Entering Gaussian System, Link 0=gdv Initial command: /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l1.exe /tmp/pbs.690532.cx1b/Gau-7709.inp -scrdir=/tmp/pbs.690532.cx1b/ Entering Link 1 = /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l1.exe PID= 7710. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2010, Gaussian, Inc. All Rights Reserved. This is the private, development version of the Gaussian(R) DV system of programs. It is based on the Gaussian(R) 09 system (copyright 2009, Gaussian, Inc.), the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian Development Version, Revision H.08, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, P. V. Parandekar, N. J. Mayhall, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009. ****************************************** Gaussian DV: EM64L-GDVRevH.08 14-Mar-2010 15-Feb-2012 ****************************************** %chk=/work/jjserran/MMVB/benzene_S0_mmvb_opt.chk %mem=1500MB ---------------------------------------------------------------------- #p amber=(softonly,lastequiv) test geom=connectivity opt=(nomicro,rfo, loose) iop(1/19=11,1/117=10001,1/119=-3,2/15=1,4/31=1,4/33=2) ---------------------------------------------------------------------- 1/7=-1,14=-1,18=20,19=11,38=1,56=2,57=2,64=20303,117=10001,119=-3/1,3; 2/9=110,12=2,15=1,17=6,18=5,40=1/2; 3/5=30,11=9,16=1,25=1,30=1,41=10300000,43=2,71=1/1; 4/20=11,22=1,24=3,31=1,33=2,68=-1/2; 7/44=-1/16; 1/7=-1,14=-1,18=20,19=11,64=20303,117=10001,119=-3/3(2); 2/9=110,15=1/2; 99//99; 2/9=110,15=1/2; 3/5=30,11=9,16=1,25=1,30=1,41=10300000,43=2,71=1/1; 4/16=2,20=11,22=1,24=3,31=1,33=2,68=-1/2; 7/44=-1/16; 1/7=-1,14=-1,18=20,19=11,64=20303,117=10001,119=-3/3(-4); 2/9=110,15=1/2; 99//99; Leave Link 1 at Wed Feb 15 11:22:00 2012, MaxMem= 196608000 cpu: 0.1 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l101.exe) --------------------- MMVB analysis BENZENE --------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C-MM101 0. 1.20928 0.69818 C-MM101 0.00001 1.20928 -0.69817 C-MM101 0. 0. -1.39635 C-MM101 0. -1.20928 -0.69818 C-MM101 0.00001 -1.20929 0.69817 C-MM101 0.00001 0.00001 1.39635 H-MM5 0. 2.14069 1.23593 H-MM5 0. 2.14069 -1.23593 H-MM5 0. 0.00001 -2.47187 H-MM5 0.00001 -2.14069 -1.23594 H-MM5 0. -2.14069 1.23593 H-MM5 0. 0. 2.47186 NAtoms= 12 NQM= 12 NQMF= 0 NMic= 0 NMicF= 0 NTot= 12. Isotopes and Nuclear Properties: (Nuclear quadrupole moments (NQMom) in fm**2, nuclear magnetic moments (NMagM) in nuclear magnetons) Atom 1 2 3 4 5 6 7 8 9 10 IAtWgt= 12 12 12 12 12 12 1 1 1 1 AtmWgt= 12.0000000 12.0000000 12.0000000 12.0000000 12.0000000 12.0000000 1.0078250 1.0078250 1.0078250 1.0078250 NucSpn= 0 0 0 0 0 0 1 1 1 1 AtZEff= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 NQMom= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 NMagM= 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 2.7928460 2.7928460 2.7928460 2.7928460 Atom 11 12 IAtWgt= 1 1 AtmWgt= 1.0078250 1.0078250 NucSpn= 1 1 AtZEff= 0.0000000 0.0000000 NQMom= 0.0000000 0.0000000 NMagM= 2.7928460 2.7928460 Generating MM parameters. Pairs of Qij integrals deleted in MMVB: 3 1 4 1 5 1 4 2 5 2 6 2 3 1 5 3 6 3 4 1 4 2 6 4 5 1 5 2 5 3 6 2 6 3 6 4 Read MM parameter file: Define MM101 1 Define MM5 2 Include all MM classes MM sanity checks: All charges sum to: 0.00000000 Charges of atoms sum to: 0.00000000 MMInit generated parameter data with length LenPar= 7561. Leave Link 101 at Wed Feb 15 11:22:00 2012, MaxMem= 196608000 cpu: 0.1 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l103.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.3963 estimate D2E/DX2 ! ! R2 R(1,6) 1.3963 estimate D2E/DX2 ! ! R3 R(1,7) 1.0755 estimate D2E/DX2 ! ! R4 R(2,3) 1.3964 estimate D2E/DX2 ! ! R5 R(2,8) 1.0755 estimate D2E/DX2 ! ! R6 R(3,4) 1.3964 estimate D2E/DX2 ! ! R7 R(3,9) 1.0755 estimate D2E/DX2 ! ! R8 R(4,5) 1.3964 estimate D2E/DX2 ! ! R9 R(4,10) 1.0755 estimate D2E/DX2 ! ! R10 R(5,6) 1.3964 estimate D2E/DX2 ! ! R11 R(5,11) 1.0755 estimate D2E/DX2 ! ! R12 R(6,12) 1.0755 estimate D2E/DX2 ! ! A1 A(2,1,6) 120.0001 estimate D2E/DX2 ! ! A2 A(2,1,7) 119.9999 estimate D2E/DX2 ! ! A3 A(6,1,7) 120.0 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.0 estimate D2E/DX2 ! ! A5 A(1,2,8) 120.0006 estimate D2E/DX2 ! ! A6 A(3,2,8) 119.9994 estimate D2E/DX2 ! ! A7 A(2,3,4) 120.0002 estimate D2E/DX2 ! ! A8 A(2,3,9) 119.9997 estimate D2E/DX2 ! ! A9 A(4,3,9) 120.0001 estimate D2E/DX2 ! ! A10 A(3,4,5) 120.0001 estimate D2E/DX2 ! ! A11 A(3,4,10) 119.9999 estimate D2E/DX2 ! ! A12 A(5,4,10) 119.9999 estimate D2E/DX2 ! ! A13 A(4,5,6) 119.9994 estimate D2E/DX2 ! ! A14 A(4,5,11) 120.0011 estimate D2E/DX2 ! ! A15 A(6,5,11) 119.9995 estimate D2E/DX2 ! ! A16 A(1,6,5) 120.0002 estimate D2E/DX2 ! ! A17 A(1,6,12) 120.0004 estimate D2E/DX2 ! ! A18 A(5,6,12) 119.9994 estimate D2E/DX2 ! ! D1 D(6,1,2,3) 0.001 estimate D2E/DX2 ! ! D2 D(6,1,2,8) 179.9999 estimate D2E/DX2 ! ! D3 D(7,1,2,3) -179.9997 estimate D2E/DX2 ! ! D4 D(7,1,2,8) -0.0007 estimate D2E/DX2 ! ! D5 D(2,1,6,5) -0.0007 estimate D2E/DX2 ! ! D6 D(2,1,6,12) 180.0 estimate D2E/DX2 ! ! D7 D(7,1,6,5) 180.0 estimate D2E/DX2 ! ! D8 D(7,1,6,12) 0.0007 estimate D2E/DX2 ! ! D9 D(1,2,3,4) -0.0008 estimate D2E/DX2 ! ! D10 D(1,2,3,9) 179.9997 estimate D2E/DX2 ! ! D11 D(8,2,3,4) -179.9997 estimate D2E/DX2 ! ! D12 D(8,2,3,9) 0.0008 estimate D2E/DX2 ! ! D13 D(2,3,4,5) 0.0003 estimate D2E/DX2 ! ! D14 D(2,3,4,10) -179.9996 estimate D2E/DX2 ! ! D15 D(9,3,4,5) 179.9998 estimate D2E/DX2 ! ! D16 D(9,3,4,10) -0.0002 estimate D2E/DX2 ! ! D17 D(3,4,5,6) 0.0 estimate D2E/DX2 ! ! D18 D(3,4,5,11) 179.9996 estimate D2E/DX2 ! ! D19 D(10,4,5,6) 179.9999 estimate D2E/DX2 ! ! D20 D(10,4,5,11) -0.0005 estimate D2E/DX2 ! ! D21 D(4,5,6,1) 0.0002 estimate D2E/DX2 ! ! D22 D(4,5,6,12) 179.9995 estimate D2E/DX2 ! ! D23 D(11,5,6,1) -179.9994 estimate D2E/DX2 ! ! D24 D(11,5,6,12) -0.0001 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 103 at Wed Feb 15 11:22:00 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l202.exe) Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 90000001 0.000001 1.209280 0.698178 2 6 90000001 0.000009 1.209282 -0.698171 3 6 90000001 0.000002 0.000002 -1.396351 4 6 90000001 0.000004 -1.209280 -0.698178 5 6 90000001 0.000006 -1.209289 0.698172 6 6 90000001 0.000007 0.000008 1.396353 7 1 90000002 0.000001 2.140694 1.235930 8 1 90000002 0.000003 2.140693 -1.235933 9 1 90000002 0.000004 0.000009 -2.471868 10 1 90000002 0.000005 -2.140694 -1.235937 11 1 90000002 0.000001 -2.140691 1.235933 12 1 90000002 0.000001 0.000001 2.471861 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.396349 0.000000 3 C 2.418554 1.396357 0.000000 4 C 2.792712 2.418562 1.396355 0.000000 5 C 2.418569 2.792715 2.418556 1.396350 0.000000 6 C 1.396348 2.418548 2.792704 2.418561 1.396372 7 H 1.075504 2.146689 3.392855 3.868217 3.392870 8 H 2.146699 1.075507 2.146693 3.392860 3.868222 9 H 3.392864 2.146705 1.075517 2.146708 3.392868 10 H 3.868220 3.392865 2.146698 1.075508 2.146693 11 H 3.392858 3.868214 3.392858 2.146698 1.075498 12 H 2.146697 3.392855 3.868212 3.392861 2.146708 6 7 8 9 10 6 C 0.000000 7 H 2.146689 0.000000 8 H 3.392855 2.471863 0.000000 9 H 3.868221 4.281390 2.471854 0.000000 10 H 3.392868 4.943724 4.281387 2.471869 0.000000 11 H 2.146701 4.281385 4.943720 4.281400 2.471870 12 H 1.075508 2.471860 4.281390 4.943729 4.281395 11 12 11 H 0.000000 12 H 2.471858 0.000000 Symmetry turned off by external request. Stoichiometry C6H6 Framework group C1[X(C6H6)] Deg. of freedom 30 Full point group C1 NOp 1 Rotational constants (GHZ): 5.6997790 5.6997255 2.8498761 Leave Link 202 at Wed Feb 15 11:22:00 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l301.exe) Standard basis: Dummy (5D, 7F) Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. 12 basis functions, 12 primitive gaussians, 12 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 36.1728084784 Hartrees. IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000 ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000 IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F Leave Link 301 at Wed Feb 15 11:22:00 2012, MaxMem= 196608000 cpu: 0.1 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l402.exe) AMBER calculation of energy and first derivatives. No initial guess density matrices. Enter MMCalc NNonBon 5 10 0 0 0 0 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 Non-bonded terms on-the-fly without fast algorithms, OKV=T OKC=F. Energy per function type: Direct Coulomb + vdW (small) 0.118451832 Direct Coulomb (large) 0.000000000 Direct vdW (large) 2.595031964 Non-direct Coulomb + vdW (small) -0.116261098 Non-direct Coulomb (large) 0.000000000 Non-direct vdW (large) -2.595031964 MM2 Torsion Angle angle 0.005058091 MM2 IP-Bend 0.000000000 MM2 Stretch Cubic 0.065644135 Energy per function class: Coulomb 0.000000000 Vanderwaals 0.002190734 Stretching 0.065644135 Bending 0.000000000 Torsion 0.005058091 Enter VBMMVB module. Call number 1 to VBMMVB. ITYIV( 1) = 1 ITYIV( 2) = 2 ITYIV( 3) = 3 ITYIV( 4) = 4 ITYIV( 5) = 5 ITYIV( 6) = 6 JJ( 1) = 6 JJ( 2) = 6 JJ( 3) = 6 JJ( 4) = 6 JJ( 5) = 6 JJ( 6) = 6 JJ( 7) = 1 JJ( 8) = 1 JJ( 9) = 1 JJ( 10) = 1 JJ( 11) = 1 JJ( 12) = 1 IVAT( 1) = 1 3 IVAT( 2) = 1 4 IVAT( 3) = 2 4 IVAT( 4) = 1 5 IVAT( 5) = 2 5 IVAT( 6) = 3 5 IVAT( 7) = 2 6 IVAT( 8) = 3 6 IVAT( 9) = 4 6 ISUB( 1,1,2,3) = 2 6 7 ISUB( 2,1,2,3) = 1 3 8 ISUB( 3,1,2,3) = 2 4 9 ISUB( 4,1,2,3) = 3 5 10 ISUB( 5,1,2,3) = 4 6 11 ISUB( 6,1,2,3) = 1 5 12 IAt( 1) = 2 3 4 5 6 7 IAt( 2) = 1 3 4 5 6 8 IAt( 3) = 1 2 4 5 6 9 IAt( 4) = 1 2 3 5 6 10 IAt( 5) = 1 2 3 4 6 11 IAt( 6) = 1 2 3 4 5 12 IAt( 7) = 1 IAt( 8) = 2 IAt( 9) = 3 IAt( 10) = 4 IAt( 11) = 5 IAt( 12) = 6 IQdel( 1,1-2) = 3 1 IQdel( 2,1-2) = 4 1 IQdel( 3,1-2) = 5 1 IQdel( 4,1-2) = 4 2 IQdel( 5,1-2) = 5 2 IQdel( 6,1-2) = 6 2 IQdel( 7,1-2) = 3 1 IQdel( 8,1-2) = 5 3 IQdel( 9,1-2) = 6 3 IQdel( 10,1-2) = 4 1 IQdel( 11,1-2) = 4 2 IQdel( 12,1-2) = 6 4 IQdel( 13,1-2) = 5 1 IQdel( 14,1-2) = 5 2 IQdel( 15,1-2) = 5 3 IQdel( 16,1-2) = 6 2 IQdel( 17,1-2) = 6 3 IQdel( 18,1-2) = 6 4 Pi Kij and Qij for I,J= 2 1 K0ij= -0.70186309E-01 Kij= -0.68279683E-01 Q0ij= -0.41630215E-01 Qij= -0.43536841E-01 Sigma Kij and Qij for I,J= 3 1 K0ij= -0.44282938E-02 Kij= -0.36029468E-02 Q0ij= -0.17915000 Qij= -0.18072868 Pi Kij and Qij for I,J= 3 2 K0ij= -0.70184695E-01 Kij= -0.68278040E-01 Q0ij= -0.41629463E-01 Qij= -0.43536117E-01 Sigma Kij and Qij for I,J= 4 1 K0ij= -0.67669979E-03 Kij= -0.24762146E-02 Q0ij= -0.17915000 Qij= -0.17938977 Sigma Kij and Qij for I,J= 4 2 K0ij= -0.44281486E-02 Kij= -0.36028286E-02 Q0ij= -0.17915000 Qij= -0.18072863 Pi Kij and Qij for I,J= 4 3 K0ij= -0.70185043E-01 Kij= -0.68278412E-01 Q0ij= -0.41629625E-01 Qij= -0.43536256E-01 Sigma Kij and Qij for I,J= 5 1 K0ij= -0.44280163E-02 Kij= -0.36027253E-02 Q0ij= -0.17915000 Qij= -0.18072858 Sigma Kij and Qij for I,J= 5 2 K0ij= -0.67668793E-03 Kij= -0.24762298E-02 Q0ij= -0.17915000 Qij= -0.17938976 Sigma Kij and Qij for I,J= 5 3 K0ij= -0.44282692E-02 Kij= -0.36029262E-02 Q0ij= -0.17915000 Qij= -0.18072867 Pi Kij and Qij for I,J= 5 4 K0ij= -0.70186112E-01 Kij= -0.68279513E-01 Q0ij= -0.41630124E-01 Qij= -0.43536723E-01 Pi Kij and Qij for I,J= 6 1 K0ij= -0.70186551E-01 Kij= -0.68279918E-01 Q0ij= -0.41630328E-01 Qij= -0.43536960E-01 Sigma Kij and Qij for I,J= 6 2 K0ij= -0.44284136E-02 Kij= -0.36030388E-02 Q0ij= -0.17915000 Qij= -0.18072872 Sigma Kij and Qij for I,J= 6 3 K0ij= -0.67673272E-03 Kij= -0.24762973E-02 Q0ij= -0.17915000 Qij= -0.17938978 Sigma Kij and Qij for I,J= 6 4 K0ij= -0.44281665E-02 Kij= -0.36028475E-02 Q0ij= -0.17915000 Qij= -0.18072863 Pi Kij and Qij for I,J= 6 5 K0ij= -0.70181698E-01 Kij= -0.68275069E-01 Q0ij= -0.41628065E-01 Qij= -0.43534694E-01 MMVB: Lanczosdiagonalisation of the VB CI hamiltonian Number of configurations of the CI problem : 10 Create bucket for guess vector Create from scratch a guess vector ---> Possibly unnormalised guess vector <--- 1 0.00000000 2 1.00000000 3 0.00000000 4 0.00000000 5 1.00000000 6 1.00000000 7 0.00000000 8 1.00000000 9 1.00000000 10 0.00000000 First guessed right (normalised) vector Index Coefficient 6 0.447214 5 0.447214 2 0.447214 8 0.447214 9 0.447214 Begin Lanczos iteration in Ldriv1 with MaxCyc, Nelec, NSec = 100 6 10 NITR,IFLAG,GAMMA,CUT = 1 1 0.1839045025 0.0000000005 Iteration number 1 Energy computed with trial vector = -0.039672 NITR,IFLAG,GAMMA,CUT = 2 1 0.1152211534 0.0000000005 Iteration number 2 EIGENVALUES OF TRIDIAGONAL FORM -0.147811 0.273081 NITR,IFLAG,GAMMA,CUT = 3 1 0.0284416274 0.0000000005 Iteration number 3 EIGENVALUES OF TRIDIAGONAL FORM -0.157788 0.142939 0.347127 NITR,IFLAG,GAMMA,CUT = 4 1 0.0335554289 0.0000000005 Iteration number 4 EIGENVALUES OF TRIDIAGONAL FORM -0.157837 0.139953 0.304572 0.353786 NITR,IFLAG,GAMMA,CUT = 5 1 0.0001892259 0.0000000005 Iteration number 5 EIGENVALUES OF TRIDIAGONAL FORM -0.157838 0.139037 0.160650 0.311059 0.354678 NITR,IFLAG,GAMMA,CUT = 6 1 0.0081996186 0.0000000005 Iteration number 6 EIGENVALUES OF TRIDIAGONAL FORM -0.157838 0.007670 0.139037 0.160650 0.311059 0.354678 Eigen values and vectors of tridiagonal form 1 -0.157838 -0.829144 0.532756 -0.169059 0.010395 -0.001073 0.000001 Eigen values and right eigenvectors of matrix ( 1) Eigenvalue -0.15783757E+00 ( 6) 0.67594 ( 5) 0.29453 ( 2) 0.29453 ( 3) 0.29452 ( 9) 0.29451 ( 8) 0.29451 ( 7) 0.29451 ( 10) 0.08691 ( 1) 0.08691 ( 4) 0.08690 ( QT= -0.25994979 D1QT I= 1 X= -9.079889057190D-06 Y= 9.220213736182D-02 Z= 5.323332484348D-02 I= 2 X= 1.088606731832D-05 Y= 9.220394924513D-02 Z= -5.323193896462D-02 I= 3 X= -6.606227647665D-06 Y= -1.329398437766D-07 Z= -1.064677691496D-01 I= 4 X= -1.990786168605D-08 Y= -9.220309473077D-02 Z= -5.323269078452D-02 I= 5 X= 1.166916895934D-06 Y= -9.220794929842D-02 Z= 5.323094700433D-02 I= 6 X= 6.080669935176D-06 Y= 5.090378421984D-06 Z= 1.064681270523D-01 I= 7 X= 1.717000751389D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 8 X= -2.900807161603D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 9 X= 1.454098671191D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 10 X= 3.391158239351D-07 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 11 X= -1.150536203035D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 12 X= -1.886501464769D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 KEig= 1 T= 0.15783757 X Y Z 0.00000 -0.04658 -0.02688 0.00000 -0.04658 0.02688 0.00000 0.00001 0.05378 0.00000 0.04657 0.02690 0.00000 0.04656 -0.02690 0.00000 0.00002 -0.05378 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ENERGY --- -0.41779 for root no. 1 Spin Density Matrix Root 1 1 1 0.000 2 1 0.434 2 2 0.000 3 1-0.914 3 2 0.434 3 3 0.000 4 1-0.041 4 2-0.914 4 3 0.434 4 4 0.000 5 1-0.914 5 2-0.041 5 3-0.914 5 4 0.434 5 5 0.000 6 1 0.434 6 2-0.914 6 3-0.041 6 4-0.914 6 5 0.434 6 6 0.000 0.0000 Transition Density Matrix 1 1 0.000 2 1 0.000 2 2 0.000 3 1 0.000 3 2 0.000 3 3 0.000 4 1 0.000 4 2 0.000 4 3 0.000 4 4 0.000 5 1 0.000 5 2 0.000 5 3 0.000 5 4 0.000 5 5 0.000 6 1 0.000 6 2 0.000 6 3 0.000 6 4 0.000 6 5 0.000 6 6 0.000 -3.0000 The highest root (chosen eigenvalue) is No. 1 T and derivatives for eigenvalue No. 1 0.15784 X Y Z 0.00000 -0.04658 -0.02688 0.00000 -0.04658 0.02688 0.00000 0.00001 0.05378 0.00000 0.04657 0.02690 0.00000 0.04656 -0.02690 0.00000 0.00002 -0.05378 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Q and derivatives for eigenvalue No. 1 -0.25995 X Y Z -0.00001 0.09220 0.05323 0.00001 0.09220 -0.05323 -0.00001 0.00000 -0.10647 0.00000 -0.09220 -0.05323 0.00000 -0.09221 0.05323 0.00001 0.00001 0.10647 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Total Energy and cartesian deriv. (a.u.) for Root 1 -0.41779 X Y Z -0.00001 0.13878 0.08012 0.00001 0.13878 -0.08012 -0.00001 -0.00001 -0.16024 0.00000 -0.13877 -0.08013 0.00000 -0.13877 0.08013 0.00001 -0.00001 0.16024 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 MMVB: VB Energy= -0.1578376 for root 1 MMVB: MM Energy= 0.0728930 MMVB: MM+VB Energy= -0.3448944 for root 1 Exit VBMMVB module. Energy= -0.344894398 NIter= 0. Dipole moment= 0.000000 0.000000 0.000000 Derivatives in ZDOGrd: I= 1 X= -4.714642505402D-06 Y= 1.266945769932D-02 Z= 7.310538309697D-03 I= 2 X= 5.765671469943D-06 Y= 1.267626368485D-02 Z= -7.305044741931D-03 I= 3 X= -3.546338368739D-06 Y= -5.419163594098D-06 Z= -1.462603629807D-02 I= 4 X= -2.521843250345D-07 Y= -1.266759832955D-02 Z= -7.315379457311D-03 I= 5 X= 8.585272365538D-07 Y= -1.269057537172D-02 Z= 7.310930408155D-03 I= 6 X= 3.280624959966D-06 Y= 1.556397121979D-05 Z= 1.463485441810D-02 I= 7 X= 7.986466033734D-07 Y= -2.129594807682D-02 Z= -1.229525406963D-02 I= 8 X= -1.486034372423D-06 Y= -2.129517031969D-02 Z= 1.229333652786D-02 I= 9 X= 7.085814138941D-07 Y= 4.492912442434D-07 Z= 2.458169332930D-02 I= 10 X= 3.875097964939D-07 Y= 2.129381064535D-02 Z= 1.229407598887D-02 I= 11 X= -8.435947120186D-07 Y= 2.130023060866D-02 Z= -1.229585453594D-02 I= 12 X= -9.567671966072D-07 Y= -1.064639275858D-06 Z= -2.458785987910D-02 Leave Link 402 at Wed Feb 15 11:22:00 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l716.exe) Dipole = 0.00000000D+00 0.00000000D+00 0.00000000D+00 ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000004715 -0.012669458 -0.007310538 2 6 -0.000005766 -0.012676264 0.007305045 3 6 0.000003546 0.000005419 0.014626036 4 6 0.000000252 0.012667598 0.007315379 5 6 -0.000000859 0.012690575 -0.007310930 6 6 -0.000003281 -0.000015564 -0.014634854 7 1 -0.000000799 0.021295948 0.012295254 8 1 0.000001486 0.021295170 -0.012293337 9 1 -0.000000709 -0.000000449 -0.024581693 10 1 -0.000000388 -0.021293811 -0.012294076 11 1 0.000000844 -0.021300231 0.012295855 12 1 0.000000957 0.000001065 0.024587860 ------------------------------------------------------------------- Cartesian Forces: Max 0.024587860 RMS 0.011681153 Leave Link 716 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l103.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.024594468 RMS 0.008842622 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swaping is turned off. Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.02137 0.02137 0.02137 0.02137 0.02137 Eigenvalues --- 0.02137 0.02137 0.02137 0.02137 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.36541 0.36543 Eigenvalues --- 0.36543 0.36543 0.36543 0.36544 0.41935 Eigenvalues --- 0.41936 0.46228 0.46230 0.46231 0.46231 Angle between quadratic step and forces= 4.30 degrees. Linear search not attempted -- option 19 set. Iteration 1 RMS(Cart)= 0.03046589 RMS(Int)= 0.00000040 Iteration 2 RMS(Cart)= 0.00000028 RMS(Int)= 0.00000001 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.63872 0.00996 0.00000 0.02155 0.02155 2.66027 R2 2.63871 0.00996 0.00000 0.02154 0.02154 2.66026 R3 2.03241 0.02459 0.00000 0.06729 0.06729 2.09970 R4 2.63873 0.00995 0.00000 0.02153 0.02153 2.66026 R5 2.03241 0.02459 0.00000 0.06729 0.06729 2.09970 R6 2.63873 0.00996 0.00000 0.02154 0.02154 2.66027 R7 2.03243 0.02458 0.00000 0.06727 0.06727 2.09970 R8 2.63872 0.00996 0.00000 0.02154 0.02154 2.66026 R9 2.03241 0.02459 0.00000 0.06729 0.06729 2.09970 R10 2.63876 0.00994 0.00000 0.02151 0.02151 2.66027 R11 2.03240 0.02459 0.00000 0.06730 0.06730 2.09970 R12 2.03242 0.02459 0.00000 0.06729 0.06729 2.09970 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A3 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A4 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A5 2.09441 0.00000 0.00000 -0.00001 -0.00001 2.09440 A6 2.09438 0.00000 0.00000 0.00001 0.00001 2.09439 A7 2.09440 0.00000 0.00000 0.00000 0.00000 2.09439 A8 2.09439 0.00000 0.00000 0.00001 0.00001 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A12 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A13 2.09438 0.00000 0.00000 0.00001 0.00001 2.09439 A14 2.09441 0.00000 0.00000 -0.00002 -0.00002 2.09440 A15 2.09439 0.00000 0.00000 0.00001 0.00001 2.09439 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 -0.00001 -0.00001 2.09440 A18 2.09438 0.00000 0.00000 0.00001 0.00001 2.09439 D1 0.00002 0.00000 0.00000 -0.00007 -0.00007 -0.00005 D2 3.14159 0.00000 0.00000 0.00001 0.00001 -3.14159 D3 -3.14159 0.00000 0.00000 -0.00002 -0.00002 3.14157 D4 -0.00001 0.00000 0.00000 0.00005 0.00005 0.00004 D5 -0.00001 0.00000 0.00000 0.00005 0.00005 0.00003 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D8 0.00001 0.00000 0.00000 -0.00004 -0.00004 -0.00003 D9 -0.00001 0.00000 0.00000 0.00005 0.00005 0.00004 D10 3.14159 0.00000 0.00000 0.00002 0.00002 -3.14158 D11 -3.14159 0.00000 0.00000 -0.00002 -0.00002 3.14158 D12 0.00001 0.00000 0.00000 -0.00005 -0.00005 -0.00004 D13 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00001 D14 -3.14159 0.00000 0.00000 -0.00002 -0.00002 3.14158 D15 3.14159 0.00000 0.00000 0.00002 0.00002 -3.14158 D16 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 D17 0.00000 0.00000 0.00000 -0.00001 -0.00001 -0.00001 D18 3.14159 0.00000 0.00000 0.00002 0.00002 -3.14158 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 -0.00001 0.00000 0.00000 0.00003 0.00003 0.00002 D21 0.00000 0.00000 0.00000 -0.00001 -0.00001 0.00000 D22 3.14158 0.00000 0.00000 0.00004 0.00004 -3.14156 D23 -3.14158 0.00000 0.00000 -0.00004 -0.00004 3.14157 D24 0.00000 0.00000 0.00000 0.00001 0.00001 0.00001 Item Value Threshold Converged? Maximum Force 0.024594 0.002500 NO RMS Force 0.008843 0.001667 NO Maximum Displacement 0.088824 0.010000 NO RMS Displacement 0.030466 0.006667 NO Predicted change in Energy=-5.606775D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Leave Link 103 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l202.exe) Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 90000001 0.000009 1.219149 0.703877 2 6 90000001 -0.000013 1.219151 -0.703878 3 6 90000001 0.000009 0.000004 -1.407753 4 6 90000001 0.000006 -1.219147 -0.703875 5 6 90000001 -0.000007 -1.219150 0.703873 6 6 90000001 -0.000008 0.000002 1.407751 7 1 90000002 0.000010 2.181400 1.259435 8 1 90000002 0.000006 2.181404 -1.259435 9 1 90000002 0.000007 0.000004 -2.518868 10 1 90000002 0.000010 -2.181400 -1.259433 11 1 90000002 0.000006 -2.181402 1.259430 12 1 90000002 0.000010 0.000000 2.518865 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.407755 0.000000 3 C 2.438298 1.407750 0.000000 4 C 2.815503 2.438298 1.407755 0.000000 5 C 2.438299 2.815506 2.438299 1.407748 0.000000 6 C 1.407749 2.438298 2.815504 2.438297 1.407756 7 H 1.111113 2.186440 3.445632 3.926616 3.445634 8 H 2.186442 1.111114 2.186436 3.445634 3.926620 9 H 3.445635 2.186437 1.111115 2.186442 3.445634 10 H 3.926616 3.445633 2.186440 1.111114 2.186434 11 H 3.445632 3.926619 3.445634 2.186436 1.111113 12 H 2.186436 3.445635 3.926618 3.445631 2.186441 6 7 8 9 10 6 C 0.000000 7 H 2.186435 0.000000 8 H 3.445634 2.518870 0.000000 9 H 3.926619 4.362804 2.518864 0.000000 10 H 3.445633 5.037730 4.362803 2.518868 0.000000 11 H 2.186441 4.362802 5.037733 4.362805 2.518863 12 H 1.111114 2.518863 4.362805 5.037733 4.362802 11 12 11 H 0.000000 12 H 2.518867 0.000000 Symmetry turned off by external request. Stoichiometry C6H6 Framework group C1[X(C6H6)] Deg. of freedom 30 Full point group C1 NOp 1 Rotational constants (GHZ): 5.5826629 5.5826557 2.7913297 Leave Link 202 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l301.exe) Standard basis: Dummy (5D, 7F) Integral buffers will be 131072 words long. Raffenetti 1 integral format. Two-electron integral symmetry is turned off. 12 basis functions, 12 primitive gaussians, 12 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 35.6159686260 Hartrees. IExCor= 0 DFT=F Ex=HF Corr=None ExCW=0 ScaHFX= 1.000000 ScaDFX= 1.000000 1.000000 1.000000 1.000000 ScalE2= 1.000000 1.000000 IRadAn= 0 IRanWt= -1 IRanGd= 0 ICorTp=0 NAtoms= 12 NActive= 12 NUniq= 12 SFac= 1.00D+00 NAtFMM= 50 NAOKFM=F Big=F Leave Link 301 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.1 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l402.exe) AMBER calculation of energy and first derivatives. No initial guess density matrices. Enter MMCalc NNonBon 5 10 0 0 0 0 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 Non-bonded terms on-the-fly without fast algorithms, OKV=T OKC=F. Energy per function type: Direct Coulomb + vdW (small) 0.103596726 Direct Coulomb (large) 0.000000000 Direct vdW (large) 2.457864451 Non-direct Coulomb + vdW (small) -0.102041702 Non-direct Coulomb (large) 0.000000000 Non-direct vdW (large) -2.457864451 MM2 Torsion Angle angle 0.005058091 MM2 IP-Bend 0.000000000 MM2 Stretch Cubic 0.049494678 Energy per function class: Coulomb 0.000000000 Vanderwaals 0.001555024 Stretching 0.049494678 Bending 0.000000000 Torsion 0.005058091 Enter VBMMVB module. Call number 2 to VBMMVB. ITYIV( 1) = 1 ITYIV( 2) = 2 ITYIV( 3) = 3 ITYIV( 4) = 4 ITYIV( 5) = 5 ITYIV( 6) = 6 JJ( 1) = 6 JJ( 2) = 6 JJ( 3) = 6 JJ( 4) = 6 JJ( 5) = 6 JJ( 6) = 6 JJ( 7) = 1 JJ( 8) = 1 JJ( 9) = 1 JJ( 10) = 1 JJ( 11) = 1 JJ( 12) = 1 IVAT( 1) = 1 3 IVAT( 2) = 1 4 IVAT( 3) = 2 4 IVAT( 4) = 1 5 IVAT( 5) = 2 5 IVAT( 6) = 3 5 IVAT( 7) = 2 6 IVAT( 8) = 3 6 IVAT( 9) = 4 6 ISUB( 1,1,2,3) = 2 6 7 ISUB( 2,1,2,3) = 1 3 8 ISUB( 3,1,2,3) = 2 4 9 ISUB( 4,1,2,3) = 3 5 10 ISUB( 5,1,2,3) = 4 6 11 ISUB( 6,1,2,3) = 1 5 12 IAt( 1) = 2 3 4 5 6 7 IAt( 2) = 1 3 4 5 6 8 IAt( 3) = 1 2 4 5 6 9 IAt( 4) = 1 2 3 5 6 10 IAt( 5) = 1 2 3 4 6 11 IAt( 6) = 1 2 3 4 5 12 IAt( 7) = 1 IAt( 8) = 2 IAt( 9) = 3 IAt( 10) = 4 IAt( 11) = 5 IAt( 12) = 6 IQdel( 1,1-2) = 3 1 IQdel( 2,1-2) = 4 1 IQdel( 3,1-2) = 5 1 IQdel( 4,1-2) = 4 2 IQdel( 5,1-2) = 5 2 IQdel( 6,1-2) = 6 2 IQdel( 7,1-2) = 3 1 IQdel( 8,1-2) = 5 3 IQdel( 9,1-2) = 6 3 IQdel( 10,1-2) = 4 1 IQdel( 11,1-2) = 4 2 IQdel( 12,1-2) = 6 4 IQdel( 13,1-2) = 5 1 IQdel( 14,1-2) = 5 2 IQdel( 15,1-2) = 5 3 IQdel( 16,1-2) = 6 2 IQdel( 17,1-2) = 6 3 IQdel( 18,1-2) = 6 4 Pi Kij and Qij for I,J= 2 1 K0ij= -0.67975473E-01 Kij= -0.66229959E-01 Q0ij= -0.40569484E-01 Qij= -0.42314998E-01 Sigma Kij and Qij for I,J= 3 1 K0ij= -0.40675541E-02 Kij= -0.33030406E-02 Q0ij= -0.17915000 Qij= -0.18059922 Pi Kij and Qij for I,J= 3 2 K0ij= -0.67976417E-01 Kij= -0.66230902E-01 Q0ij= -0.40569949E-01 Qij= -0.42315463E-01 Sigma Kij and Qij for I,J= 4 1 K0ij= -0.59249436E-03 Kij= -0.22518669E-02 Q0ij= -0.17915000 Qij= -0.17935990 Sigma Kij and Qij for I,J= 4 2 K0ij= -0.40675397E-02 Kij= -0.33030284E-02 Q0ij= -0.17915000 Qij= -0.18059922 Pi Kij and Qij for I,J= 4 3 K0ij= -0.67975499E-01 Kij= -0.66229981E-01 Q0ij= -0.40569496E-01 Qij= -0.42315015E-01 Sigma Kij and Qij for I,J= 5 1 K0ij= -0.40675312E-02 Kij= -0.33030217E-02 Q0ij= -0.17915000 Qij= -0.18059922 Sigma Kij and Qij for I,J= 5 2 K0ij= -0.59248191E-03 Kij= -0.22518520E-02 Q0ij= -0.17915000 Qij= -0.17935990 Sigma Kij and Qij for I,J= 5 3 K0ij= -0.40675349E-02 Kij= -0.33030242E-02 Q0ij= -0.17915000 Qij= -0.18059922 Pi Kij and Qij for I,J= 5 4 K0ij= -0.67976713E-01 Kij= -0.66231198E-01 Q0ij= -0.40570095E-01 Qij= -0.42315610E-01 Pi Kij and Qij for I,J= 6 1 K0ij= -0.67976676E-01 Kij= -0.66231158E-01 Q0ij= -0.40570077E-01 Qij= -0.42315594E-01 Sigma Kij and Qij for I,J= 6 2 K0ij= -0.40675411E-02 Kij= -0.33030291E-02 Q0ij= -0.17915000 Qij= -0.18059922 Sigma Kij and Qij for I,J= 6 3 K0ij= -0.59249061E-03 Kij= -0.22518645E-02 Q0ij= -0.17915000 Qij= -0.17935990 Sigma Kij and Qij for I,J= 6 4 K0ij= -0.40675683E-02 Kij= -0.33030516E-02 Q0ij= -0.17915000 Qij= -0.18059923 Pi Kij and Qij for I,J= 6 5 K0ij= -0.67975261E-01 Kij= -0.66229746E-01 Q0ij= -0.40569379E-01 Qij= -0.42314894E-01 MMVB: Lanczosdiagonalisation of the VB CI hamiltonian Number of configurations of the CI problem : 10 Read guess vector from bucket ---> Possibly unnormalised guess vector <--- 1 0.08690723 2 0.29452760 3 0.29452099 4 0.08690060 5 0.29452869 6 0.67594154 7 0.29450563 8 0.29451226 9 0.29451333 10 0.08690829 Begin Lanczos iteration in Ldriv1 with MaxCyc, Nelec, NSec = 100 6 10 NITR,IFLAG,GAMMA,CUT = 1 1 0.0000745579 0.0000000005 Iteration number 1 Energy computed with trial vector = -0.154173 NITR,IFLAG,GAMMA,CUT = 2 1 0.0062716640 0.0000000005 Iteration number 2 EIGENVALUES OF TRIDIAGONAL FORM -0.154173 0.301721 NITR,IFLAG,GAMMA,CUT = 3 1 0.0348419162 0.0000000005 Iteration number 3 EIGENVALUES OF TRIDIAGONAL FORM -0.154173 0.124409 0.301943 Eigen values and vectors of tridiagonal form 1 -0.154173 -1.000000 0.000164 -0.000004 Eigen values and right eigenvectors of matrix ( 1) Eigenvalue -0.15417333E+00 ( 6) 0.67598 ( 5) 0.29450 ( 2) 0.29450 ( 3) 0.29450 ( 9) 0.29449 ( 8) 0.29449 ( 7) 0.29449 ( 10) 0.08699 ( 1) 0.08699 ( 4) 0.08699 ( QT= -0.25262377 D1QT I= 1 X= 2.457310901934D-05 Y= 9.327790869372D-02 Z= 5.385527116785D-02 I= 2 X= -3.033087210633D-05 Y= 9.327834306183D-02 Z= -5.385503920458D-02 I= 3 X= 1.676410906249D-05 Y= 7.674919523110D-07 Z= -1.077088910277D-01 I= 4 X= 1.754705772586D-06 Y= -9.327872704805D-02 Z= -5.385349429945D-02 I= 5 X= -5.654246130382D-06 Y= -9.327938686680D-02 Z= 5.385341704752D-02 I= 6 X= -1.569566339234D-05 Y= 1.094806153362D-06 Z= 1.077087363217D-01 I= 7 X= -4.388014009694D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 8 X= 8.226519359613D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 9 X= -3.396582478973D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 10 X= -5.535278909210D-07 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 11 X= 3.485919309097D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 I= 12 X= 5.214543485521D-06 Y= 0.000000000000D+00 Z= 0.000000000000D+00 KEig= 1 T= 0.15417333 X Y Z 0.00000 -0.04624 -0.02668 0.00000 -0.04624 0.02668 0.00000 0.00001 0.05338 0.00000 0.04623 0.02670 0.00000 0.04623 -0.02670 0.00000 0.00001 -0.05338 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 ENERGY --- -0.40680 for root no. 1 Spin Density Matrix Root 1 1 1 0.000 2 1 0.434 2 2 0.000 3 1-0.914 3 2 0.434 3 3 0.000 4 1-0.041 4 2-0.914 4 3 0.434 4 4 0.000 5 1-0.914 5 2-0.041 5 3-0.914 5 4 0.434 5 5 0.000 6 1 0.434 6 2-0.914 6 3-0.041 6 4-0.914 6 5 0.434 6 6 0.000 0.0000 Transition Density Matrix 1 1 0.000 2 1 0.000 2 2 0.000 3 1 0.000 3 2 0.000 3 3 0.000 4 1 0.000 4 2 0.000 4 3 0.000 4 4 0.000 5 1 0.000 5 2 0.000 5 3 0.000 5 4 0.000 5 5 0.000 6 1 0.000 6 2 0.000 6 3 0.000 6 4 0.000 6 5 0.000 6 6 0.000 -3.0000 The highest root (chosen eigenvalue) is No. 1 T and derivatives for eigenvalue No. 1 0.15417 X Y Z 0.00000 -0.04624 -0.02668 0.00000 -0.04624 0.02668 0.00000 0.00001 0.05338 0.00000 0.04623 0.02670 0.00000 0.04623 -0.02670 0.00000 0.00001 -0.05338 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Q and derivatives for eigenvalue No. 1 -0.25262 X Y Z 0.00002 0.09328 0.05386 -0.00003 0.09328 -0.05386 0.00002 0.00000 -0.10771 0.00000 -0.09328 -0.05385 -0.00001 -0.09328 0.05385 -0.00002 0.00000 0.10771 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 Total Energy and cartesian deriv. (a.u.) for Root 1 -0.40680 X Y Z 0.00003 0.13951 0.08054 -0.00004 0.13952 -0.08054 0.00002 -0.00001 -0.16109 0.00000 -0.13951 -0.08055 -0.00001 -0.13951 0.08055 -0.00002 -0.00001 0.16109 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00000 MMVB: VB Energy= -0.1541733 for root 1 MMVB: MM Energy= 0.0561078 MMVB: MM+VB Energy= -0.3506893 for root 1 Exit VBMMVB module. Energy= -0.350689309 NIter= 0. Dipole moment= 0.000000 0.000000 0.000000 Derivatives in ZDOGrd: I= 1 X= 1.291480294038D-05 Y= 2.925714527864D-03 Z= 1.689897524719D-03 I= 2 X= -1.660836792768D-05 Y= 2.927211372100D-03 Z= -1.689252929799D-03 I= 3 X= 8.991114993579D-06 Y= -6.003142781587D-07 Z= -3.378690794672D-03 I= 4 X= 1.498305824054D-06 Y= -2.925748039843D-03 Z= -1.688630727782D-03 I= 5 X= -3.986926074039D-06 Y= -2.928384946361D-03 Z= 1.688688962812D-03 I= 6 X= -8.772200340632D-06 Y= 1.570717655942D-06 Z= 3.379035358808D-03 I= 7 X= -2.013272647674D-06 Y= -1.819369713117D-03 Z= -1.050402915171D-03 I= 8 X= 4.647356856485D-06 Y= -1.819300692498D-03 Z= 1.050150510071D-03 I= 9 X= -1.753160334658D-06 Y= 3.514619455369D-08 Z= 2.099886273942D-03 I= 10 X= -6.685284649978D-07 Y= 1.819163645354D-03 Z= 1.050326596425D-03 I= 11 X= 2.633105640719D-06 Y= 1.819858285169D-03 Z= -1.050466638790D-03 I= 12 X= 3.117769534469D-06 Y= -1.499882341310D-07 Z= -2.100541220562D-03 Leave Link 402 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l716.exe) Dipole = 0.00000000D+00 0.00000000D+00 0.00000000D+00 ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000012915 -0.002925715 -0.001689898 2 6 0.000016608 -0.002927211 0.001689253 3 6 -0.000008991 0.000000600 0.003378691 4 6 -0.000001498 0.002925748 0.001688631 5 6 0.000003987 0.002928385 -0.001688689 6 6 0.000008772 -0.000001571 -0.003379035 7 1 0.000002013 0.001819370 0.001050403 8 1 -0.000004647 0.001819301 -0.001050151 9 1 0.000001753 -0.000000035 -0.002099886 10 1 0.000000669 -0.001819164 -0.001050327 11 1 -0.000002633 -0.001819858 0.001050467 12 1 -0.000003118 0.000000150 0.002100541 ------------------------------------------------------------------- Cartesian Forces: Max 0.003379035 RMS 0.001624348 Leave Link 716 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l103.exe) GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GDIIS optimizer. Internal Forces: Max 0.002101277 RMS 0.000819697 Search for a local minimum. Step number 2 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Swaping is turned off. Update second derivatives using D2CorX and points 1 2 DE= -5.79D-03 DEPred=-5.61D-03 R= 1.03D+00 SS= 1.41D+00 RLast= 1.73D-01 DXNew= 5.0454D-01 5.1917D-01 Trust test= 1.03D+00 RLast= 1.73D-01 DXMaxT set to 5.05D-01 ITU= 1 0 Eigenvalues --- 0.02137 0.02137 0.02137 0.02137 0.02137 Eigenvalues --- 0.02137 0.02137 0.02137 0.02137 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.32896 0.36542 Eigenvalues --- 0.36543 0.36543 0.36543 0.36544 0.41992 Eigenvalues --- 0.41993 0.46229 0.46230 0.46231 0.48228 DIIS coeff's: 1.06485 -0.06485 Cosine: 1.000 > 0.500 Length: 1.000 GDIIS step was calculated using 2 of the last 2 vectors. Iteration 1 RMS(Cart)= 0.00153859 RMS(Int)= 0.00000011 Iteration 2 RMS(Cart)= 0.00000010 RMS(Int)= 0.00000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (DIIS) (GDIIS) (Total) R1 2.66027 -0.00128 0.00140 -0.00423 -0.00283 2.65744 R2 2.66026 -0.00128 0.00140 -0.00423 -0.00283 2.65743 R3 2.09970 0.00210 0.00436 0.00211 0.00648 2.10618 R4 2.66026 -0.00128 0.00140 -0.00423 -0.00283 2.65743 R5 2.09970 0.00210 0.00436 0.00211 0.00648 2.10618 R6 2.66027 -0.00128 0.00140 -0.00423 -0.00283 2.65744 R7 2.09970 0.00210 0.00436 0.00211 0.00647 2.10618 R8 2.66026 -0.00128 0.00140 -0.00423 -0.00283 2.65743 R9 2.09970 0.00210 0.00436 0.00211 0.00648 2.10618 R10 2.66027 -0.00128 0.00139 -0.00423 -0.00283 2.65744 R11 2.09970 0.00210 0.00436 0.00211 0.00648 2.10618 R12 2.09970 0.00210 0.00436 0.00211 0.00648 2.10618 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A3 2.09439 0.00000 0.00000 0.00000 0.00000 2.09440 A4 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A5 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A6 2.09439 0.00000 0.00000 0.00000 0.00000 2.09440 A7 2.09439 0.00000 0.00000 0.00000 0.00000 2.09440 A8 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A9 2.09440 0.00000 0.00000 0.00000 0.00000 2.09439 A10 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A11 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A12 2.09439 0.00000 0.00000 0.00000 0.00000 2.09440 A13 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 A14 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A15 2.09439 0.00000 0.00000 0.00000 0.00000 2.09440 A16 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A17 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A18 2.09439 0.00000 0.00000 0.00000 0.00000 2.09439 D1 -0.00005 0.00000 0.00000 0.00020 0.00020 0.00015 D2 -3.14159 0.00000 0.00000 -0.00003 -0.00003 3.14157 D3 3.14157 0.00000 0.00000 0.00008 0.00008 -3.14153 D4 0.00004 0.00000 0.00000 -0.00015 -0.00015 -0.00011 D5 0.00003 0.00000 0.00000 -0.00013 -0.00013 -0.00010 D6 3.14159 0.00000 0.00000 0.00001 0.00001 -3.14159 D7 -3.14159 0.00000 0.00000 -0.00001 -0.00001 3.14158 D8 -0.00003 0.00000 0.00000 0.00013 0.00013 0.00009 D9 0.00004 0.00000 0.00000 -0.00016 -0.00015 -0.00011 D10 -3.14158 0.00000 0.00000 -0.00008 -0.00008 3.14153 D11 3.14158 0.00000 0.00000 0.00008 0.00008 -3.14153 D12 -0.00004 0.00000 0.00000 0.00016 0.00016 0.00012 D13 -0.00001 0.00000 0.00000 0.00003 0.00003 0.00002 D14 3.14158 0.00000 0.00000 0.00004 0.00004 -3.14156 D15 -3.14158 0.00000 0.00000 -0.00005 -0.00004 3.14156 D16 0.00001 0.00000 0.00000 -0.00003 -0.00003 -0.00002 D17 -0.00001 0.00000 0.00000 0.00004 0.00004 0.00003 D18 -3.14158 0.00000 0.00000 -0.00007 -0.00007 3.14154 D19 3.14159 0.00000 0.00000 0.00003 0.00003 -3.14157 D20 0.00002 0.00000 0.00000 -0.00008 -0.00008 -0.00006 D21 0.00000 0.00000 0.00000 0.00001 0.00001 0.00000 D22 -3.14156 0.00000 0.00000 -0.00013 -0.00013 3.14149 D23 3.14157 0.00000 0.00000 0.00012 0.00012 -3.14150 D24 0.00001 0.00000 0.00000 -0.00002 -0.00002 -0.00001 Item Value Threshold Converged? Maximum Force 0.002101 0.002500 YES RMS Force 0.000820 0.001667 YES Maximum Displacement 0.003645 0.010000 YES RMS Displacement 0.001539 0.006667 YES Predicted change in Energy=-5.166978D-05 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4078 -DE/DX = -0.0013 ! ! R2 R(1,6) 1.4077 -DE/DX = -0.0013 ! ! R3 R(1,7) 1.1111 -DE/DX = 0.0021 ! ! R4 R(2,3) 1.4077 -DE/DX = -0.0013 ! ! R5 R(2,8) 1.1111 -DE/DX = 0.0021 ! ! R6 R(3,4) 1.4078 -DE/DX = -0.0013 ! ! R7 R(3,9) 1.1111 -DE/DX = 0.0021 ! ! R8 R(4,5) 1.4077 -DE/DX = -0.0013 ! ! R9 R(4,10) 1.1111 -DE/DX = 0.0021 ! ! R10 R(5,6) 1.4078 -DE/DX = -0.0013 ! ! R11 R(5,11) 1.1111 -DE/DX = 0.0021 ! ! R12 R(6,12) 1.1111 -DE/DX = 0.0021 ! ! A1 A(2,1,6) 120.0001 -DE/DX = 0.0 ! ! A2 A(2,1,7) 120.0 -DE/DX = 0.0 ! ! A3 A(6,1,7) 120.0 -DE/DX = 0.0 ! ! A4 A(1,2,3) 119.9999 -DE/DX = 0.0 ! ! A5 A(1,2,8) 120.0001 -DE/DX = 0.0 ! ! A6 A(3,2,8) 120.0 -DE/DX = 0.0 ! ! A7 A(2,3,4) 120.0 -DE/DX = 0.0 ! ! A8 A(2,3,9) 120.0 -DE/DX = 0.0 ! ! A9 A(4,3,9) 120.0 -DE/DX = 0.0 ! ! A10 A(3,4,5) 120.0001 -DE/DX = 0.0 ! ! A11 A(3,4,10) 119.9999 -DE/DX = 0.0 ! ! A12 A(5,4,10) 119.9999 -DE/DX = 0.0 ! ! A13 A(4,5,6) 119.9999 -DE/DX = 0.0 ! ! A14 A(4,5,11) 120.0002 -DE/DX = 0.0 ! ! A15 A(6,5,11) 120.0 -DE/DX = 0.0 ! ! A16 A(1,6,5) 120.0 -DE/DX = 0.0 ! ! A17 A(1,6,12) 120.0001 -DE/DX = 0.0 ! ! A18 A(5,6,12) 119.9999 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) -0.0029 -DE/DX = 0.0 ! ! D2 D(6,1,2,8) 180.0003 -DE/DX = 0.0 ! ! D3 D(7,1,2,3) -180.0011 -DE/DX = 0.0 ! ! D4 D(7,1,2,8) 0.0021 -DE/DX = 0.0 ! ! D5 D(2,1,6,5) 0.0019 -DE/DX = 0.0 ! ! D6 D(2,1,6,12) -180.0001 -DE/DX = 0.0 ! ! D7 D(7,1,6,5) 180.0001 -DE/DX = 0.0 ! ! D8 D(7,1,6,12) -0.0018 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) 0.0022 -DE/DX = 0.0 ! ! D10 D(1,2,3,9) 180.0009 -DE/DX = 0.0 ! ! D11 D(8,2,3,4) -180.001 -DE/DX = 0.0 ! ! D12 D(8,2,3,9) -0.0023 -DE/DX = 0.0 ! ! D13 D(2,3,4,5) -0.0006 -DE/DX = 0.0 ! ! D14 D(2,3,4,10) -180.0008 -DE/DX = 0.0 ! ! D15 D(9,3,4,5) 180.0007 -DE/DX = 0.0 ! ! D16 D(9,3,4,10) 0.0005 -DE/DX = 0.0 ! ! D17 D(3,4,5,6) -0.0004 -DE/DX = 0.0 ! ! D18 D(3,4,5,11) 180.0009 -DE/DX = 0.0 ! ! D19 D(10,4,5,6) -180.0002 -DE/DX = 0.0 ! ! D20 D(10,4,5,11) 0.0011 -DE/DX = 0.0 ! ! D21 D(4,5,6,1) -0.0003 -DE/DX = 0.0 ! ! D22 D(4,5,6,12) 180.0017 -DE/DX = 0.0 ! ! D23 D(11,5,6,1) -180.0016 -DE/DX = 0.0 ! ! D24 D(11,5,6,12) 0.0004 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Largest change from initial coordinates is atom 8 0.047 Angstoms. Leave Link 103 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l202.exe) Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 90000001 0.000009 1.219149 0.703877 2 6 90000001 -0.000013 1.219151 -0.703878 3 6 90000001 0.000009 0.000004 -1.407753 4 6 90000001 0.000006 -1.219147 -0.703875 5 6 90000001 -0.000007 -1.219150 0.703873 6 6 90000001 -0.000008 0.000002 1.407751 7 1 90000002 0.000010 2.181400 1.259435 8 1 90000002 0.000006 2.181404 -1.259435 9 1 90000002 0.000007 0.000004 -2.518868 10 1 90000002 0.000010 -2.181400 -1.259433 11 1 90000002 0.000006 -2.181402 1.259430 12 1 90000002 0.000010 0.000000 2.518865 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.407755 0.000000 3 C 2.438298 1.407750 0.000000 4 C 2.815503 2.438298 1.407755 0.000000 5 C 2.438299 2.815506 2.438299 1.407748 0.000000 6 C 1.407749 2.438298 2.815504 2.438297 1.407756 7 H 1.111113 2.186440 3.445632 3.926616 3.445634 8 H 2.186442 1.111114 2.186436 3.445634 3.926620 9 H 3.445635 2.186437 1.111115 2.186442 3.445634 10 H 3.926616 3.445633 2.186440 1.111114 2.186434 11 H 3.445632 3.926619 3.445634 2.186436 1.111113 12 H 2.186436 3.445635 3.926618 3.445631 2.186441 6 7 8 9 10 6 C 0.000000 7 H 2.186435 0.000000 8 H 3.445634 2.518870 0.000000 9 H 3.926619 4.362804 2.518864 0.000000 10 H 3.445633 5.037730 4.362803 2.518868 0.000000 11 H 2.186441 4.362802 5.037733 4.362805 2.518863 12 H 1.111114 2.518863 4.362805 5.037733 4.362802 11 12 11 H 0.000000 12 H 2.518867 0.000000 Symmetry turned off by external request. Stoichiometry C6H6 Framework group C1[X(C6H6)] Deg. of freedom 30 Full point group C1 NOp 1 Rotational constants (GHZ): 5.5826629 5.5826557 2.7913297 Leave Link 202 at Wed Feb 15 11:22:01 2012, MaxMem= 196608000 cpu: 0.0 (Enter /home/gaussian-devel/gaussiandvh08_pgi_806/gdv/l9999.exe) Test job not archived. 1\1\GINC-CX1-50-4-1\FOpt\RAMBER\ZDO\C6H6\JJSERRAN\15-Feb-2012\0\\#p am ber=(softonly,lastequiv) test geom=connectivity opt=(nomicro,rfo,loose ) iop(1/19=11,1/117=10001,1/119=-3,2/15=1,4/31=1,4/33=2)\\MMVB analysi s BENZENE\\0,1\C,0.0000087431,1.2191485502,0.7038772806\C,-0.000012948 5,1.2191509986,-0.7038775916\C,0.0000089609,0.0000039398,-1.4077528019 \C,0.0000057548,-1.2191474188,-0.7038754236\C,-0.0000068633,-1.2191503 52,0.7038729518\C,-0.0000083337,0.0000021295,1.4077508813\H,0.00000956 73,2.1814004863,1.2594349663\H,0.0000062308,2.1814035932,-1.2594347899 \H,0.0000070413,0.0000041695,-2.5188679261\H,0.0000102012,-2.181399670 9,-1.2594333358\H,0.000005886,-2.1814017761,1.2594299345\H,0.000009760 3,0.0000003507,2.5188648544\\Version=EM64L-GDVRevH.08\HF=-0.3506893\RM SD=0.000e+00\RMSF=1.624e-03\Dipole=0.,0.,0.\PG=C01 [X(C6H6)]\\@ WE'RE IN THE POSITION OF A VISITOR FROM ANOTHER DIMENSION WHO COMES TO EARTH AND SEES A CHESS MATCH. ASSUMING HE KNOWS IT'S A GAME, HE'S GOT TWO PROBLEMS: FIRST, FIGURE OUT THE RULES, AND SECOND, FIGURE OUT HOW TO WIN. NINETY PERCENT OF SCIENCE (INCLUDING VIRTUALLY ALL OF CHEMISRY) IS IN THAT SECOND CATEGORY. THEY'RE TRYING TO APPLY THE LAWS THAT ARE ALREADY KNOWN. -- SHELDON GLASHOW, 1979 Job cpu time: 0 days 0 hours 0 minutes 0.9 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian DV at Wed Feb 15 11:22:01 2012.