Entering Link 1 = C:\G03W\l1.exe PID= 3440. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2004,2007, Gaussian, Inc. All Rights Reserved. This is the Gaussian(R) 03 program. It is based on the the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. ****************************************** Gaussian 03: IA32W-G03RevE.01 11-Sep-2007 14-Mar-2011 ****************************************** %chk=H:\Computational Work 2\yz908_Fe3Ni2_OPT.chk ----------------------------------- # opt b3lyp/3-21g geom=connectivity ----------------------------------- 1/14=-1,18=20,26=3,38=1,57=2/1,3; 2/9=110,17=6,18=5,40=1/2; 3/5=5,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20/3(3); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99//99; 2/9=110/2; 3/5=5,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------------- Optimisation of Fe3Ni2 ---------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Fe -0.19608 1.30719 0. Fe -1.9281 -0.09804 0. Fe 1.11111 -0.29412 0. Ni -0.47068 0.40002 2.10741 Ni -0.18242 0.39452 -2.0668 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.2304 estimate D2E/DX2 ! ! R2 R(1,3) 2.0671 estimate D2E/DX2 ! ! R3 R(1,4) 2.3107 estimate D2E/DX2 ! ! R4 R(1,5) 2.2594 estimate D2E/DX2 ! ! R5 R(2,3) 3.0455 estimate D2E/DX2 ! ! R6 R(2,4) 2.6102 estimate D2E/DX2 ! ! R7 R(2,5) 2.7499 estimate D2E/DX2 ! ! R8 R(3,4) 2.7249 estimate D2E/DX2 ! ! R9 R(3,5) 2.5336 estimate D2E/DX2 ! ! A1 A(4,1,5) 132.563 estimate D2E/DX2 ! ! A2 A(4,2,5) 102.6021 estimate D2E/DX2 ! ! A3 A(4,3,5) 105.3841 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 22 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 26 0 -0.196078 1.307190 0.000000 2 26 0 -1.928105 -0.098039 0.000000 3 26 0 1.111111 -0.294118 0.000000 4 28 0 -0.470677 0.400019 2.107407 5 28 0 -0.182415 0.394518 -2.066796 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 Fe 0.000000 2 Fe 2.230377 0.000000 3 Fe 2.067106 3.045534 0.000000 4 Ni 2.310741 2.610234 2.724893 0.000000 5 Ni 2.259381 2.749852 2.533589 4.184148 0.000000 Stoichiometry Fe3Ni2 Framework group C1[X(Fe3Ni2)] Deg. of freedom 9 Full point group C1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 26 0 0.023662 -0.108835 0.966950 2 26 0 -0.204516 1.569390 -0.484283 3 26 0 0.204581 -1.446374 -0.598676 4 28 0 -2.098551 -0.144318 0.053454 5 28 0 2.076519 0.131151 0.054269 --------------------------------------------------------------------- Rotational constants (GHZ): 1.4715102 0.8486982 0.6586322 Standard basis: 3-21G (6D, 7F) There are 145 symmetry adapted basis functions of A symmetry. Integral buffers will be 262144 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 145 basis functions, 285 primitive gaussians, 145 cartesian basis functions 67 alpha electrons 67 beta electrons nuclear repulsion energy 1468.3954331709 Hartrees. NAtoms= 5 NActive= 5 NUniq= 5 SFac= 7.50D-01 NAtFMM= 80 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 145 RedAO= T NBF= 145 NBsUse= 145 1.00D-06 NBFU= 145 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 3.64D-02 ExpMax= 3.85D+03 ExpMxC= 3.85D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV=1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 Initial guess orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state of the initial guess is 1-A. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. EnCoef did 13 forward-backward iterations EnCoef did 16 forward-backward iterations EnCoef did 17 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 22 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 100 forward-backward iterations EnCoef did 16 forward-backward iterations Restarting incremental Fock formation. EnCoef did 100 forward-backward iterations Matrix for removal 6 Erem= -6740.84141187124 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 8 Erem= -6747.20948473986 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 4 Erem= -6747.64337044068 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 3 Erem= -6748.30518152732 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 3 Erem= -6749.89470937435 Crem= 0.000D+00 EnCoef did 14 forward-backward iterations Matrix for removal 3 Erem= -6764.38507565765 Crem= 0.000D+00 EnCoef did 9 forward-backward iterations Matrix for removal 4 Erem= -6765.50724452800 Crem= 0.000D+00 EnCoef did 3 forward-backward iterations Matrix for removal 3 Erem= -6766.03824795529 Crem= 0.000D+00 EnCoef did 5 forward-backward iterations Matrix for removal 3 Erem= -6767.10432111866 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 4 Erem= -6769.33103540555 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 1 Erem= -6770.00300666168 Crem= 0.000D+00 EnCoef did 4 forward-backward iterations Matrix for removal 2 Erem= -6770.33596226089 Crem= 0.000D+00 EnCoef did 12 forward-backward iterations Matrix for removal 5 Erem= -6771.14326914650 Crem= 0.000D+00 EnCoef did 4 forward-backward iterations Matrix for removal 7 Erem= -6771.35837012839 Crem= 0.000D+00 EnCoef did 100 forward-backward iterations Matrix for removal 1 Erem= -6771.56235584294 Crem= 0.000D+00 Matrix for removal 5 Erem= -6771.62887584271 Crem= 0.000D+00 Matrix for removal 3 Erem= -6771.96568572178 Crem= 0.000D+00 Matrix for removal 2 Erem= -6772.06482173300 Crem= 0.000D+00 Matrix for removal 3 Erem= -6773.18562823452 Crem= 0.000D+00 Matrix for removal 1 Erem= -6773.28845201150 Crem= 0.000D+00 Restarting incremental Fock formation. Matrix for removal 2 Erem= -6773.67147190362 Crem= 0.000D+00 Matrix for removal 9 Erem= -6773.85355970113 Crem= 0.000D+00 Matrix for removal 7 Erem= -6773.88970849732 Crem= 0.000D+00 Matrix for removal 2 Erem= -6773.93249199084 Crem= 0.000D+00 Matrix for removal 1 Erem= -6773.98591645157 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.12251213605 Crem= 0.000D+00 Matrix for removal 7 Erem= -6774.23275308358 Crem= 0.000D+00 Matrix for removal 6 Erem= -6774.25461509061 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.25868898765 Crem= 0.000D+00 Matrix for removal 3 Erem= -6774.26808631415 Crem= 0.000D+00 Matrix for removal 3 Erem= -6774.27289861355 Crem= 0.000D+00 Matrix for removal 2 Erem= -6774.28529272660 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.31261179301 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.35222277012 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.35443628903 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.36132108871 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.36470322023 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.36645688154 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37081702677 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37306333210 Crem= 0.000D+00 Restarting incremental Fock formation. Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37421823340 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37572582898 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37669670934 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37740688352 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37849598975 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.37895069221 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37908741955 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37950767544 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.37972408475 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.38005747717 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38010322282 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38056248532 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38066529630 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38120077939 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38154509913 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.38155517860 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 1 Erem= -6774.38174752468 Crem= 0.000D+00 Matrix for removal 1 Erem= -6774.38175489257 Crem= 0.000D+00 Matrix for removal 4 Erem= -6774.38189582059 Crem= 0.000D+00 Matrix for removal 3 Erem= -6774.38191331859 Crem= 0.000D+00 Restarting incremental Fock formation. Matrix for removal 2 Erem= -6774.38193594387 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 2 Erem= -6774.38193851559 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Restarting incremental Fock formation. Matrix for removal 3 Erem= -6774.38195127883 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 17 Erem= -6774.38209573838 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38216514720 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38218691062 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38210251549 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38213459054 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38219402575 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38213891504 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38221816516 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38221635454 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38217413346 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38216422410 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 19 Erem= -6774.38212083615 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38210490107 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38215730234 Crem= 0.000D+00 Matrix for removal 19 Erem= -6774.38216987161 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Restarting incremental Fock formation. Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 18 Erem= -6774.38210607034 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 Matrix for removal 18 Erem= -6774.38210238632 Crem= 0.000D+00 Rare condition: small coef for last iteration: 0.000D+00 >>>>>>>>>> Convergence criterion not met. SCF Done: E(RB+HF-LYP) = -6774.38214151 A.U. after 129 cycles Convg = 0.4317D-02 -V/T = 2.0039 S**2 = 0.0000 Convergence failure -- run terminated. Error termination via Lnk1e in C:\G03W\l502.exe at Mon Mar 14 21:45:58 2011. Job cpu time: 0 days 0 hours 10 minutes 32.0 seconds. File lengths (MBytes): RWF= 21 Int= 0 D2E= 0 Chk= 5 Scr= 1