Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_c01/g09/l1.exe /home/scan-user-1/run/72305/Gau-30612.inp -scrdir=/home/scan-user-1/run/72305/ Entering Link 1 = /apps/gaussian/g09_c01/g09/l1.exe PID= 30613. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64L-G09RevC.01 23-Sep-2011 20-Feb-2013 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.3861330.cx1b/rwf ---------------------------------------------- # b3lyp/6-31g pop=(nbo,full) geom=connectivity ---------------------------------------------- 1/38=1,57=2/1; 2/12=2,17=6,18=5,40=1/2; 3/5=1,6=6,11=2,16=1,25=1,30=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=3,28=1/1,7; 99/5=1,9=1/99; --------------- BH3_Energy_631G --------------- Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: B 0. 0. 0. H 0. 1.19232 0. H 1.03258 -0.59616 0. H -1.03258 -0.59616 0. Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.192323 0.000000 3 1 0 1.032582 -0.596162 0.000000 4 1 0 -1.032582 -0.596162 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.192323 0.000000 3 H 1.192323 2.065165 0.000000 4 H 1.192323 2.065165 2.065165 0.000000 Stoichiometry BH3 Framework group D3H[O(B),3C2(H)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.192323 0.000000 3 1 0 1.032582 -0.596162 0.000000 4 1 0 -1.032582 -0.596162 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 235.1541957 235.1541957 117.5770979 Standard basis: 6-31G (6D, 7F) There are 9 symmetry adapted basis functions of A1 symmetry. There are 0 symmetry adapted basis functions of A2 symmetry. There are 4 symmetry adapted basis functions of B1 symmetry. There are 2 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 15 basis functions, 34 primitive gaussians, 15 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4260227409 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 15 RedAO= T NBF= 9 0 4 2 NBsUse= 15 1.00D-06 NBFU= 9 0 4 2 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1') (A1') (E') (E') Virtual (A2") (A1') (E') (E') (E') (E') (A2") (A1') (A1') (E') (E') The electronic state of the initial guess is 1-A1'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=917093. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.6059579158 A.U. after 9 cycles Convg = 0.1771D-08 -V/T = 2.0062 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1') (A1') (E') (E') Virtual (A2") (A1') (E') (E') (E') (E') (A2") (A1') (A1') (E') (E') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -6.76573 -0.51548 -0.35311 -0.35311 Alpha virt. eigenvalues -- -0.06810 0.16686 0.17983 0.17983 0.38564 Alpha virt. eigenvalues -- 0.38564 0.44261 0.48768 0.95418 1.00990 Alpha virt. eigenvalues -- 1.00990 Molecular Orbital Coefficients: 1 2 3 4 5 (A1')--O (A1')--O (E')--O (E')--O (A2")--V Eigenvalues -- -6.76573 -0.51548 -0.35311 -0.35311 -0.06810 1 1 B 1S 0.99478 -0.20053 0.00000 0.00000 0.00000 2 2S 0.03637 0.34955 0.00000 0.00000 0.00000 3 2PX 0.00000 0.00000 0.00000 0.41650 0.00000 4 2PY 0.00000 0.00000 0.41650 0.00000 0.00000 5 2PZ 0.00000 0.00000 0.00000 0.00000 0.49014 6 3S -0.02293 0.27737 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 0.00000 0.12147 0.00000 8 3PY 0.00000 0.00000 0.12147 0.00000 0.00000 9 3PZ 0.00000 0.00000 0.00000 0.00000 0.61801 10 2 H 1S -0.00153 0.16470 0.28695 0.00000 0.00000 11 2S 0.00474 0.11041 0.29285 0.00000 0.00000 12 3 H 1S -0.00153 0.16470 -0.14348 0.24851 0.00000 13 2S 0.00474 0.11041 -0.14643 0.25362 0.00000 14 4 H 1S -0.00153 0.16470 -0.14348 -0.24851 0.00000 15 2S 0.00474 0.11041 -0.14643 -0.25362 0.00000 6 7 8 9 10 (A1')--V (E')--V (E')--V (E')--V (E')--V Eigenvalues -- 0.16686 0.17983 0.17983 0.38564 0.38564 1 1 B 1S -0.16968 0.00000 0.00000 0.00000 0.00000 2 2S 0.28041 0.00000 0.00000 0.00000 0.00000 3 2PX 0.00000 0.00000 0.33205 0.00000 -1.01705 4 2PY 0.00000 -0.33205 0.00000 -1.01705 0.00000 5 2PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 3S 2.59187 0.00000 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 1.87850 0.00000 1.41061 8 3PY 0.00000 -1.87850 0.00000 1.41061 0.00000 9 3PZ 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 H 1S -0.08066 0.11577 0.00000 -0.22205 0.00000 11 2S -1.27226 1.96207 0.00000 -0.15299 0.00000 12 3 H 1S -0.08066 -0.05788 -0.10026 0.11103 -0.19230 13 2S -1.27226 -0.98103 -1.69920 0.07649 -0.13249 14 4 H 1S -0.08066 -0.05788 0.10026 0.11103 0.19230 15 2S -1.27226 -0.98103 1.69920 0.07649 0.13249 11 12 13 14 15 (A2")--V (A1')--V (A1')--V (E')--V (E')--V Eigenvalues -- 0.44261 0.48768 0.95418 1.00990 1.00990 1 1 B 1S 0.00000 -0.02447 0.06560 0.00000 0.00000 2 2S 0.00000 -1.72611 -1.32227 0.00000 0.00000 3 2PX 0.00000 0.00000 0.00000 0.71441 0.00000 4 2PY 0.00000 0.00000 0.00000 0.00000 0.71441 5 2PZ 1.18162 0.00000 0.00000 0.00000 0.00000 6 3S 0.00000 2.94611 3.01887 0.00000 0.00000 7 3PX 0.00000 0.00000 0.00000 -1.18435 0.00000 8 3PY 0.00000 0.00000 0.00000 0.00000 -1.18435 9 3PZ -1.12005 0.00000 0.00000 0.00000 0.00000 10 2 H 1S 0.00000 -0.29585 0.72185 0.00000 -1.12188 11 2S 0.00000 -0.43614 -1.32078 0.00000 1.73888 12 3 H 1S 0.00000 -0.29585 0.72185 -0.97157 0.56094 13 2S 0.00000 -0.43614 -1.32078 1.50592 -0.86944 14 4 H 1S 0.00000 -0.29585 0.72185 0.97157 0.56094 15 2S 0.00000 -0.43614 -1.32078 -1.50592 -0.86944 Density Matrix: 1 2 3 4 5 1 1 B 1S 2.05959 2 2S -0.06783 0.24701 3 2PX 0.00000 0.00000 0.34694 4 2PY 0.00000 0.00000 0.00000 0.34694 5 2PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 3S -0.15686 0.19224 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 0.10119 0.00000 0.00000 8 3PY 0.00000 0.00000 0.00000 0.10119 0.00000 9 3PZ 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 H 1S -0.06909 0.11503 0.00000 0.23903 0.00000 11 2S -0.03484 0.07753 0.00000 0.24395 0.00000 12 3 H 1S -0.06909 0.11503 0.20701 -0.11952 0.00000 13 2S -0.03484 0.07753 0.21126 -0.12197 0.00000 14 4 H 1S -0.06909 0.11503 -0.20701 -0.11952 0.00000 15 2S -0.03484 0.07753 -0.21126 -0.12197 0.00000 6 7 8 9 10 6 3S 0.15492 7 3PX 0.00000 0.02951 8 3PY 0.00000 0.00000 0.02951 9 3PZ 0.00000 0.00000 0.00000 0.00000 10 2 H 1S 0.09144 0.00000 0.06972 0.00000 0.21894 11 2S 0.06103 0.00000 0.07115 0.00000 0.20442 12 3 H 1S 0.09144 0.06038 -0.03486 0.00000 -0.02809 13 2S 0.06103 0.06162 -0.03557 0.00000 -0.04768 14 4 H 1S 0.09144 -0.06038 -0.03486 0.00000 -0.02809 15 2S 0.06103 -0.06162 -0.03557 0.00000 -0.04768 11 12 13 14 15 11 2S 0.19595 12 3 H 1S -0.04768 0.21894 13 2S -0.06134 0.20442 0.19595 14 4 H 1S -0.04768 -0.02809 -0.04768 0.21894 15 2S -0.06134 -0.04768 -0.06134 0.20442 0.19595 Full Mulliken population analysis: 1 2 3 4 5 1 1 B 1S 2.05959 2 2S -0.01511 0.24701 3 2PX 0.00000 0.00000 0.34694 4 2PY 0.00000 0.00000 0.00000 0.34694 5 2PZ 0.00000 0.00000 0.00000 0.00000 0.00000 6 3S -0.03117 0.16298 0.00000 0.00000 0.00000 7 3PX 0.00000 0.00000 0.06310 0.00000 0.00000 8 3PY 0.00000 0.00000 0.00000 0.06310 0.00000 9 3PZ 0.00000 0.00000 0.00000 0.00000 0.00000 10 2 H 1S -0.00205 0.03230 0.00000 0.09632 0.00000 11 2S -0.00375 0.04076 0.00000 0.08845 0.00000 12 3 H 1S -0.00205 0.03230 0.07224 0.02408 0.00000 13 2S -0.00375 0.04076 0.06634 0.02211 0.00000 14 4 H 1S -0.00205 0.03230 0.07224 0.02408 0.00000 15 2S -0.00375 0.04076 0.06634 0.02211 0.00000 6 7 8 9 10 6 3S 0.15492 7 3PX 0.00000 0.02951 8 3PY 0.00000 0.00000 0.02951 9 3PZ 0.00000 0.00000 0.00000 0.00000 10 2 H 1S 0.03094 0.00000 0.03206 0.00000 0.21894 11 2S 0.04211 0.00000 0.04410 0.00000 0.13457 12 3 H 1S 0.03094 0.02405 0.00802 0.00000 -0.00014 13 2S 0.04211 0.03307 0.01102 0.00000 -0.00426 14 4 H 1S 0.03094 0.02405 0.00802 0.00000 -0.00014 15 2S 0.04211 0.03307 0.01102 0.00000 -0.00426 11 12 13 14 15 11 2S 0.19595 12 3 H 1S -0.00426 0.21894 13 2S -0.01796 0.13457 0.19595 14 4 H 1S -0.00426 -0.00014 -0.00426 0.21894 15 2S -0.01796 -0.00426 -0.01796 0.13457 0.19595 Gross orbital populations: 1 1 1 B 1S 1.99591 2 2S 0.61406 3 2PX 0.68720 4 2PY 0.68720 5 2PZ 0.00000 6 3S 0.50588 7 3PX 0.20686 8 3PY 0.20686 9 3PZ 0.00000 10 2 H 1S 0.53427 11 2S 0.49774 12 3 H 1S 0.53427 13 2S 0.49774 14 4 H 1S 0.53427 15 2S 0.49774 Condensed to atoms (all electrons): 1 2 3 4 1 B 3.700246 0.401237 0.401237 0.401237 2 H 0.401237 0.684033 -0.026627 -0.026627 3 H 0.401237 -0.026627 0.684033 -0.026627 4 H 0.401237 -0.026627 -0.026627 0.684033 Mulliken atomic charges: 1 1 B 0.096044 2 H -0.032015 3 H -0.032015 4 H -0.032015 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.000000 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 33.9600 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.0993 YY= -9.0993 ZZ= -6.9936 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.7019 YY= -0.7019 ZZ= 1.4038 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= -0.0057 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0057 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -22.7532 YYYY= -22.7532 ZZZZ= -6.5891 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -7.5844 XXZZ= -5.0524 YYZZ= -5.0524 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.426022740925D+00 E-N=-7.552765437606D+01 KE= 2.644250165461D+01 Symmetry A1 KE= 2.498358283378D+01 Symmetry A2 KE= 0.000000000000D+00 Symmetry B1 KE= 1.458918820836D+00 Symmetry B2 KE= 2.261324776673D-33 Orbital energies and kinetic energies (alpha): 1 2 1 (A1')--O -6.765728 10.848567 2 (A1')--O -0.515482 0.913765 3 (E')--O -0.353105 0.729459 4 (E')--O -0.353105 0.729459 5 (A2")--V -0.068105 0.644416 6 (A1')--V 0.166862 0.955526 7 (E')--V 0.179832 0.641709 8 (E')--V 0.179832 0.641709 9 (E')--V 0.385639 1.290888 10 (E')--V 0.385639 1.290888 11 (A2")--V 0.442611 1.580334 12 (A1')--V 0.487684 1.162237 13 (A1')--V 0.954180 2.408094 14 (E')--V 1.009898 2.447784 15 (E')--V 1.009898 2.447784 Total kinetic energy from orbitals= 2.644250165461D+01 ******************************Gaussian NBO Version 3.1****************************** N A T U R A L A T O M I C O R B I T A L A N D N A T U R A L B O N D O R B I T A L A N A L Y S I S ******************************Gaussian NBO Version 3.1****************************** /RESON / : Allow strongly delocalized NBO set Analyzing the SCF density Job title: BH3_Energy_631G Storage needed: 789 in NPA, 970 in NBO ( 917503888 available) NATURAL POPULATIONS: Natural atomic orbital occupancies NAO Atom No lang Type(AO) Occupancy Energy ---------------------------------------------------------- 1 B 1 S Cor( 1S) 1.99954 -6.68337 2 B 1 S Val( 2S) 0.98280 -0.10166 3 B 1 S Ryd( 3S) 0.00000 0.53891 4 B 1 px Val( 2p) 0.86959 0.09918 5 B 1 px Ryd( 3p) 0.00000 0.37499 6 B 1 py Val( 2p) 0.86959 0.09918 7 B 1 py Ryd( 3p) 0.00000 0.37499 8 B 1 pz Val( 2p) 0.00000 -0.04049 9 B 1 pz Ryd( 3p) 0.00000 0.41499 10 H 2 S Val( 1S) 1.09267 -0.04295 11 H 2 S Ryd( 2S) 0.00015 0.73289 12 H 3 S Val( 1S) 1.09267 -0.04295 13 H 3 S Ryd( 2S) 0.00015 0.73289 14 H 4 S Val( 1S) 1.09267 -0.04295 15 H 4 S Ryd( 2S) 0.00015 0.73289 Summary of Natural Population Analysis: Natural Population Natural ----------------------------------------------- Atom No Charge Core Valence Rydberg Total ----------------------------------------------------------------------- B 1 0.27849 1.99954 2.72197 0.00000 4.72151 H 2 -0.09283 0.00000 1.09267 0.00015 1.09283 H 3 -0.09283 0.00000 1.09267 0.00015 1.09283 H 4 -0.09283 0.00000 1.09267 0.00015 1.09283 ======================================================================= * Total * 0.00000 1.99954 6.00000 0.00046 8.00000 Natural Population -------------------------------------------------------- Core 1.99954 ( 99.9770% of 2) Valence 6.00000 ( 99.9999% of 6) Natural Minimal Basis 7.99954 ( 99.9942% of 8) Natural Rydberg Basis 0.00046 ( 0.0058% of 8) -------------------------------------------------------- Atom No Natural Electron Configuration ---------------------------------------------------------------------------- B 1 [core]2S( 0.98)2p( 1.74) H 2 1S( 1.09) H 3 1S( 1.09) H 4 1S( 1.09) NATURAL BOND ORBITAL ANALYSIS: Occupancies Lewis Structure Low High Occ. ------------------- ----------------- occ occ Cycle Thresh. Lewis Non-Lewis CR BD 3C LP (L) (NL) Dev ============================================================================= 1(1) 1.90 7.99524 0.00476 1 3 0 0 0 0 0.00 ----------------------------------------------------------------------------- Structure accepted: No low occupancy Lewis orbitals -------------------------------------------------------- Core 1.99954 ( 99.977% of 2) Valence Lewis 5.99570 ( 99.928% of 6) ================== ============================ Total Lewis 7.99524 ( 99.940% of 8) ----------------------------------------------------- Valence non-Lewis 0.00430 ( 0.054% of 8) Rydberg non-Lewis 0.00046 ( 0.006% of 8) ================== ============================ Total non-Lewis 0.00476 ( 0.060% of 8) -------------------------------------------------------- (Occupancy) Bond orbital/ Coefficients/ Hybrids --------------------------------------------------------------------------------- 1. (1.99857) BD ( 1) B 1 - H 2 ( 45.36%) 0.6735* B 1 s( 33.33%)p 2.00( 66.67%) 0.0000 0.5774 0.0000 0.0000 0.0000 0.8165 0.0000 0.0000 0.0000 ( 54.64%) 0.7392* H 2 s(100.00%) 1.0000 0.0001 2. (1.99857) BD ( 1) B 1 - H 3 ( 45.36%) 0.6735* B 1 s( 33.33%)p 2.00( 66.67%) 0.0000 0.5774 0.0000 0.7071 0.0000 -0.4082 0.0000 0.0000 0.0000 ( 54.64%) 0.7392* H 3 s(100.00%) 1.0000 0.0001 3. (1.99857) BD ( 1) B 1 - H 4 ( 45.36%) 0.6735* B 1 s( 33.33%)p 2.00( 66.67%) 0.0000 0.5774 0.0000 -0.7071 0.0000 -0.4082 0.0000 0.0000 0.0000 ( 54.64%) 0.7392* H 4 s(100.00%) 1.0000 0.0001 4. (1.99954) CR ( 1) B 1 s(100.00%) 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 5. (0.00000) LP*( 1) B 1 s(100.00%) 6. (0.00000) RY*( 1) B 1 s( 0.00%)p 1.00(100.00%) 7. (0.00000) RY*( 2) B 1 s( 0.00%)p 1.00(100.00%) 8. (0.00000) RY*( 3) B 1 s( 0.00%)p 1.00(100.00%) 9. (0.00000) RY*( 4) B 1 s( 0.00%)p 1.00(100.00%) 10. (0.00015) RY*( 1) H 2 s(100.00%) -0.0001 1.0000 11. (0.00015) RY*( 1) H 3 s(100.00%) -0.0001 1.0000 12. (0.00015) RY*( 1) H 4 s(100.00%) -0.0001 1.0000 13. (0.00143) BD*( 1) B 1 - H 2 ( 54.64%) 0.7392* B 1 s( 33.33%)p 2.00( 66.67%) 0.0000 0.5774 0.0000 0.0000 0.0000 0.8165 0.0000 0.0000 0.0000 ( 45.36%) -0.6735* H 2 s(100.00%) 1.0000 0.0001 14. (0.00143) BD*( 1) B 1 - H 3 ( 54.64%) 0.7392* B 1 s( 33.33%)p 2.00( 66.67%) 0.0000 0.5774 0.0000 0.7071 0.0000 -0.4082 0.0000 0.0000 0.0000 ( 45.36%) -0.6735* H 3 s(100.00%) 1.0000 0.0001 15. (0.00143) BD*( 1) B 1 - H 4 ( 54.64%) 0.7392* B 1 s( 33.33%)p 2.00( 66.67%) 0.0000 0.5774 0.0000 -0.7071 0.0000 -0.4082 0.0000 0.0000 0.0000 ( 45.36%) -0.6735* H 4 s(100.00%) 1.0000 0.0001 NHO Directionality and "Bond Bending" (deviations from line of nuclear centers) [Thresholds for printing: angular deviation > 1.0 degree] hybrid p-character > 25.0% orbital occupancy > 0.10e Line of Centers Hybrid 1 Hybrid 2 --------------- ------------------- ------------------ NBO Theta Phi Theta Phi Dev Theta Phi Dev ======================================================================================== None exceeding thresholds Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis Threshold for printing: 0.50 kcal/mol E(2) E(j)-E(i) F(i,j) Donor NBO (i) Acceptor NBO (j) kcal/mol a.u. a.u. =================================================================================================== within unit 1 4. CR ( 1) B 1 / 10. RY*( 1) H 2 0.70 7.42 0.064 4. CR ( 1) B 1 / 11. RY*( 1) H 3 0.70 7.42 0.064 4. CR ( 1) B 1 / 12. RY*( 1) H 4 0.70 7.42 0.064 Natural Bond Orbitals (Summary): Principal Delocalizations NBO Occupancy Energy (geminal,vicinal,remote) ==================================================================================== Molecular unit 1 (H3B) 1. BD ( 1) B 1 - H 2 1.99857 -0.43349 2. BD ( 1) B 1 - H 3 1.99857 -0.43349 3. BD ( 1) B 1 - H 4 1.99857 -0.43349 4. CR ( 1) B 1 1.99954 -6.68336 10(v),11(v),12(v) 5. LP*( 1) B 1 0.00000 0.53891 6. RY*( 1) B 1 0.00000 0.37499 7. RY*( 2) B 1 0.00000 0.37499 8. RY*( 3) B 1 0.00000 -0.04049 9. RY*( 4) B 1 0.00000 0.41499 10. RY*( 1) H 2 0.00015 0.73287 11. RY*( 1) H 3 0.00015 0.73287 12. RY*( 1) H 4 0.00015 0.73287 13. BD*( 1) B 1 - H 2 0.00143 0.42279 14. BD*( 1) B 1 - H 3 0.00143 0.42279 15. BD*( 1) B 1 - H 4 0.00143 0.42279 ------------------------------- Total Lewis 7.99524 ( 99.9405%) Valence non-Lewis 0.00430 ( 0.0537%) Rydberg non-Lewis 0.00046 ( 0.0058%) ------------------------------- Total unit 1 8.00000 (100.0000%) Charge unit 1 0.00000 1\1\GINC-CX1-14-33-2\SP\RB3LYP\6-31G\B1H3\SCAN-USER-1\20-Feb-2013\0\\# b3lyp/6-31g pop=(nbo,full) geom=connectivity\\BH3_Energy_631G\\0,1\B, 0,0.,0.,0.\H,0,0.00000017,1.1923233,0.\H,0,1.03258218,-0.5961618,0.\H, 0,-1.03258235,-0.5961615,0.\\Version=EM64L-G09RevC.01\State=1-A1'\HF=- 26.6059579\RMSD=1.771e-09\Dipole=0.,0.,0.\Quadrupole=-0.5218518,-0.521 8518,1.0437037,0.,0.,0.\PG=D03H [O(B1),3C2(H1)]\\@ IT IS UNWORTHY OF EXCELLENT MEN TO LOSE HOURS LIKE SLAVES IN THE LABOR OF CALCULATION WHICH COULD BE SAFELY RELEGATED TO ANYONE ELSE IF A MACHINE WERE USED. -- G.W. VON LEIBNIZ Job cpu time: 0 days 0 hours 0 minutes 12.1 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Wed Feb 20 14:30:56 2013.