 basis functions, 12 primitive gaussians, 8 cartesian basis functions 4 alpha electrons 3 beta electrons nuclear repulsion energy 0.0000000000 Hartrees. NAtoms= 1 NActive= 1 NUniq= 1 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. 1 Symmetry operations used in ECPInt. ECPInt: NShTT= 10 NPrTT= 23 LenC2= 11 LenP2D= 23. LDataN: DoStor=T MaxTD1= 4 Len= 56 NBasis= 8 RedAO= T EigKep= 7.87D-01 NBF= 2 0 0 0 0 2 2 2 NBsUse= 8 1.00D-06 EigRej= -1.00D+00 NBFU= 2 0 0 0 0 2 2 2 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\am2912\Desktop\3rdyearlab\AM_Br_PP_LANL2DZdp.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Alpha Orbitals: Occupied (A1G) (?A) (?A) (?A) Virtual (A1G) (?A) (?A) (?A) Beta Orbitals: Occupied (A1G) (?A) (?A) Virtual (A1G) (?A) (?A) (?A) (?A) Initial guess = 0.0000 = 0.0000 = 0.5000 = 0.7501 S= 0.5001 Keep R1 and R2 ints in memory in symmetry-blocked form, NReq=875081. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. Skip diagonalization as Alpha Fock matrix is already diagonal. Density matrix breaks symmetry, PCut= 1.00D-04 Density has only Abelian symmetry. SCF Done: E(UB3LYP) = -13.1304465869 A.U. after 1 cycles NFock= 1 Conv=0.33D-09 -V/T= 4.0755 = 0.0000 = 0.0000 = 0.5000 = 0.7501 S= 0.5001 = 0.000000000000E+00 Annihilation of the first spin contaminant: S**2 before annihilation 0.7501, after 0.7500 Density matrix has only Abelian symmetry. 8 Symmetry operations used in ECPInt. ECPInt: NShTT= 10 NPrTT= 23 LenC2= 11 LenP2D= 23. LDataN: DoStor=T MaxTD1= 5 Len= 102 Density matrix has only Abelian symmetry. Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 1 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 35 0.000000000 0.000000000 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000000 RMS 0.000000000 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorN and points 2 The second derivative matrix: X1 Y1 Z1 X1 0.00000 Y1 0.00000 0.00000 Z1 0.00000 0.00000 0.00000 ITU= 0 0 Eigenvalues --- En-DIIS/RFO-DIIS IScMMF= 0 using points: 2 1 RFO step: Lambda= 0.00000000D+00. RFO step: ModMin= 1 Lambda= 0.00000000D+00 EMin= 3.14345557-162 Using NR instead of RFO step for point 1. RFO step: ModMin= 1 Lambda= 0.00000000D+00 EMin= 3.14345557-162 Using NR instead of RFO step for point 2. DidBck=F Rises=F DIIS coefs: 1.00000 0.00000 TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) X1 -0.12392 0.00000 0.00000 NaN NaN NaN Y1 -2.69518 0.00000 0.00000 NaN NaN NaN Z1 0.00000 0.00000 0.00000 NaN NaN NaN Item Value Threshold Converged? Maximum Force 0.000000 0.000015 YES RMS Force 0.000000 0.000010 YES Maximum Displacement NaN 0.000060 YES RMS Displacement NaN 0.000040 YES Predicted change in Energy= NaN Optimization completed on the basis of negligible forces. -- Stationary point found. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 -0.065574 -1.426229 0.000000 --------------------------------------------------------------------- Stoichiometry Br(2) Framework group OH[O(Br)] Deg. of freedom 0 Full point group OH NOp 48 Largest Abelian subgroup D2H NOp 8 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 35 0 0.000000 0.000000 0.000000 --------------------------------------------------------------------- ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Alpha Orbitals: Occupied (A1G) (?A) (?A) (?A) Virtual (?A) (?A) (?A) (A1G) Beta Orbitals: Occupied (A1G) (?A) (?A) Virtual (?A) (?A) (?A) (?A) (A1G) Unable to determine electronic state: an orbital has unidentified symmetry. Alpha occ. eigenvalues -- -0.78010 -0.36968 -0.32036 -0.32036 Alpha virt. eigenvalues -- 0.45234 0.48482 0.48482 16.46526 Beta occ. eigenvalues -- -0.73211 -0.30452 -0.30452 Beta virt. eigenvalues -- -0.22950 0.49240 0.49240 0.49551 16.45894 Condensed to atoms (all electrons): 1 1 Br 7.000000 Atomic-Atomic Spin Densities. 1 1 Br 1.000000 Mulliken charges and spin densities: 1 2 1 Br 0.000000 1.000000 Sum of Mulliken charges = 0.00000 1.00000 Mulliken charges and spin densities with hydrogens summed into heavy atoms: 1 2 1 Br 0.000000 1.000000 Electronic spatial extent (au): = 32.9923 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -12.8467 YY= -15.7646 ZZ= -15.7646 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.9453 YY= -0.9726 ZZ= -0.9726 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -15.9303 YYYY= -22.3442 ZZZZ= -22.3442 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -6.3791 XXZZ= -6.3791 YYZZ= -7.4481 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 0.000000000000D+00 E-N=-2.592679474659D+01 KE= 4.269347459887D+00 Symmetry AG KE= 9.438937717405D-01 Symmetry B1G KE= 0.000000000000D+00 Symmetry B2G KE= 0.000000000000D+00 Symmetry B3G KE= 0.000000000000D+00 Symmetry AU KE= 0.000000000000D+00 Symmetry B1U KE= 1.320242215603D+00 Symmetry B2U KE= 1.320242215603D+00 Symmetry B3U KE= 6.849692569392D-01 Isotropic Fermi Contact Couplings Atom a.u. MegaHertz Gauss 10(-4) cm-1 1 Br(79) 0.00000 0.00370 0.00132 0.00123 -------------------------------------------------------- Center ---- Spin Dipole Couplings ---- 3XX-RR 3YY-RR 3ZZ-RR -------------------------------------------------------- 1 Atom 0.215566 -0.107783 -0.107783 -------------------------------------------------------- XY XZ YZ -------------------------------------------------------- 1 Atom 0.000000 0.000000 0.000000 -------------------------------------------------------- --------------------------------------------------------------------------------- Anisotropic Spin Dipole Couplings in Principal Axis System --------------------------------------------------------------------------------- Atom a.u. MegaHertz Gauss 10(-4) cm-1 Axes Baa -0.1078 -14.458 -5.159 -4.823 0.0000 0.0000 1.0000 1 Br(79) Bbb -0.1078 -14.458 -5.159 -4.823 0.0000 1.0000 0.0000 Bcc 0.2156 28.915 10.318 9.645 1.0000 0.0000 0.0000 --------------------------------------------------------------------------------- 1|1| IMPERIAL COLLEGE-CHWS-281|FOpt|UB3LYP|LANL2DZ|Br1(2)|AM2912|16-Oc t-2014|0||# opt=tight b3lyp/lanl2dz integral=grid=ultrafine||Br lanl2d z||0,2|Br,-0.06557377,-1.42622949,0.||Version=EM64W-G09RevD.01|HF=-13. 1304466|S2=0.75014|S2-1=0.|S2A=0.75|RMSD=3.271e-010|RMSF=0.000e+000|Di pole=0.,0.,0.|Quadrupole=-0.7231242,-0.7231242,1.4462484,0.,0.,0.|PG=O H [O(Br1)]||@ HE THAT WALD REACHE THE SWEITE ROSE SULD NOW AND THEN BE SCRATCHED WT THE SCHARPE BREERES. -- PROVERBS AND REASONS OF THE YEAR 1585 AS REPRINTED IN PAISLEY MAGAZINE 1828. Job cpu time: 0 days 0 hours 0 minutes 6.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Thu Oct 16 13:58:00 2014.