Entering Link 1 = C:\G09W\l1.exe PID= 2212. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2011, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2010. ****************************************** Gaussian 09: EM64W-G09RevC.01 23-Sep-2011 19-Feb-2013 ****************************************** %chk=\\ic.ac.uk\homes\mf2310\3rdYearCompLab\BH3_opt_631g2.chk ---------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity ---------------------------------------- 1/14=-1,18=20,19=15,26=3,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5/1,2,3; 4/5=5,16=3/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---------------- BH3 optimisation ---------------- Charge = 0 Multiplicity = 1 Symbolic Z-Matrix: B 0. 0. 0. H 0. 1.19143 0. H -1.03181 -0.59572 0. H 1.03181 -0.59572 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1914 estimate D2E/DX2 ! ! R2 R(1,3) 1.1914 estimate D2E/DX2 ! ! R3 R(1,4) 1.1914 estimate D2E/DX2 ! ! A1 A(2,1,3) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 119.9999 estimate D2E/DX2 ! ! D1 D(2,1,4,3) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.191433 0.000000 3 1 0 -1.031811 -0.595717 0.000000 4 1 0 1.031811 -0.595717 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.191433 0.000000 3 H 1.191433 2.063623 0.000000 4 H 1.191433 2.063623 2.063622 0.000000 Stoichiometry BH3 Framework group D3H[O(B),3C2(H)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.191433 0.000000 3 1 0 1.031811 -0.595717 0.000000 4 1 0 -1.031811 -0.595717 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 235.5057162 235.5057162 117.7528581 Standard basis: 6-31G(d,p) (6D, 7F) There are 15 symmetry adapted basis functions of A1 symmetry. There are 2 symmetry adapted basis functions of A2 symmetry. There are 8 symmetry adapted basis functions of B1 symmetry. There are 5 symmetry adapted basis functions of B2 symmetry. Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. 30 basis functions, 49 primitive gaussians, 30 cartesian basis functions 4 alpha electrons 4 beta electrons nuclear repulsion energy 7.4315710673 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F One-electron integrals computed using PRISM. NBasis= 30 RedAO= T NBF= 15 2 8 5 NBsUse= 30 1.00D-06 NBFU= 15 2 8 5 Harris functional with IExCor= 402 diagonalized for initial guess. ExpMin= 1.27D-01 ExpMax= 2.07D+03 ExpMxC= 3.11D+02 IAcc=1 IRadAn= 1 AccDes= 0.00D+00 HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 1 IDoV= 1 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T Omega= 0.000000 0.000000 1.000000 0.000000 0.000000 ICntrl= 500 IOpCl= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 I1Cent= 4 NGrid= 0. Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1') (A1') (E') (E') Virtual (A2") (A1') (E') (E') (E') (E') (A2") (A1') (E') (E') (A1') (E") (E") (A1') (E') (E') (A2') (A2") (E") (E") (E') (E') (A1') (E') (E') (A1') The electronic state of the initial guess is 1-A1'. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Keep R1 ints in memory in canonical form, NReq=1020667. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -26.6153225233 A.U. after 9 cycles Convg = 0.1346D-08 -V/T = 2.0112 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1') (A1') (E') (E') Virtual (A2") (A1') (E') (E') (E') (E') (A2") (A1') (E') (E') (A1') (E") (E") (A1') (E') (E') (A2') (A2") (E") (E") (E') (E') (A1') (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -6.77112 -0.51267 -0.35088 -0.35088 Alpha virt. eigenvalues -- -0.06602 0.16878 0.17950 0.17950 0.38103 Alpha virt. eigenvalues -- 0.38103 0.44421 0.47361 0.90367 0.90367 Alpha virt. eigenvalues -- 0.91361 1.17084 1.17084 1.57674 1.62154 Alpha virt. eigenvalues -- 1.62154 2.00617 2.21238 2.39322 2.39322 Alpha virt. eigenvalues -- 2.55366 2.55366 3.00375 3.24690 3.24690 Alpha virt. eigenvalues -- 3.46191 Condensed to atoms (all electrons): 1 2 3 4 1 B 3.672723 0.410967 0.410967 0.410967 2 H 0.410967 0.671392 -0.025450 -0.025450 3 H 0.410967 -0.025450 0.671392 -0.025450 4 H 0.410967 -0.025450 -0.025450 0.671392 Mulliken atomic charges: 1 1 B 0.094377 2 H -0.031459 3 H -0.031459 4 H -0.031459 Sum of Mulliken atomic charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 B 0.000000 Sum of Mulliken charges with hydrogens summed into heavy atoms = 0.00000 Electronic spatial extent (au): = 33.7963 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -9.0141 YY= -9.0141 ZZ= -6.9743 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.6799 YY= -0.6799 ZZ= 1.3598 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.1127 ZZZ= 0.0000 XYY= 0.0000 XXY= -0.1127 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -22.5056 YYYY= -22.5056 ZZZZ= -6.6171 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -7.5019 XXZZ= -5.0842 YYZZ= -5.0842 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 7.431571067269D+00 E-N=-7.543806663102D+01 KE= 2.632062086455D+01 Symmetry A1 KE= 2.486315160632D+01 Symmetry A2 KE= 5.932516110454D-34 Symmetry B1 KE= 1.457469258232D+00 Symmetry B2 KE= 3.780309230338D-33 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 5 0.000000000 0.000000000 0.000000000 2 1 0.000000000 0.000433378 0.000000000 3 1 -0.000375317 -0.000216689 0.000000000 4 1 0.000375317 -0.000216689 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000433378 RMS 0.000216689 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000433378 RMS 0.000283713 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.25301 R2 0.00000 0.25301 R3 0.00000 0.00000 0.25301 A1 0.00000 0.00000 0.00000 0.16000 A2 0.00000 0.00000 0.00000 0.00000 0.16000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.16000 D1 0.00000 0.00230 ITU= 0 Eigenvalues --- 0.00230 0.16000 0.16000 0.25301 0.25301 Eigenvalues --- 0.25301 RFO step: Lambda=-2.22696007D-06 EMin= 2.30000000D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00112133 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 7.38D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.25148 0.00043 0.00000 0.00171 0.00171 2.25320 R2 2.25148 0.00043 0.00000 0.00171 0.00171 2.25320 R3 2.25148 0.00043 0.00000 0.00171 0.00171 2.25320 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000433 0.000450 YES RMS Force 0.000284 0.000300 YES Maximum Displacement 0.001713 0.001800 YES RMS Displacement 0.001121 0.001200 YES Predicted change in Energy=-1.113480D-06 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.1914 -DE/DX = 0.0004 ! ! R2 R(1,3) 1.1914 -DE/DX = 0.0004 ! ! R3 R(1,4) 1.1914 -DE/DX = 0.0004 ! ! A1 A(2,1,3) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,4) 120.0 -DE/DX = 0.0 ! ! A3 A(3,1,4) 120.0 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.191433 0.000000 3 1 0 -1.031811 -0.595717 0.000000 4 1 0 1.031811 -0.595717 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 B 0.000000 2 H 1.191433 0.000000 3 H 1.191433 2.063623 0.000000 4 H 1.191433 2.063623 2.063623 0.000000 Stoichiometry BH3 Framework group D3H[O(B),3C2(H)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 5 0 0.000000 0.000000 0.000000 2 1 0 0.000000 1.191433 0.000000 3 1 0 1.031811 -0.595717 0.000000 4 1 0 -1.031811 -0.595717 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 235.5057162 235.5057162 117.7528581 1|1|UNPC-CHWS-LAP86|FOpt|RB3LYP|6-31G(d,p)|B1H3|MF2310|19-Feb-2013|0|| # opt b3lyp/6-31g(d,p) geom=connectivity||BH3 optimisation||0,1|B,0.,- 0.000000125,0.|H,-0.0000000941,1.191433,0.|H,-1.0318113061,-0.59571676 9,0.|H,1.0318114002,-0.595716606,0.||Version=EM64W-G09RevC.01|State=1- A1'|HF=-26.6153225|RMSD=1.346e-009|RMSF=2.167e-004|Dipole=0.,0.,0.|Qua drupole=-0.5055059,-0.5055059,1.0110118,0.,0.,0.|PG=D03H [O(B1),3C2(H1 )]||@ THE DEATH-KNELL OF THE ATOM SO THE ATOMS IN TURN, WE NOW CLEARLY DISCERN, FLY TO BITS WITH THE UTMOST FACILITY; THEY WEND ON THEIR WAY, AND, IN SPLITTING, DISPLAY AN ABSOLUTE LACK OF STABILITY. SIR WM. RAMSAY, 1905 Job cpu time: 0 days 0 hours 0 minutes 5.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Tue Feb 19 18:49:22 2013.