Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 2004. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 18-May-2018 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\hz6415\Desktop\2ndyear lab\Borazine\Haoyuan_Borazine_O P2.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------------- Borazine Optimisation1 ---------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H 0. 2.6459 0. H -2.09511 1.20961 0. H -2.29141 -1.32295 0. H 0. -2.41922 0. H 2.29141 -1.32295 0. H 2.09511 1.20961 0. N 0. -1.40948 0. N 1.22065 0.70474 0. N -1.22065 0.70474 0. B 1.25657 -0.72548 0. B 0. 1.45096 0. B -1.25657 -0.72548 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,11) 1.1949 estimate D2E/DX2 ! ! R2 R(2,9) 1.0097 estimate D2E/DX2 ! ! R3 R(3,12) 1.1949 estimate D2E/DX2 ! ! R4 R(4,7) 1.0097 estimate D2E/DX2 ! ! R5 R(5,10) 1.1949 estimate D2E/DX2 ! ! R6 R(6,8) 1.0097 estimate D2E/DX2 ! ! R7 R(7,10) 1.4307 estimate D2E/DX2 ! ! R8 R(7,12) 1.4307 estimate D2E/DX2 ! ! R9 R(8,10) 1.4307 estimate D2E/DX2 ! ! R10 R(8,11) 1.4307 estimate D2E/DX2 ! ! R11 R(9,11) 1.4307 estimate D2E/DX2 ! ! R12 R(9,12) 1.4307 estimate D2E/DX2 ! ! A1 A(4,7,10) 118.5614 estimate D2E/DX2 ! ! A2 A(4,7,12) 118.5614 estimate D2E/DX2 ! ! A3 A(10,7,12) 122.8772 estimate D2E/DX2 ! ! A4 A(6,8,10) 118.5614 estimate D2E/DX2 ! ! A5 A(6,8,11) 118.5614 estimate D2E/DX2 ! ! A6 A(10,8,11) 122.8772 estimate D2E/DX2 ! ! A7 A(2,9,11) 118.5614 estimate D2E/DX2 ! ! A8 A(2,9,12) 118.5614 estimate D2E/DX2 ! ! A9 A(11,9,12) 122.8772 estimate D2E/DX2 ! ! A10 A(5,10,7) 121.4386 estimate D2E/DX2 ! ! A11 A(5,10,8) 121.4386 estimate D2E/DX2 ! ! A12 A(7,10,8) 117.1228 estimate D2E/DX2 ! ! A13 A(1,11,8) 121.4386 estimate D2E/DX2 ! ! A14 A(1,11,9) 121.4386 estimate D2E/DX2 ! ! A15 A(8,11,9) 117.1228 estimate D2E/DX2 ! ! A16 A(3,12,7) 121.4386 estimate D2E/DX2 ! ! A17 A(3,12,9) 121.4386 estimate D2E/DX2 ! ! A18 A(7,12,9) 117.1228 estimate D2E/DX2 ! ! D1 D(4,7,10,5) 0.0 estimate D2E/DX2 ! ! D2 D(4,7,10,8) 180.0 estimate D2E/DX2 ! ! D3 D(12,7,10,5) 180.0 estimate D2E/DX2 ! ! D4 D(12,7,10,8) 0.0 estimate D2E/DX2 ! ! D5 D(4,7,12,3) 0.0 estimate D2E/DX2 ! ! D6 D(4,7,12,9) 180.0 estimate D2E/DX2 ! ! D7 D(10,7,12,3) 180.0 estimate D2E/DX2 ! ! D8 D(10,7,12,9) 0.0 estimate D2E/DX2 ! ! D9 D(6,8,10,5) 0.0 estimate D2E/DX2 ! ! D10 D(6,8,10,7) 180.0 estimate D2E/DX2 ! ! D11 D(11,8,10,5) 180.0 estimate D2E/DX2 ! ! D12 D(11,8,10,7) 0.0 estimate D2E/DX2 ! ! D13 D(6,8,11,1) 0.0 estimate D2E/DX2 ! ! D14 D(6,8,11,9) 180.0 estimate D2E/DX2 ! ! D15 D(10,8,11,1) 180.0 estimate D2E/DX2 ! ! D16 D(10,8,11,9) 0.0 estimate D2E/DX2 ! ! D17 D(2,9,11,1) 0.0 estimate D2E/DX2 ! ! D18 D(2,9,11,8) 180.0 estimate D2E/DX2 ! ! D19 D(12,9,11,1) 180.0 estimate D2E/DX2 ! ! D20 D(12,9,11,8) 0.0 estimate D2E/DX2 ! ! D21 D(2,9,12,3) 0.0 estimate D2E/DX2 ! ! D22 D(2,9,12,7) 180.0 estimate D2E/DX2 ! ! D23 D(11,9,12,3) 180.0 estimate D2E/DX2 ! ! D24 D(11,9,12,7) 0.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 64 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 2.645896 0.000000 2 1 0 -2.095109 1.209612 0.000000 3 1 0 -2.291413 -1.322948 0.000000 4 1 0 0.000000 -2.419224 0.000000 5 1 0 2.291413 -1.322948 0.000000 6 1 0 2.095109 1.209612 0.000000 7 7 0 0.000000 -1.409485 0.000000 8 7 0 1.220650 0.704742 0.000000 9 7 0 -1.220650 0.704742 0.000000 10 5 0 1.256568 -0.725480 0.000000 11 5 0 0.000000 1.450960 0.000000 12 5 0 -1.256568 -0.725480 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 2.540156 0.000000 3 H 4.582826 2.540156 0.000000 4 H 5.065120 4.190218 2.540156 0.000000 5 H 4.582826 5.065120 4.582826 2.540156 0.000000 6 H 2.540156 4.190218 5.065120 4.190218 2.540156 7 N 4.055381 3.353975 2.293047 1.009739 2.293047 8 N 2.293047 3.353975 4.055381 3.353975 2.293047 9 N 2.293047 1.009739 2.293047 3.353975 4.055381 10 B 3.597935 3.870183 3.597935 2.108964 1.194936 11 B 1.194936 2.108964 3.597935 3.870183 3.597935 12 B 3.597935 2.108964 1.194936 2.108964 3.597935 6 7 8 9 10 6 H 0.000000 7 N 3.353975 0.000000 8 N 1.009739 2.441299 0.000000 9 N 3.353975 2.441299 2.441299 0.000000 10 B 2.108964 1.430673 1.430673 2.860444 0.000000 11 B 2.108964 2.860444 1.430673 1.430673 2.513136 12 B 3.870183 1.430673 2.860444 1.430673 2.513136 11 12 11 B 0.000000 12 B 2.513136 0.000000 Stoichiometry B3H6N3 Framework group D3H[3C2(HB.NH)] Deg. of freedom 4 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 -2.645896 0.000000 2 1 0 2.095109 -1.209612 0.000000 3 1 0 2.291413 1.322948 0.000000 4 1 0 0.000000 2.419224 0.000000 5 1 0 -2.291413 1.322948 0.000000 6 1 0 -2.095109 -1.209612 0.000000 7 7 0 0.000000 1.409485 0.000000 8 7 0 -1.220650 -0.704742 0.000000 9 7 0 1.220650 -0.704742 0.000000 10 5 0 -1.256568 0.725480 0.000000 11 5 0 0.000000 -1.450960 0.000000 12 5 0 1.256568 0.725480 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2684093 5.2684093 2.6342046 Standard basis: 6-31G(d,p) (6D, 7F) There are 52 symmetry adapted cartesian basis functions of A1 symmetry. There are 12 symmetry adapted cartesian basis functions of A2 symmetry. There are 38 symmetry adapted cartesian basis functions of B1 symmetry. There are 18 symmetry adapted cartesian basis functions of B2 symmetry. There are 52 symmetry adapted basis functions of A1 symmetry. There are 12 symmetry adapted basis functions of A2 symmetry. There are 38 symmetry adapted basis functions of B1 symmetry. There are 18 symmetry adapted basis functions of B2 symmetry. 120 basis functions, 210 primitive gaussians, 120 cartesian basis functions 21 alpha electrons 21 beta electrons nuclear repulsion energy 197.7428916782 Hartrees. NAtoms= 12 NActive= 12 NUniq= 4 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 120 RedAO= T EigKep= 5.87D-03 NBF= 52 12 38 18 NBsUse= 120 1.00D-06 EigRej= -1.00D+00 NBFU= 52 12 38 18 ExpMin= 1.27D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A2') (E') (E') (A1') (A2") (E') (E') (E") (E") Virtual (E") (E") (A2") (A1') (E') (E') (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E") (E") (E') (E') (E') (E') (A2") (A1') (E') (E') (A1') (A2') (E') (E') (A1") (A1') (A2") (E") (E") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E') (E') (E") (E") (A2") (E') (E') (A1') (E") (E") (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2') (A1") (E') (E') (E") (E") (E') (E') (A2") (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') The electronic state of the initial guess is 1-A1'. Keep R1 ints in memory in symmetry-blocked form, NReq=33473238. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -242.684598707 A.U. after 11 cycles NFock= 11 Conv=0.36D-08 -V/T= 2.0096 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (E') (E') (A1') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (E') (E') (A2') (A1') (A2") (E') (E') (E") (E") Virtual (E") (E") (A1') (E') (E') (A2") (A1') (E') (E') (A2') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E") (E") (E') (E') (A1') (A2") (A1') (E') (E') (A2') (E') (E') (A1") (A1') (A2") (E") (E") (E') (E') (E") (E") (A1') (E') (E') (A1') (A2') (E') (E') (E') (E') (E") (E") (A2") (E') (E') (A1') (E") (E") (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2') (A1") (E') (E') (E") (E") (E') (E') (A2") (E') (E') (A1') (A2') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -14.31547 -14.31547 -14.31546 -6.74680 -6.74679 Alpha occ. eigenvalues -- -6.74679 -0.88852 -0.83512 -0.83512 -0.55132 Alpha occ. eigenvalues -- -0.52455 -0.52455 -0.43400 -0.43400 -0.43198 Alpha occ. eigenvalues -- -0.38649 -0.36130 -0.31995 -0.31995 -0.27591 Alpha occ. eigenvalues -- -0.27591 Alpha virt. eigenvalues -- 0.02422 0.02422 0.08952 0.11824 0.11824 Alpha virt. eigenvalues -- 0.12494 0.16900 0.19643 0.19643 0.24253 Alpha virt. eigenvalues -- 0.27183 0.27183 0.28695 0.34561 0.34561 Alpha virt. eigenvalues -- 0.42103 0.45498 0.45498 0.47911 0.47911 Alpha virt. eigenvalues -- 0.50084 0.55303 0.55303 0.63673 0.67010 Alpha virt. eigenvalues -- 0.76392 0.76392 0.79018 0.79018 0.83802 Alpha virt. eigenvalues -- 0.83802 0.87426 0.88027 0.88495 0.88911 Alpha virt. eigenvalues -- 0.88911 1.02090 1.07219 1.07219 1.09347 Alpha virt. eigenvalues -- 1.11082 1.12903 1.20958 1.20958 1.24712 Alpha virt. eigenvalues -- 1.24712 1.30854 1.30854 1.31027 1.42170 Alpha virt. eigenvalues -- 1.42170 1.49851 1.66268 1.74471 1.74471 Alpha virt. eigenvalues -- 1.80265 1.80265 1.84795 1.84795 1.91397 Alpha virt. eigenvalues -- 1.93277 1.93277 1.98904 2.14871 2.14871 Alpha virt. eigenvalues -- 2.29922 2.32516 2.33070 2.33070 2.34731 Alpha virt. eigenvalues -- 2.34731 2.35657 2.37693 2.37693 2.44112 Alpha virt. eigenvalues -- 2.47244 2.49616 2.49616 2.59835 2.59835 Alpha virt. eigenvalues -- 2.71119 2.71119 2.73525 2.90052 2.90052 Alpha virt. eigenvalues -- 2.90129 3.11327 3.14820 3.14820 3.15237 Alpha virt. eigenvalues -- 3.44217 3.44217 3.56572 3.62912 3.62912 Alpha virt. eigenvalues -- 4.02027 4.16618 4.16618 4.31300 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 H 0.779581 -0.003445 -0.000098 0.000008 -0.000098 -0.003445 2 H -0.003445 0.455292 -0.003445 -0.000107 0.000008 -0.000107 3 H -0.000098 -0.003445 0.779581 -0.003445 -0.000098 0.000008 4 H 0.000008 -0.000107 -0.003445 0.455292 -0.003445 -0.000107 5 H -0.000098 0.000008 -0.000098 -0.003445 0.779581 -0.003445 6 H -0.003445 -0.000107 0.000008 -0.000107 -0.003445 0.455292 7 N -0.000062 0.002242 -0.037326 0.356188 -0.037326 0.002242 8 N -0.037326 0.002242 -0.000062 0.002242 -0.037326 0.356188 9 N -0.037326 0.356188 -0.037326 0.002242 -0.000062 0.002242 10 B 0.002907 0.000832 0.002907 -0.030043 0.383124 -0.030043 11 B 0.383124 -0.030043 0.002907 0.000832 0.002907 -0.030043 12 B 0.002907 -0.030043 0.383124 -0.030043 0.002907 0.000832 7 8 9 10 11 12 1 H -0.000062 -0.037326 -0.037326 0.002907 0.383124 0.002907 2 H 0.002242 0.002242 0.356188 0.000832 -0.030043 -0.030043 3 H -0.037326 -0.000062 -0.037326 0.002907 0.002907 0.383124 4 H 0.356188 0.002242 0.002242 -0.030043 0.000832 -0.030043 5 H -0.037326 -0.037326 -0.000062 0.383124 0.002907 0.002907 6 H 0.002242 0.356188 0.002242 -0.030043 -0.030043 0.000832 7 N 6.335051 -0.026637 -0.026637 0.460177 -0.017041 0.460177 8 N -0.026637 6.335051 -0.026637 0.460177 0.460177 -0.017041 9 N -0.026637 -0.026637 6.335051 -0.017041 0.460177 0.460177 10 B 0.460177 0.460177 -0.017041 3.477662 -0.009027 -0.009027 11 B -0.017041 0.460177 0.460177 -0.009027 3.477662 -0.009027 12 B 0.460177 -0.017041 0.460177 -0.009027 -0.009027 3.477662 Mulliken charges: 1 1 H -0.086727 2 H 0.250385 3 H -0.086727 4 H 0.250385 5 H -0.086727 6 H 0.250385 7 N -0.471050 8 N -0.471050 9 N -0.471050 10 B 0.307392 11 B 0.307392 12 B 0.307392 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 7 N -0.220665 8 N -0.220665 9 N -0.220665 10 B 0.220665 11 B 0.220665 12 B 0.220665 Electronic spatial extent (au): = 476.2633 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -33.2433 YY= -33.2433 ZZ= -36.8218 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.1928 YY= 1.1928 ZZ= -2.3856 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 14.3918 ZZZ= 0.0000 XYY= 0.0000 XXY= -14.3918 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -303.8715 YYYY= -303.8715 ZZZZ= -36.6061 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -101.2905 XXZZ= -61.7558 YYZZ= -61.7558 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.977428916782D+02 E-N=-9.594879901384D+02 KE= 2.403795865625D+02 Symmetry A1 KE= 1.512549697727D+02 Symmetry A2 KE= 2.950881972597D+00 Symmetry B1 KE= 8.093663621984D+01 Symmetry B2 KE= 5.237098597374D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000000000 0.000083491 0.000000000 2 1 0.000021271 -0.000012281 0.000000000 3 1 -0.000072305 -0.000041745 0.000000000 4 1 0.000000000 0.000024562 0.000000000 5 1 0.000072305 -0.000041745 0.000000000 6 1 -0.000021271 -0.000012281 0.000000000 7 7 0.000000000 -0.000002239 0.000000000 8 7 0.000001939 0.000001119 0.000000000 9 7 -0.000001939 0.000001119 0.000000000 10 5 -0.000168004 0.000096997 0.000000000 11 5 0.000000000 -0.000193994 0.000000000 12 5 0.000168004 0.000096997 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000193994 RMS 0.000061382 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000083491 RMS 0.000031568 Search for a local minimum. Step number 1 out of a maximum of 64 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.01815 0.01815 0.01815 0.01815 0.01815 Eigenvalues --- 0.01815 0.01815 0.01815 0.01815 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.22000 0.22000 0.22000 0.25039 0.25039 Eigenvalues --- 0.25039 0.37675 0.37675 0.40893 0.40893 Eigenvalues --- 0.40893 0.40893 0.46016 0.46016 0.46016 RFO step: Lambda=-1.72166466D-07 EMin= 1.81533430D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00007116 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.93D-11 for atom 5. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25810 0.00008 0.00000 0.00033 0.00033 2.25844 R2 1.90813 -0.00002 0.00000 -0.00005 -0.00005 1.90808 R3 2.25810 0.00008 0.00000 0.00033 0.00033 2.25844 R4 1.90813 -0.00002 0.00000 -0.00005 -0.00005 1.90808 R5 2.25810 0.00008 0.00000 0.00033 0.00033 2.25844 R6 1.90813 -0.00002 0.00000 -0.00005 -0.00005 1.90808 R7 2.70358 -0.00007 0.00000 -0.00016 -0.00016 2.70342 R8 2.70358 -0.00007 0.00000 -0.00016 -0.00016 2.70342 R9 2.70358 -0.00007 0.00000 -0.00016 -0.00016 2.70342 R10 2.70358 -0.00007 0.00000 -0.00016 -0.00016 2.70342 R11 2.70358 -0.00007 0.00000 -0.00016 -0.00016 2.70342 R12 2.70358 -0.00007 0.00000 -0.00016 -0.00016 2.70342 A1 2.06929 0.00001 0.00000 0.00005 0.00005 2.06934 A2 2.06929 0.00001 0.00000 0.00005 0.00005 2.06934 A3 2.14461 -0.00002 0.00000 -0.00010 -0.00010 2.14451 A4 2.06929 0.00001 0.00000 0.00005 0.00005 2.06934 A5 2.06929 0.00001 0.00000 0.00005 0.00005 2.06934 A6 2.14461 -0.00002 0.00000 -0.00010 -0.00010 2.14451 A7 2.06929 0.00001 0.00000 0.00005 0.00005 2.06934 A8 2.06929 0.00001 0.00000 0.00005 0.00005 2.06934 A9 2.14461 -0.00002 0.00000 -0.00010 -0.00010 2.14451 A10 2.11950 -0.00001 0.00000 -0.00005 -0.00005 2.11945 A11 2.11950 -0.00001 0.00000 -0.00005 -0.00005 2.11945 A12 2.04418 0.00002 0.00000 0.00010 0.00010 2.04428 A13 2.11950 -0.00001 0.00000 -0.00005 -0.00005 2.11945 A14 2.11950 -0.00001 0.00000 -0.00005 -0.00005 2.11945 A15 2.04418 0.00002 0.00000 0.00010 0.00010 2.04428 A16 2.11950 -0.00001 0.00000 -0.00005 -0.00005 2.11945 A17 2.11950 -0.00001 0.00000 -0.00005 -0.00005 2.11945 A18 2.04418 0.00002 0.00000 0.00010 0.00010 2.04428 D1 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D4 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D5 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D8 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D9 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D10 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D13 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D14 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D17 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D18 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D19 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D20 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D21 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D24 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 Item Value Threshold Converged? Maximum Force 0.000083 0.000450 YES RMS Force 0.000032 0.000300 YES Maximum Displacement 0.000239 0.001800 YES RMS Displacement 0.000071 0.001200 YES Predicted change in Energy=-8.608323D-08 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,11) 1.1949 -DE/DX = 0.0001 ! ! R2 R(2,9) 1.0097 -DE/DX = 0.0 ! ! R3 R(3,12) 1.1949 -DE/DX = 0.0001 ! ! R4 R(4,7) 1.0097 -DE/DX = 0.0 ! ! R5 R(5,10) 1.1949 -DE/DX = 0.0001 ! ! R6 R(6,8) 1.0097 -DE/DX = 0.0 ! ! R7 R(7,10) 1.4307 -DE/DX = -0.0001 ! ! R8 R(7,12) 1.4307 -DE/DX = -0.0001 ! ! R9 R(8,10) 1.4307 -DE/DX = -0.0001 ! ! R10 R(8,11) 1.4307 -DE/DX = -0.0001 ! ! R11 R(9,11) 1.4307 -DE/DX = -0.0001 ! ! R12 R(9,12) 1.4307 -DE/DX = -0.0001 ! ! A1 A(4,7,10) 118.5614 -DE/DX = 0.0 ! ! A2 A(4,7,12) 118.5614 -DE/DX = 0.0 ! ! A3 A(10,7,12) 122.8772 -DE/DX = 0.0 ! ! A4 A(6,8,10) 118.5614 -DE/DX = 0.0 ! ! A5 A(6,8,11) 118.5614 -DE/DX = 0.0 ! ! A6 A(10,8,11) 122.8772 -DE/DX = 0.0 ! ! A7 A(2,9,11) 118.5614 -DE/DX = 0.0 ! ! A8 A(2,9,12) 118.5614 -DE/DX = 0.0 ! ! A9 A(11,9,12) 122.8772 -DE/DX = 0.0 ! ! A10 A(5,10,7) 121.4386 -DE/DX = 0.0 ! ! A11 A(5,10,8) 121.4386 -DE/DX = 0.0 ! ! A12 A(7,10,8) 117.1228 -DE/DX = 0.0 ! ! A13 A(1,11,8) 121.4386 -DE/DX = 0.0 ! ! A14 A(1,11,9) 121.4386 -DE/DX = 0.0 ! ! A15 A(8,11,9) 117.1228 -DE/DX = 0.0 ! ! A16 A(3,12,7) 121.4386 -DE/DX = 0.0 ! ! A17 A(3,12,9) 121.4386 -DE/DX = 0.0 ! ! A18 A(7,12,9) 117.1228 -DE/DX = 0.0 ! ! D1 D(4,7,10,5) 0.0 -DE/DX = 0.0 ! ! D2 D(4,7,10,8) 180.0 -DE/DX = 0.0 ! ! D3 D(12,7,10,5) 180.0 -DE/DX = 0.0 ! ! D4 D(12,7,10,8) 0.0 -DE/DX = 0.0 ! ! D5 D(4,7,12,3) 0.0 -DE/DX = 0.0 ! ! D6 D(4,7,12,9) 180.0 -DE/DX = 0.0 ! ! D7 D(10,7,12,3) 180.0 -DE/DX = 0.0 ! ! D8 D(10,7,12,9) 0.0 -DE/DX = 0.0 ! ! D9 D(6,8,10,5) 0.0 -DE/DX = 0.0 ! ! D10 D(6,8,10,7) 180.0 -DE/DX = 0.0 ! ! D11 D(11,8,10,5) 180.0 -DE/DX = 0.0 ! ! D12 D(11,8,10,7) 0.0 -DE/DX = 0.0 ! ! D13 D(6,8,11,1) 0.0 -DE/DX = 0.0 ! ! D14 D(6,8,11,9) 180.0 -DE/DX = 0.0 ! ! D15 D(10,8,11,1) 180.0 -DE/DX = 0.0 ! ! D16 D(10,8,11,9) 0.0 -DE/DX = 0.0 ! ! D17 D(2,9,11,1) 0.0 -DE/DX = 0.0 ! ! D18 D(2,9,11,8) 180.0 -DE/DX = 0.0 ! ! D19 D(12,9,11,1) 180.0 -DE/DX = 0.0 ! ! D20 D(12,9,11,8) 0.0 -DE/DX = 0.0 ! ! D21 D(2,9,12,3) 0.0 -DE/DX = 0.0 ! ! D22 D(2,9,12,7) 180.0 -DE/DX = 0.0 ! ! D23 D(11,9,12,3) 180.0 -DE/DX = 0.0 ! ! D24 D(11,9,12,7) 0.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 2.645896 0.000000 2 1 0 -2.095109 1.209612 0.000000 3 1 0 -2.291413 -1.322948 0.000000 4 1 0 0.000000 -2.419224 0.000000 5 1 0 2.291413 -1.322948 0.000000 6 1 0 2.095109 1.209612 0.000000 7 7 0 0.000000 -1.409485 0.000000 8 7 0 1.220650 0.704742 0.000000 9 7 0 -1.220650 0.704742 0.000000 10 5 0 1.256568 -0.725480 0.000000 11 5 0 0.000000 1.450960 0.000000 12 5 0 -1.256568 -0.725480 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 2.540156 0.000000 3 H 4.582826 2.540156 0.000000 4 H 5.065120 4.190218 2.540156 0.000000 5 H 4.582826 5.065120 4.582826 2.540156 0.000000 6 H 2.540156 4.190218 5.065120 4.190218 2.540156 7 N 4.055381 3.353975 2.293047 1.009739 2.293047 8 N 2.293047 3.353975 4.055381 3.353975 2.293047 9 N 2.293047 1.009739 2.293047 3.353975 4.055381 10 B 3.597935 3.870183 3.597935 2.108964 1.194936 11 B 1.194936 2.108964 3.597935 3.870183 3.597935 12 B 3.597935 2.108964 1.194936 2.108964 3.597935 6 7 8 9 10 6 H 0.000000 7 N 3.353975 0.000000 8 N 1.009739 2.441299 0.000000 9 N 3.353975 2.441299 2.441299 0.000000 10 B 2.108964 1.430673 1.430673 2.860444 0.000000 11 B 2.108964 2.860444 1.430673 1.430673 2.513136 12 B 3.870183 1.430673 2.860444 1.430673 2.513136 11 12 11 B 0.000000 12 B 2.513136 0.000000 Stoichiometry B3H6N3 Framework group D3H[3C2(HB.NH)] Deg. of freedom 4 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 -2.645896 0.000000 2 1 0 2.095109 -1.209612 0.000000 3 1 0 2.291413 1.322948 0.000000 4 1 0 0.000000 2.419224 0.000000 5 1 0 -2.291413 1.322948 0.000000 6 1 0 -2.095109 -1.209612 0.000000 7 7 0 0.000000 1.409485 0.000000 8 7 0 -1.220650 -0.704742 0.000000 9 7 0 1.220650 -0.704742 0.000000 10 5 0 -1.256568 0.725480 0.000000 11 5 0 0.000000 -1.450960 0.000000 12 5 0 1.256568 0.725480 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 5.2684093 5.2684093 2.6342046 1|1| IMPERIAL COLLEGE-CHWS-103|FOpt|RB3LYP|6-31G(d,p)|B3H6N3|HZ6415|18 -May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ul trafine||Borazine Optimisation1||0,1|H,-0.0000000024,2.64589608,0.|H,- 2.0951091109,1.2096118084,0.|H,-2.2914132184,-1.3229480395,0.|H,0.0000 000022,-2.4192236155,0.|H,2.2914132208,-1.3229480355,0.|H,2.0951091088 ,1.2096118121,0.|N,0.0000000013,-1.40948465,0.|N,1.220649514,0.7047423 286,0.|N,-1.2206495152,0.7047423264,0.|B,1.2565679421,-0.7254798364,0. |B,-0.0000000013,1.4509596801,0.|B,-1.2565679408,-0.7254798387,0.||Ver sion=EM64W-G09RevD.01|State=1-A1'|HF=-242.6845987|RMSD=3.609e-009|RMSF =6.138e-005|Dipole=0.,0.,0.|Quadrupole=0.8868297,0.8868297,-1.7736595, 0.,0.,0.|PG=D03H [3C2(H1B1.N1H1)]||@ MATERIAL COPIED FROM ONE SCHOLARLY BOOK WITHOUT CREDIT COMPRISES PLAGIARISM. MATERIAL COPIED FROM TWO SCHOLARLY BOOKS COMPRISES AN ESSAY. MATERIAL COPIED FROM THREE SCHOLARLY BOOKS COMPRISES A DISSERTATION. MATERIAL COPIED FROM FOUR SCHOLARLY BOOKS COMPRISES A FIFTH SCHOLARLY BOOK. -- C&EN, 25 FEB 1980 Job cpu time: 0 days 0 hours 0 minutes 8.0 seconds. File lengths (MBytes): RWF= 8 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri May 18 14:46:17 2018.