Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/102181/Gau-26322.inp" -scrdir="/home/scan-user-1/run/102181/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 26323. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 17-Nov-2014 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.8292752.cx1b/rwf ---------------------------------------------------------------------- # opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine scf=conver=9 ---------------------------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,6=9,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,6=9,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------------------------ Boratabenzene 6-31g Optimisation C2v ------------------------------------ Symbolic Z-matrix: Charge = -1 Multiplicity = 1 C 0. 1.21945 -0.677 C 0. 0. -1.3752 C 0. -1.21945 -0.677 C 0. -1.27771 0.72055 C 0. 1.27771 0.72055 H 0. 2.142 -1.27038 H 0. 0. -2.46669 H 0. -2.142 -1.27038 H 0. -2.28263 1.16004 H 0. 0. 2.75139 H 0. 2.28263 1.16004 B 0. 0. 1.53292 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4052 estimate D2E/DX2 ! ! R2 R(1,5) 1.3988 estimate D2E/DX2 ! ! R3 R(1,6) 1.0969 estimate D2E/DX2 ! ! R4 R(2,3) 1.4052 estimate D2E/DX2 ! ! R5 R(2,7) 1.0915 estimate D2E/DX2 ! ! R6 R(3,4) 1.3988 estimate D2E/DX2 ! ! R7 R(3,8) 1.0969 estimate D2E/DX2 ! ! R8 R(4,9) 1.0968 estimate D2E/DX2 ! ! R9 R(4,12) 1.5141 estimate D2E/DX2 ! ! R10 R(5,11) 1.0968 estimate D2E/DX2 ! ! R11 R(5,12) 1.5141 estimate D2E/DX2 ! ! R12 R(10,12) 1.2185 estimate D2E/DX2 ! ! A1 A(2,1,5) 122.1808 estimate D2E/DX2 ! ! A2 A(2,1,6) 117.4578 estimate D2E/DX2 ! ! A3 A(5,1,6) 120.3614 estimate D2E/DX2 ! ! A4 A(1,2,3) 120.413 estimate D2E/DX2 ! ! A5 A(1,2,7) 119.7935 estimate D2E/DX2 ! ! A6 A(3,2,7) 119.7935 estimate D2E/DX2 ! ! A7 A(2,3,4) 122.1808 estimate D2E/DX2 ! ! A8 A(2,3,8) 117.4578 estimate D2E/DX2 ! ! A9 A(4,3,8) 120.3614 estimate D2E/DX2 ! ! A10 A(3,4,9) 116.0087 estimate D2E/DX2 ! ! A11 A(3,4,12) 120.0608 estimate D2E/DX2 ! ! A12 A(9,4,12) 123.9305 estimate D2E/DX2 ! ! A13 A(1,5,11) 116.0087 estimate D2E/DX2 ! ! A14 A(1,5,12) 120.0608 estimate D2E/DX2 ! ! A15 A(11,5,12) 123.9305 estimate D2E/DX2 ! ! A16 A(4,12,5) 115.1038 estimate D2E/DX2 ! ! A17 A(4,12,10) 122.4481 estimate D2E/DX2 ! ! A18 A(5,12,10) 122.4481 estimate D2E/DX2 ! ! D1 D(5,1,2,3) 0.0 estimate D2E/DX2 ! ! D2 D(5,1,2,7) 180.0 estimate D2E/DX2 ! ! D3 D(6,1,2,3) 180.0 estimate D2E/DX2 ! ! D4 D(6,1,2,7) 0.0 estimate D2E/DX2 ! ! D5 D(2,1,5,11) 180.0 estimate D2E/DX2 ! ! D6 D(2,1,5,12) 0.0 estimate D2E/DX2 ! ! D7 D(6,1,5,11) 0.0 estimate D2E/DX2 ! ! D8 D(6,1,5,12) 180.0 estimate D2E/DX2 ! ! D9 D(1,2,3,4) 0.0 estimate D2E/DX2 ! ! D10 D(1,2,3,8) 180.0 estimate D2E/DX2 ! ! D11 D(7,2,3,4) 180.0 estimate D2E/DX2 ! ! D12 D(7,2,3,8) 0.0 estimate D2E/DX2 ! ! D13 D(2,3,4,9) 180.0 estimate D2E/DX2 ! ! D14 D(2,3,4,12) 0.0 estimate D2E/DX2 ! ! D15 D(8,3,4,9) 0.0 estimate D2E/DX2 ! ! D16 D(8,3,4,12) 180.0 estimate D2E/DX2 ! ! D17 D(3,4,12,5) 0.0 estimate D2E/DX2 ! ! D18 D(3,4,12,10) 180.0 estimate D2E/DX2 ! ! D19 D(9,4,12,5) 180.0 estimate D2E/DX2 ! ! D20 D(9,4,12,10) 0.0 estimate D2E/DX2 ! ! D21 D(1,5,12,4) 0.0 estimate D2E/DX2 ! ! D22 D(1,5,12,10) 180.0 estimate D2E/DX2 ! ! D23 D(11,5,12,4) 180.0 estimate D2E/DX2 ! ! D24 D(11,5,12,10) 0.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.219450 -0.677002 2 6 0 0.000000 0.000000 -1.375203 3 6 0 0.000000 -1.219450 -0.677002 4 6 0 0.000000 -1.277715 0.720552 5 6 0 0.000000 1.277715 0.720552 6 1 0 0.000000 2.142000 -1.270377 7 1 0 0.000000 0.000000 -2.466695 8 1 0 0.000000 -2.142000 -1.270377 9 1 0 0.000000 -2.282632 1.160037 10 1 0 0.000000 0.000000 2.751390 11 1 0 0.000000 2.282632 1.160037 12 5 0 0.000000 0.000000 1.532920 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.405184 0.000000 3 C 2.438899 1.405184 0.000000 4 C 2.861640 2.454535 1.398768 0.000000 5 C 1.398768 2.454535 2.861640 2.555429 0.000000 6 H 1.096902 2.144564 3.413421 3.957050 2.170435 7 H 2.165655 1.091492 2.165655 3.433817 3.433817 8 H 3.413421 2.144564 1.096902 2.170435 3.957050 9 H 3.954654 3.411429 2.122514 1.096816 3.587369 10 H 3.638809 4.126593 3.638809 2.399346 2.399346 11 H 2.122514 3.411429 3.954654 3.587369 1.096816 12 B 2.524047 2.908123 2.524047 1.514099 1.514099 6 7 8 9 10 6 H 0.000000 7 H 2.453435 0.000000 8 H 4.284001 2.453435 0.000000 9 H 5.048196 4.285276 2.434479 0.000000 10 H 4.556619 5.218085 4.556619 2.782591 0.000000 11 H 2.434479 4.285276 5.048196 4.565264 2.782591 12 B 3.527979 3.999615 3.527979 2.312888 1.218470 11 12 11 H 0.000000 12 B 2.312888 0.000000 Stoichiometry C5H6B(1-) Framework group C2V[C2(HBCH),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.219450 0.677002 2 6 0 0.000000 0.000000 1.375203 3 6 0 0.000000 -1.219450 0.677002 4 6 0 0.000000 -1.277715 -0.720552 5 6 0 0.000000 1.277715 -0.720552 6 1 0 0.000000 2.142000 1.270377 7 1 0 0.000000 0.000000 2.466695 8 1 0 0.000000 -2.142000 1.270377 9 1 0 0.000000 -2.282632 -1.160037 10 1 0 0.000000 0.000000 -2.751390 11 1 0 0.000000 2.282632 -1.160037 12 5 0 0.000000 0.000000 -1.532920 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5098160 5.3410761 2.7120670 Standard basis: 6-31G(d,p) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A1 symmetry. There are 12 symmetry adapted cartesian basis functions of A2 symmetry. There are 18 symmetry adapted cartesian basis functions of B1 symmetry. There are 38 symmetry adapted cartesian basis functions of B2 symmetry. There are 52 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 18 symmetry adapted basis functions of B1 symmetry. There are 38 symmetry adapted basis functions of B2 symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 188.3726194072 Hartrees. NAtoms= 12 NActive= 12 NUniq= 8 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 1.21D-03 NBF= 52 12 18 38 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 52 12 18 38 ExpMin= 1.27D-01 ExpMax= 3.05D+03 ExpMxC= 4.57D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B2) (A1) (A1) (B1) (A1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (B2) (A1) (B1) (A1) (A2) (B2) (A1) (B1) (A2) (B1) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (B2) (A2) (B1) (A1) (A1) (B1) (A2) (A2) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (B2) (B1) (A1) (B2) (B1) (B2) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A2) (A2) (A1) (B2) (B1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=33472662. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -219.020522979 A.U. after 14 cycles NFock= 14 Conv=0.76D-09 -V/T= 2.0096 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (B2) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (B2) (B2) (A1) (B1) (A2) (B1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (B1) (A1) (B1) (A2) (B2) (A2) (B1) (A1) (B2) (A1) (A1) (A1) (B2) (B1) (B2) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (B2) (B1) (A1) (B1) (B2) (B1) (B2) (A2) (A1) (B2) (A1) (B1) (B2) (A2) (A2) (A1) (B1) (B2) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -9.98369 -9.98368 -9.97444 -9.94511 -9.94509 Alpha occ. eigenvalues -- -6.47352 -0.60437 -0.51956 -0.46083 -0.36648 Alpha occ. eigenvalues -- -0.32170 -0.28948 -0.20936 -0.20373 -0.18995 Alpha occ. eigenvalues -- -0.16884 -0.13209 -0.09169 -0.08375 -0.03494 Alpha occ. eigenvalues -- 0.01095 Alpha virt. eigenvalues -- 0.21473 0.23248 0.26833 0.31517 0.33510 Alpha virt. eigenvalues -- 0.35290 0.35785 0.37026 0.41018 0.45220 Alpha virt. eigenvalues -- 0.48963 0.50923 0.51674 0.61209 0.61785 Alpha virt. eigenvalues -- 0.67923 0.69086 0.73809 0.76097 0.78832 Alpha virt. eigenvalues -- 0.80226 0.80419 0.81754 0.82590 0.83739 Alpha virt. eigenvalues -- 0.85613 0.86863 0.93700 0.98931 1.00624 Alpha virt. eigenvalues -- 1.01165 1.03236 1.03481 1.05601 1.11352 Alpha virt. eigenvalues -- 1.13412 1.16334 1.18819 1.26626 1.28282 Alpha virt. eigenvalues -- 1.30646 1.39444 1.39746 1.40913 1.48828 Alpha virt. eigenvalues -- 1.55974 1.58321 1.61785 1.62227 1.63728 Alpha virt. eigenvalues -- 1.75574 1.84651 1.86831 2.00409 2.06991 Alpha virt. eigenvalues -- 2.07254 2.08975 2.11659 2.11760 2.15272 Alpha virt. eigenvalues -- 2.18607 2.20394 2.28193 2.36341 2.45628 Alpha virt. eigenvalues -- 2.48175 2.50359 2.52048 2.53012 2.53654 Alpha virt. eigenvalues -- 2.58797 2.59187 2.60333 2.66647 2.66850 Alpha virt. eigenvalues -- 2.67681 2.73906 2.74840 2.77918 2.81021 Alpha virt. eigenvalues -- 2.88085 2.91980 2.93107 3.13326 3.19471 Alpha virt. eigenvalues -- 3.24203 3.31687 3.41497 3.42256 3.50886 Alpha virt. eigenvalues -- 3.62023 3.66280 3.86816 4.07554 4.38385 Alpha virt. eigenvalues -- 4.41710 4.61103 4.68165 4.95135 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.860404 0.528378 -0.039735 -0.031098 0.574429 0.322494 2 C 0.528378 4.990371 0.528378 -0.037409 -0.037409 -0.070278 3 C -0.039735 0.528378 4.860404 0.574429 -0.031098 0.007306 4 C -0.031098 -0.037409 0.574429 4.812594 -0.011783 0.000212 5 C 0.574429 -0.037409 -0.031098 -0.011783 4.812594 -0.052681 6 H 0.322494 -0.070278 0.007306 0.000212 -0.052681 0.836436 7 H -0.054928 0.340039 -0.054928 0.006201 0.006201 -0.009967 8 H 0.007306 -0.070278 0.322494 -0.052681 0.000212 -0.000270 9 H 0.000827 0.008782 -0.043543 0.310660 0.003114 0.000018 10 H 0.001128 0.001589 0.001128 -0.026245 -0.026245 -0.000189 11 H -0.043543 0.008782 0.000827 0.003114 0.310660 -0.016114 12 B -0.017386 -0.078137 -0.017386 0.559736 0.559736 0.009125 7 8 9 10 11 12 1 C -0.054928 0.007306 0.000827 0.001128 -0.043543 -0.017386 2 C 0.340039 -0.070278 0.008782 0.001589 0.008782 -0.078137 3 C -0.054928 0.322494 -0.043543 0.001128 0.000827 -0.017386 4 C 0.006201 -0.052681 0.310660 -0.026245 0.003114 0.559736 5 C 0.006201 0.000212 0.003114 -0.026245 0.310660 0.559736 6 H -0.009967 -0.000270 0.000018 -0.000189 -0.016114 0.009125 7 H 0.803714 -0.009967 -0.000283 0.000012 -0.000283 0.000675 8 H -0.009967 0.836436 -0.016114 -0.000189 0.000018 0.009125 9 H -0.000283 -0.016114 0.840732 -0.002385 -0.000154 -0.060624 10 H 0.000012 -0.000189 -0.002385 0.957640 -0.002385 0.320823 11 H -0.000283 0.000018 -0.000154 -0.002385 0.840732 -0.060624 12 B 0.000675 0.009125 -0.060624 0.320823 -0.060624 3.844703 Mulliken charges: 1 1 C -0.108277 2 C -0.112807 3 C -0.108277 4 C -0.107730 5 C -0.107730 6 H -0.026093 7 H -0.026487 8 H -0.026093 9 H -0.041029 10 H -0.224682 11 H -0.041029 12 B -0.069766 Sum of Mulliken charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.134370 2 C -0.139293 3 C -0.134370 4 C -0.148760 5 C -0.148760 12 B -0.294448 Electronic spatial extent (au): = 498.8890 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 2.8453 Tot= 2.8453 Quadrupole moment (field-independent basis, Debye-Ang): XX= -41.9730 YY= -43.8547 ZZ= -49.9599 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.2895 YY= 1.4078 ZZ= -4.6973 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 28.3854 XYY= 0.0000 XXY= 0.0000 XXZ= 2.6203 XZZ= 0.0000 YZZ= 0.0000 YYZ= 4.6398 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -47.1653 YYYY= -364.7331 ZZZZ= -431.1163 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -70.9387 XXZZ= -73.2468 YYZZ= -124.8753 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.883726194072D+02 E-N=-8.921770387115D+02 KE= 2.169337290434D+02 Symmetry A1 KE= 1.339790921465D+02 Symmetry A2 KE= 2.150440589017D+00 Symmetry B1 KE= 3.751899636934D+00 Symmetry B2 KE= 7.705229667100D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 -0.000022809 -0.000061213 2 6 0.000000000 0.000000000 0.000023050 3 6 0.000000000 0.000022809 -0.000061213 4 6 0.000000000 0.000008221 0.000050076 5 6 0.000000000 -0.000008221 0.000050076 6 1 0.000000000 -0.000004311 -0.000006105 7 1 0.000000000 0.000000000 -0.000001257 8 1 0.000000000 0.000004311 -0.000006105 9 1 0.000000000 0.000001086 0.000008427 10 1 0.000000000 0.000000000 -0.000010245 11 1 0.000000000 -0.000001086 0.000008427 12 5 0.000000000 0.000000000 0.000006082 ------------------------------------------------------------------- Cartesian Forces: Max 0.000061213 RMS 0.000020149 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000056511 RMS 0.000012694 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01109 0.01335 0.01513 0.01602 0.01898 Eigenvalues --- 0.02020 0.02043 0.02064 0.02071 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.23365 0.30111 Eigenvalues --- 0.30575 0.34027 0.34027 0.34037 0.34037 Eigenvalues --- 0.34641 0.42357 0.42937 0.45039 0.45824 RFO step: Lambda=-2.17408904D-08 EMin= 1.10873994D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00005362 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.00D-13 for atom 11. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65541 -0.00003 0.00000 -0.00006 -0.00006 2.65535 R2 2.64329 0.00006 0.00000 0.00012 0.00012 2.64341 R3 2.07284 0.00000 0.00000 0.00000 0.00000 2.07284 R4 2.65541 -0.00003 0.00000 -0.00006 -0.00006 2.65535 R5 2.06262 0.00000 0.00000 0.00000 0.00000 2.06262 R6 2.64329 0.00006 0.00000 0.00012 0.00012 2.64341 R7 2.07284 0.00000 0.00000 0.00000 0.00000 2.07284 R8 2.07268 0.00000 0.00000 0.00001 0.00001 2.07269 R9 2.86123 -0.00001 0.00000 -0.00004 -0.00004 2.86120 R10 2.07268 0.00000 0.00000 0.00001 0.00001 2.07269 R11 2.86123 -0.00001 0.00000 -0.00004 -0.00004 2.86120 R12 2.30257 -0.00001 0.00000 -0.00004 -0.00004 2.30253 A1 2.13246 0.00000 0.00000 0.00000 0.00000 2.13246 A2 2.05003 -0.00001 0.00000 -0.00005 -0.00005 2.04998 A3 2.10070 0.00001 0.00000 0.00005 0.00005 2.10075 A4 2.10160 0.00000 0.00000 0.00000 0.00000 2.10161 A5 2.09079 0.00000 0.00000 0.00000 0.00000 2.09079 A6 2.09079 0.00000 0.00000 0.00000 0.00000 2.09079 A7 2.13246 0.00000 0.00000 0.00000 0.00000 2.13246 A8 2.05003 -0.00001 0.00000 -0.00005 -0.00005 2.04998 A9 2.10070 0.00001 0.00000 0.00005 0.00005 2.10075 A10 2.02473 0.00001 0.00000 0.00005 0.00005 2.02479 A11 2.09546 0.00000 0.00000 0.00000 0.00000 2.09546 A12 2.16299 -0.00001 0.00000 -0.00005 -0.00005 2.16294 A13 2.02473 0.00001 0.00000 0.00005 0.00005 2.02479 A14 2.09546 0.00000 0.00000 0.00000 0.00000 2.09546 A15 2.16299 -0.00001 0.00000 -0.00005 -0.00005 2.16294 A16 2.00894 0.00000 0.00000 -0.00001 -0.00001 2.00893 A17 2.13712 0.00000 0.00000 0.00001 0.00001 2.13713 A18 2.13712 0.00000 0.00000 0.00001 0.00001 2.13713 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000057 0.000015 NO RMS Force 0.000013 0.000010 NO Maximum Displacement 0.000155 0.000060 NO RMS Displacement 0.000054 0.000040 NO Predicted change in Energy=-1.087044D-08 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.219423 -0.677035 2 6 0 0.000000 0.000000 -1.375219 3 6 0 0.000000 -1.219423 -0.677035 4 6 0 0.000000 -1.277694 0.720583 5 6 0 0.000000 1.277694 0.720583 6 1 0 0.000000 2.141943 -1.270456 7 1 0 0.000000 0.000000 -2.466713 8 1 0 0.000000 -2.141943 -1.270456 9 1 0 0.000000 -2.282594 1.160119 10 1 0 0.000000 0.000000 2.751395 11 1 0 0.000000 2.282594 1.160119 12 5 0 0.000000 0.000000 1.532948 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.405152 0.000000 3 C 2.438846 1.405152 0.000000 4 C 2.861631 2.454565 1.398833 0.000000 5 C 1.398833 2.454565 2.861631 2.555389 0.000000 6 H 1.096901 2.144504 3.413346 3.957039 2.170522 7 H 2.165627 1.091494 2.165627 3.433855 3.433855 8 H 3.413346 2.144504 1.096901 2.170522 3.957039 9 H 3.954650 3.411477 2.122608 1.096820 3.587317 10 H 3.638836 4.126615 3.638836 2.399312 2.399312 11 H 2.122608 3.411477 3.954650 3.587317 1.096820 12 B 2.524088 2.908168 2.524088 1.514081 1.514081 6 7 8 9 10 6 H 0.000000 7 H 2.453355 0.000000 8 H 4.283887 2.453355 0.000000 9 H 5.048190 4.285341 2.434641 0.000000 10 H 4.556667 5.218108 4.556667 2.782516 0.000000 11 H 2.434641 4.285341 5.048190 4.565187 2.782516 12 B 3.528031 3.999662 3.528031 2.312842 1.218447 11 12 11 H 0.000000 12 B 2.312842 0.000000 Stoichiometry C5H6B(1-) Framework group C2V[C2(HBCH),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.219423 0.677035 2 6 0 0.000000 0.000000 1.375220 3 6 0 0.000000 -1.219423 0.677035 4 6 0 0.000000 -1.277694 -0.720583 5 6 0 0.000000 1.277694 -0.720583 6 1 0 0.000000 2.141943 1.270457 7 1 0 0.000000 0.000000 2.466713 8 1 0 0.000000 -2.141943 1.270457 9 1 0 0.000000 -2.282594 -1.160119 10 1 0 0.000000 0.000000 -2.751395 11 1 0 0.000000 2.282594 -1.160119 12 5 0 0.000000 0.000000 -1.532948 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5095407 5.3412825 2.7120535 Standard basis: 6-31G(d,p) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A1 symmetry. There are 12 symmetry adapted cartesian basis functions of A2 symmetry. There are 18 symmetry adapted cartesian basis functions of B1 symmetry. There are 38 symmetry adapted cartesian basis functions of B2 symmetry. There are 52 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 18 symmetry adapted basis functions of B1 symmetry. There are 38 symmetry adapted basis functions of B2 symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 188.3720202727 Hartrees. NAtoms= 12 NActive= 12 NUniq= 8 SFac= 2.25D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 1.21D-03 NBF= 52 12 18 38 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 52 12 18 38 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A2) (B1) Virtual (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A2) (A2) (A2) (A2) (A2) (A2) (A2) (A2) (A2) (A2) (A2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) Keep R1 ints in memory in symmetry-blocked form, NReq=33472662. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -219.020522989 A.U. after 7 cycles NFock= 7 Conv=0.66D-09 -V/T= 2.0096 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 0.000000000 0.000004189 -0.000004406 2 6 0.000000000 0.000000000 0.000011719 3 6 0.000000000 -0.000004189 -0.000004406 4 6 0.000000000 0.000000007 -0.000000488 5 6 0.000000000 -0.000000007 -0.000000488 6 1 0.000000000 0.000000402 0.000001219 7 1 0.000000000 0.000000000 -0.000000466 8 1 0.000000000 -0.000000402 0.000001219 9 1 0.000000000 0.000000166 -0.000000359 10 1 0.000000000 0.000000000 -0.000000991 11 1 0.000000000 -0.000000166 -0.000000359 12 5 0.000000000 0.000000000 -0.000002196 ------------------------------------------------------------------- Cartesian Forces: Max 0.000011719 RMS 0.000002480 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000006581 RMS 0.000001651 Search for a local minimum. Step number 2 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 DE= -1.04D-08 DEPred=-1.09D-08 R= 9.57D-01 Trust test= 9.57D-01 RLast= 2.51D-04 DXMaxT set to 3.00D-01 ITU= 0 0 Eigenvalues --- 0.01109 0.01335 0.01513 0.01602 0.01898 Eigenvalues --- 0.02020 0.02043 0.02064 0.02071 0.15889 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16218 Eigenvalues --- 0.21735 0.22000 0.22051 0.23435 0.30169 Eigenvalues --- 0.30575 0.34023 0.34027 0.34037 0.34048 Eigenvalues --- 0.34634 0.42357 0.42755 0.45039 0.47916 En-DIIS/RFO-DIIS IScMMF= 0 using points: 2 1 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.95872 0.04128 Iteration 1 RMS(Cart)= 0.00000901 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.67D-13 for atom 8. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.65535 0.00000 0.00000 0.00000 0.00000 2.65535 R2 2.64341 0.00000 -0.00001 0.00000 0.00000 2.64341 R3 2.07284 0.00000 0.00000 0.00000 0.00000 2.07284 R4 2.65535 0.00000 0.00000 0.00000 0.00000 2.65535 R5 2.06262 0.00000 0.00000 0.00000 0.00000 2.06263 R6 2.64341 0.00000 -0.00001 0.00000 0.00000 2.64341 R7 2.07284 0.00000 0.00000 0.00000 0.00000 2.07284 R8 2.07269 0.00000 0.00000 0.00000 0.00000 2.07269 R9 2.86120 0.00000 0.00000 0.00000 0.00000 2.86120 R10 2.07269 0.00000 0.00000 0.00000 0.00000 2.07269 R11 2.86120 0.00000 0.00000 0.00000 0.00000 2.86120 R12 2.30253 0.00000 0.00000 -0.00001 -0.00001 2.30253 A1 2.13246 0.00000 0.00000 -0.00002 -0.00002 2.13244 A2 2.04998 0.00000 0.00000 0.00001 0.00002 2.04999 A3 2.10075 0.00000 0.00000 0.00000 0.00000 2.10075 A4 2.10161 0.00001 0.00000 0.00003 0.00003 2.10163 A5 2.09079 0.00000 0.00000 -0.00001 -0.00001 2.09078 A6 2.09079 0.00000 0.00000 -0.00001 -0.00001 2.09078 A7 2.13246 0.00000 0.00000 -0.00002 -0.00002 2.13244 A8 2.04998 0.00000 0.00000 0.00001 0.00002 2.04999 A9 2.10075 0.00000 0.00000 0.00000 0.00000 2.10075 A10 2.02479 0.00000 0.00000 0.00000 0.00000 2.02479 A11 2.09546 0.00000 0.00000 0.00000 0.00000 2.09546 A12 2.16294 0.00000 0.00000 0.00000 0.00000 2.16294 A13 2.02479 0.00000 0.00000 0.00000 0.00000 2.02479 A14 2.09546 0.00000 0.00000 0.00000 0.00000 2.09546 A15 2.16294 0.00000 0.00000 0.00000 0.00000 2.16294 A16 2.00893 0.00000 0.00000 0.00001 0.00001 2.00894 A17 2.13713 0.00000 0.00000 -0.00001 -0.00001 2.13712 A18 2.13713 0.00000 0.00000 -0.00001 -0.00001 2.13712 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D6 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D7 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D14 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D15 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000007 0.000015 YES RMS Force 0.000002 0.000010 YES Maximum Displacement 0.000031 0.000060 YES RMS Displacement 0.000009 0.000040 YES Predicted change in Energy=-2.996395D-10 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.4052 -DE/DX = 0.0 ! ! R2 R(1,5) 1.3988 -DE/DX = 0.0 ! ! R3 R(1,6) 1.0969 -DE/DX = 0.0 ! ! R4 R(2,3) 1.4052 -DE/DX = 0.0 ! ! R5 R(2,7) 1.0915 -DE/DX = 0.0 ! ! R6 R(3,4) 1.3988 -DE/DX = 0.0 ! ! R7 R(3,8) 1.0969 -DE/DX = 0.0 ! ! R8 R(4,9) 1.0968 -DE/DX = 0.0 ! ! R9 R(4,12) 1.5141 -DE/DX = 0.0 ! ! R10 R(5,11) 1.0968 -DE/DX = 0.0 ! ! R11 R(5,12) 1.5141 -DE/DX = 0.0 ! ! R12 R(10,12) 1.2184 -DE/DX = 0.0 ! ! A1 A(2,1,5) 122.1809 -DE/DX = 0.0 ! ! A2 A(2,1,6) 117.455 -DE/DX = 0.0 ! ! A3 A(5,1,6) 120.3641 -DE/DX = 0.0 ! ! A4 A(1,2,3) 120.4132 -DE/DX = 0.0 ! ! A5 A(1,2,7) 119.7934 -DE/DX = 0.0 ! ! A6 A(3,2,7) 119.7934 -DE/DX = 0.0 ! ! A7 A(2,3,4) 122.1809 -DE/DX = 0.0 ! ! A8 A(2,3,8) 117.455 -DE/DX = 0.0 ! ! A9 A(4,3,8) 120.3641 -DE/DX = 0.0 ! ! A10 A(3,4,9) 116.0117 -DE/DX = 0.0 ! ! A11 A(3,4,12) 120.061 -DE/DX = 0.0 ! ! A12 A(9,4,12) 123.9274 -DE/DX = 0.0 ! ! A13 A(1,5,11) 116.0117 -DE/DX = 0.0 ! ! A14 A(1,5,12) 120.061 -DE/DX = 0.0 ! ! A15 A(11,5,12) 123.9274 -DE/DX = 0.0 ! ! A16 A(4,12,5) 115.1031 -DE/DX = 0.0 ! ! A17 A(4,12,10) 122.4484 -DE/DX = 0.0 ! ! A18 A(5,12,10) 122.4484 -DE/DX = 0.0 ! ! D1 D(5,1,2,3) 0.0 -DE/DX = 0.0 ! ! D2 D(5,1,2,7) 180.0 -DE/DX = 0.0 ! ! D3 D(6,1,2,3) 180.0 -DE/DX = 0.0 ! ! D4 D(6,1,2,7) 0.0 -DE/DX = 0.0 ! ! D5 D(2,1,5,11) 180.0 -DE/DX = 0.0 ! ! D6 D(2,1,5,12) 0.0 -DE/DX = 0.0 ! ! D7 D(6,1,5,11) 0.0 -DE/DX = 0.0 ! ! D8 D(6,1,5,12) 180.0 -DE/DX = 0.0 ! ! D9 D(1,2,3,4) 0.0 -DE/DX = 0.0 ! ! D10 D(1,2,3,8) 180.0 -DE/DX = 0.0 ! ! D11 D(7,2,3,4) 180.0 -DE/DX = 0.0 ! ! D12 D(7,2,3,8) 0.0 -DE/DX = 0.0 ! ! D13 D(2,3,4,9) 180.0 -DE/DX = 0.0 ! ! D14 D(2,3,4,12) 0.0 -DE/DX = 0.0 ! ! D15 D(8,3,4,9) 0.0 -DE/DX = 0.0 ! ! D16 D(8,3,4,12) 180.0 -DE/DX = 0.0 ! ! D17 D(3,4,12,5) 0.0 -DE/DX = 0.0 ! ! D18 D(3,4,12,10) 180.0 -DE/DX = 0.0 ! ! D19 D(9,4,12,5) 180.0 -DE/DX = 0.0 ! ! D20 D(9,4,12,10) 0.0 -DE/DX = 0.0 ! ! D21 D(1,5,12,4) 0.0 -DE/DX = 0.0 ! ! D22 D(1,5,12,10) 180.0 -DE/DX = 0.0 ! ! D23 D(11,5,12,4) 180.0 -DE/DX = 0.0 ! ! D24 D(11,5,12,10) 0.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.219423 -0.677035 2 6 0 0.000000 0.000000 -1.375219 3 6 0 0.000000 -1.219423 -0.677035 4 6 0 0.000000 -1.277694 0.720583 5 6 0 0.000000 1.277694 0.720583 6 1 0 0.000000 2.141943 -1.270456 7 1 0 0.000000 0.000000 -2.466713 8 1 0 0.000000 -2.141943 -1.270456 9 1 0 0.000000 -2.282594 1.160119 10 1 0 0.000000 0.000000 2.751395 11 1 0 0.000000 2.282594 1.160119 12 5 0 0.000000 0.000000 1.532948 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.405152 0.000000 3 C 2.438846 1.405152 0.000000 4 C 2.861631 2.454565 1.398833 0.000000 5 C 1.398833 2.454565 2.861631 2.555389 0.000000 6 H 1.096901 2.144504 3.413346 3.957039 2.170522 7 H 2.165627 1.091494 2.165627 3.433855 3.433855 8 H 3.413346 2.144504 1.096901 2.170522 3.957039 9 H 3.954650 3.411477 2.122608 1.096820 3.587317 10 H 3.638836 4.126615 3.638836 2.399312 2.399312 11 H 2.122608 3.411477 3.954650 3.587317 1.096820 12 B 2.524088 2.908168 2.524088 1.514081 1.514081 6 7 8 9 10 6 H 0.000000 7 H 2.453355 0.000000 8 H 4.283887 2.453355 0.000000 9 H 5.048190 4.285341 2.434641 0.000000 10 H 4.556667 5.218108 4.556667 2.782516 0.000000 11 H 2.434641 4.285341 5.048190 4.565187 2.782516 12 B 3.528031 3.999662 3.528031 2.312842 1.218447 11 12 11 H 0.000000 12 B 2.312842 0.000000 Stoichiometry C5H6B(1-) Framework group C2V[C2(HBCH),SGV(C4H4)] Deg. of freedom 11 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 1.219423 0.677035 2 6 0 0.000000 0.000000 1.375220 3 6 0 0.000000 -1.219423 0.677035 4 6 0 0.000000 -1.277694 -0.720583 5 6 0 0.000000 1.277694 -0.720583 6 1 0 0.000000 2.141943 1.270457 7 1 0 0.000000 0.000000 2.466713 8 1 0 0.000000 -2.141943 1.270457 9 1 0 0.000000 -2.282594 -1.160119 10 1 0 0.000000 0.000000 -2.751395 11 1 0 0.000000 2.282594 -1.160119 12 5 0 0.000000 0.000000 -1.532948 --------------------------------------------------------------------- Rotational constants (GHZ): 5.5095407 5.3412825 2.7120535 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (B1) (A1) (B2) (A2) (B1) Virtual (A2) (B1) (A1) (B2) (A1) (B2) (A1) (B1) (A1) (B2) (A1) (B2) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (B2) (B2) (A1) (B1) (A2) (B1) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (B2) (A1) (A1) (B2) (B2) (A1) (A2) (B1) (A1) (B1) (A2) (B2) (A2) (B1) (A1) (B2) (A1) (A1) (A1) (B2) (B1) (B2) (A2) (A1) (A1) (B1) (B2) (A2) (A1) (B2) (B1) (A1) (B1) (B2) (B1) (B2) (A2) (A1) (B2) (A1) (B1) (B2) (A2) (A2) (A1) (B1) (B2) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (B2) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -9.98369 -9.98368 -9.97444 -9.94511 -9.94510 Alpha occ. eigenvalues -- -6.47351 -0.60437 -0.51954 -0.46083 -0.36649 Alpha occ. eigenvalues -- -0.32169 -0.28949 -0.20936 -0.20372 -0.18995 Alpha occ. eigenvalues -- -0.16885 -0.13209 -0.09170 -0.08375 -0.03492 Alpha occ. eigenvalues -- 0.01095 Alpha virt. eigenvalues -- 0.21472 0.23249 0.26833 0.31518 0.33510 Alpha virt. eigenvalues -- 0.35288 0.35785 0.37025 0.41018 0.45221 Alpha virt. eigenvalues -- 0.48963 0.50922 0.51674 0.61209 0.61784 Alpha virt. eigenvalues -- 0.67923 0.69085 0.73806 0.76096 0.78831 Alpha virt. eigenvalues -- 0.80227 0.80420 0.81754 0.82592 0.83738 Alpha virt. eigenvalues -- 0.85613 0.86863 0.93700 0.98931 1.00624 Alpha virt. eigenvalues -- 1.01166 1.03236 1.03480 1.05600 1.11352 Alpha virt. eigenvalues -- 1.13412 1.16334 1.18820 1.26628 1.28279 Alpha virt. eigenvalues -- 1.30648 1.39441 1.39747 1.40914 1.48828 Alpha virt. eigenvalues -- 1.55973 1.58321 1.61784 1.62228 1.63727 Alpha virt. eigenvalues -- 1.75573 1.84653 1.86833 2.00411 2.06991 Alpha virt. eigenvalues -- 2.07254 2.08977 2.11661 2.11758 2.15266 Alpha virt. eigenvalues -- 2.18610 2.20395 2.28186 2.36343 2.45628 Alpha virt. eigenvalues -- 2.48179 2.50354 2.52049 2.53013 2.53653 Alpha virt. eigenvalues -- 2.58796 2.59189 2.60334 2.66648 2.66849 Alpha virt. eigenvalues -- 2.67680 2.73907 2.74837 2.77916 2.81020 Alpha virt. eigenvalues -- 2.88085 2.91980 2.93106 3.13326 3.19473 Alpha virt. eigenvalues -- 3.24201 3.31688 3.41496 3.42256 3.50885 Alpha virt. eigenvalues -- 3.62022 3.66280 3.86815 4.07554 4.38385 Alpha virt. eigenvalues -- 4.41708 4.61103 4.68163 4.95135 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 4.860427 0.528387 -0.039742 -0.031099 0.574412 0.322494 2 C 0.528387 4.990313 0.528387 -0.037406 -0.037406 -0.070279 3 C -0.039742 0.528387 4.860427 0.574412 -0.031099 0.007308 4 C -0.031099 -0.037406 0.574412 4.812609 -0.011786 0.000212 5 C 0.574412 -0.037406 -0.031099 -0.011786 4.812609 -0.052680 6 H 0.322494 -0.070279 0.007308 0.000212 -0.052680 0.836431 7 H -0.054929 0.340043 -0.054929 0.006201 0.006201 -0.009969 8 H 0.007308 -0.070279 0.322494 -0.052680 0.000212 -0.000271 9 H 0.000827 0.008780 -0.043544 0.310661 0.003115 0.000018 10 H 0.001128 0.001589 0.001128 -0.026246 -0.026246 -0.000189 11 H -0.043544 0.008780 0.000827 0.003115 0.310661 -0.016107 12 B -0.017380 -0.078129 -0.017380 0.559742 0.559742 0.009123 7 8 9 10 11 12 1 C -0.054929 0.007308 0.000827 0.001128 -0.043544 -0.017380 2 C 0.340043 -0.070279 0.008780 0.001589 0.008780 -0.078129 3 C -0.054929 0.322494 -0.043544 0.001128 0.000827 -0.017380 4 C 0.006201 -0.052680 0.310661 -0.026246 0.003115 0.559742 5 C 0.006201 0.000212 0.003115 -0.026246 0.310661 0.559742 6 H -0.009969 -0.000271 0.000018 -0.000189 -0.016107 0.009123 7 H 0.803712 -0.009969 -0.000283 0.000012 -0.000283 0.000675 8 H -0.009969 0.836431 -0.016107 -0.000189 0.000018 0.009123 9 H -0.000283 -0.016107 0.840727 -0.002386 -0.000154 -0.060627 10 H 0.000012 -0.000189 -0.002386 0.957629 -0.002386 0.320828 11 H -0.000283 0.000018 -0.000154 -0.002386 0.840727 -0.060627 12 B 0.000675 0.009123 -0.060627 0.320828 -0.060627 3.844679 Mulliken charges: 1 1 C -0.108290 2 C -0.112783 3 C -0.108290 4 C -0.107735 5 C -0.107735 6 H -0.026093 7 H -0.026482 8 H -0.026093 9 H -0.041028 10 H -0.224673 11 H -0.041028 12 B -0.069770 Sum of Mulliken charges = -1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.134383 2 C -0.139265 3 C -0.134383 4 C -0.148763 5 C -0.148763 12 B -0.294443 Electronic spatial extent (au): = 498.8905 Charge= -1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 2.8455 Tot= 2.8455 Quadrupole moment (field-independent basis, Debye-Ang): XX= -41.9731 YY= -43.8551 ZZ= -49.9593 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 3.2894 YY= 1.4074 ZZ= -4.6968 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 28.3859 XYY= 0.0000 XXY= 0.0000 XXZ= 2.6205 XZZ= 0.0000 YZZ= 0.0000 YYZ= 4.6396 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -47.1655 YYYY= -364.7257 ZZZZ= -431.1272 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -70.9371 XXZZ= -73.2490 YYZZ= -124.8743 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.883720202727D+02 E-N=-8.921757743566D+02 KE= 2.169336366480D+02 Symmetry A1 KE= 1.339790493057D+02 Symmetry A2 KE= 2.150428593883D+00 Symmetry B1 KE= 3.751888013540D+00 Symmetry B2 KE= 7.705227073491D+01 1\1\GINC-CX1-29-15-1\FOpt\RB3LYP\6-31G(d,p)\C5H6B1(1-)\SCAN-USER-1\17- Nov-2014\0\\# opt=tight b3lyp/6-31g(d,p) geom=connectivity integral=gr id=ultrafine scf=conver=9\\Boratabenzene 6-31g Optimisation C2v\\-1,1\ C,0.,1.2194230187,-0.6770351685\C,0.,0.,-1.3752192199\C,0.,-1.21942301 87,-0.6770351685\C,0.,-1.2776943035,0.7205833379\C,0.,1.2776943035,0.7 205833379\H,0.,2.1419433706,-1.2704563284\H,0.,0.,-2.4667131399\H,0.,- 2.1419433706,-1.2704563284\H,0.,-2.2825936903,1.1601188461\H,0.,0.,2.7 513952809\H,0.,2.2825936903,1.1601188461\B,0.,0.,1.5329484845\\Version =ES64L-G09RevD.01\State=1-A1\HF=-219.020523\RMSD=6.563e-10\RMSF=2.480e -06\Dipole=0.,0.,-1.1194988\Quadrupole=2.4456039,1.046387,-3.491991,0. ,0.,0.\PG=C02V [C2(H1B1C1H1),SGV(C4H4)]\\@ ON THE SURVIVAL OF THE FITTEST - "STRONG REPRESENTATIVES FROM EACH PAST ERA THRIVE TODAY, SUCH AS PROGRAMMING IN THE THIRTY YEAR OLD LANGUAGE KNOWN AS FORTRAN, AND EVEN IN THE ANCIENT SCRIPT KNOWN AS DIRECT MACHINE CODE. SOME PEOPLE MIGHT LOOK ON SUCH RELICS AS LIVING FOSSILS; OTHERS WOULD POINT OUT THAT EVEN A VERY OLD SPECIES MIGHT STILL BE FILLING A PARTICULAR ECOLOGICAL NICHE." -- ALAN KAY, SCI.AM. SEPTEMBER 1984 Job cpu time: 0 days 0 hours 0 minutes 50.7 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Mon Nov 17 12:29:54 2014.