Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/100832/Gau-19377.inp" -scrdir="/home/scan-user-1/run/100832/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 19378. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 17-Oct-2014 ****************************************** %nprocshared=4 Will use up to 4 processors via shared memory. %mem=7000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.8114768.cx1b/rwf ---------------------------------------------------------------------- # opt=tight b3lyp/6-311g(d,p) geom=connectivity integral=grid=ultrafin e scf=conver=9 ---------------------------------------------------------------------- 1/7=10,14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,6=9,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=4,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,6=9,38=5/2; 7//1,2,3,16; 1/7=10,14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------ GaBr3 optimisation ------------------ Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Ga 0. 0. 0. Br 0. 2.35018 0. Br 2.03532 -1.17509 0. Br -2.03532 -1.17509 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.3502 estimate D2E/DX2 ! ! R2 R(1,3) 2.3502 estimate D2E/DX2 ! ! R3 R(1,4) 2.3502 estimate D2E/DX2 ! ! A1 A(2,1,3) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! D1 D(2,1,4,3) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.350182 0.000000 3 35 0 2.035317 -1.175091 0.000000 4 35 0 -2.035317 -1.175091 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Ga 0.000000 2 Br 2.350182 0.000000 3 Br 2.350182 4.070635 0.000000 4 Br 2.350182 4.070635 4.070635 0.000000 Stoichiometry Br3Ga Framework group D3H[O(Ga),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.350182 0.000000 3 35 0 2.035317 -1.175091 0.000000 4 35 0 -2.035317 -1.175091 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.7729387 0.7729387 0.3864693 Standard basis: 6-311G(d,p) (5D, 7F) There are 82 symmetry adapted cartesian basis functions of A1 symmetry. There are 19 symmetry adapted cartesian basis functions of A2 symmetry. There are 54 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 73 symmetry adapted basis functions of A1 symmetry. There are 19 symmetry adapted basis functions of A2 symmetry. There are 51 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. 176 basis functions, 360 primitive gaussians, 188 cartesian basis functions 68 alpha electrons 68 beta electrons nuclear repulsion energy 1210.6551888450 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 176 RedAO= T EigKep= 1.01D-02 NBF= 73 19 51 33 NBsUse= 176 1.00D-06 EigRej= -1.00D+00 NBFU= 73 19 51 33 ExpMin= 3.99D-02 ExpMax= 4.40D+05 ExpMxC= 1.51D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1') (E') (E') (A1') (A1') (E') (E') (E') (E') (A1') (A2") (E') (E') (A2') (E") (E") (A1') (E') (E') (A2") (A1') (E') (E') (E') (E') (A1') (E') (E') (A2') (A2") (E") (E") (A1') (E') (E') (A2") (E') (E') (A1') (E') (E') (E") (E") (A2") (A2') (A1') (E") (E") (E') (E') (A1") (A1') (E') (E') (E') (E') (E") (E") (A1') (A1') (E') (E') (A2") (E') (E') (E") (E") (A2') Virtual (A1') (A2") (E') (E') (E') (E') (A1') (A2") (E') (E') (E") (E") (A1') (E') (E') (E") (E") (A2') (A1') (A2") (E') (E') (E') (E') (A1') (A2') (E") (E") (A1") (E') (E') (A2") (A1') (E') (E') (A2") (E") (E") (E') (E') (A1') (E') (E') (A1') (E") (E") (E') (E') (A2') (A2") (E') (E') (E") (E") (A1') (E') (E') (A2") (E') (E') (A2') (E") (E") (A1") (E') (E') (A1') (A2") (A1') (E") (E") (E') (E') (E') (E') (A1') (E') (E') (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (A1') (E') (E') (A1') (A2") (E') (E') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (A1') (E') (E') (A1') The electronic state of the initial guess is 1-A1'. Keep R1 ints in memory in symmetry-blocked form, NReq=152779402. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. EnCoef did 100 forward-backward iterations SCF Done: E(RB3LYP) = -9647.47563396 A.U. after 11 cycles NFock= 11 Conv=0.54D-09 -V/T= 2.0013 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1') (E') (E') (A1') (A1') (E') (E') (E') (E') (A1') (A2") (E") (E") (E') (E') (A2') (A1') (A2") (E') (E') (A1') (E') (E') (E') (E') (A1') (E") (E") (A2") (A2') (E') (E') (A1') (A2") (E') (E') (E') (E') (A1') (E") (E") (A2") (E') (E') (A2') (A1") (E") (E") (E') (E') (A1') (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A2') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (A1') (E') (E') (A1') (E") (E") (E') (E') (E") (E") (A2') (A1') (A2") (E') (E') (E') (E') (A1') (A2") (A2') (E') (E') (E") (E") (A1") (A1') (E') (E') (A2") (E") (E") (E') (E') (A1') (E') (E') (A1') (E") (E") (E') (E') (A2') (E") (E") (A2") (E') (E') (A1') (E') (E') (A2") (E') (E') (A2') (E") (E") (A1") (E') (E') (A1') (A1') (A2") (E") (E") (E') (E') (E') (E') (A1') (E') (E') (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (A1') (E') (E') (A1') (A2") (E') (E') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (A1') (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -482.84702-482.84702-482.84702-372.63291 -62.50006 Alpha occ. eigenvalues -- -62.50006 -62.50006 -56.31958 -56.31958 -56.31958 Alpha occ. eigenvalues -- -56.31706 -56.31706 -56.31706 -56.31669 -56.31669 Alpha occ. eigenvalues -- -56.31669 -46.00463 -40.75907 -40.75604 -40.75604 Alpha occ. eigenvalues -- -8.70918 -8.70918 -8.70918 -6.53802 -6.53802 Alpha occ. eigenvalues -- -6.53802 -6.52944 -6.52944 -6.52944 -6.52830 Alpha occ. eigenvalues -- -6.52830 -6.52830 -5.58622 -3.87398 -3.86755 Alpha occ. eigenvalues -- -3.86755 -2.64939 -2.64939 -2.64937 -2.64718 Alpha occ. eigenvalues -- -2.64718 -2.64717 -2.64628 -2.64628 -2.64627 Alpha occ. eigenvalues -- -2.63948 -2.63948 -2.63948 -2.63946 -2.63946 Alpha occ. eigenvalues -- -2.63946 -0.92361 -0.91951 -0.91951 -0.91914 Alpha occ. eigenvalues -- -0.91914 -0.79447 -0.78009 -0.78009 -0.47729 Alpha occ. eigenvalues -- -0.37856 -0.37856 -0.34065 -0.32194 -0.32194 Alpha occ. eigenvalues -- -0.31994 -0.31994 -0.30937 Alpha virt. eigenvalues -- -0.12349 -0.08256 0.01906 0.01906 0.07384 Alpha virt. eigenvalues -- 0.08014 0.08014 0.09397 0.20903 0.20903 Alpha virt. eigenvalues -- 0.21852 0.23183 0.23183 0.29052 0.29052 Alpha virt. eigenvalues -- 0.29209 0.29209 0.34170 0.34803 0.35206 Alpha virt. eigenvalues -- 0.42817 0.42817 0.53616 0.53616 0.55806 Alpha virt. eigenvalues -- 0.55959 0.59283 0.59374 0.59374 0.60183 Alpha virt. eigenvalues -- 0.60183 0.60439 0.63817 0.67972 0.67972 Alpha virt. eigenvalues -- 0.69990 0.75131 0.75131 0.81783 0.81783 Alpha virt. eigenvalues -- 0.88784 1.01230 1.01230 1.76565 1.84738 Alpha virt. eigenvalues -- 1.84738 1.86097 1.86097 1.89094 1.89514 Alpha virt. eigenvalues -- 1.89514 1.91551 1.94768 1.94768 2.02948 Alpha virt. eigenvalues -- 2.09870 2.09870 3.59216 3.69827 3.69827 Alpha virt. eigenvalues -- 4.10496 4.11248 4.11248 4.11351 4.11734 Alpha virt. eigenvalues -- 4.11734 4.12966 4.14505 4.15560 4.18901 Alpha virt. eigenvalues -- 4.18901 4.24359 4.24359 4.43926 4.43926 Alpha virt. eigenvalues -- 4.87375 6.48069 6.48069 6.52587 7.44018 Alpha virt. eigenvalues -- 7.44018 7.46175 7.46956 7.46956 7.48450 Alpha virt. eigenvalues -- 7.51759 7.57617 7.57617 40.19431 47.78568 Alpha virt. eigenvalues -- 47.78568 47.82214 207.22081 207.35427 207.35427 Alpha virt. eigenvalues -- 289.64184 289.64184 289.66497 289.66507 289.66507 Alpha virt. eigenvalues -- 289.68595 289.71697 289.79363 289.79363 786.16466 Alpha virt. eigenvalues -- 1020.543161020.543161020.59015 Condensed to atoms (all electrons): 1 2 3 4 1 Ga 29.379813 0.357138 0.357138 0.357138 2 Br 0.357138 34.862165 -0.018190 -0.018190 3 Br 0.357138 -0.018190 34.862165 -0.018190 4 Br 0.357138 -0.018190 -0.018190 34.862165 Mulliken charges: 1 1 Ga 0.548771 2 Br -0.182924 3 Br -0.182924 4 Br -0.182924 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Ga 0.548771 2 Br -0.182924 3 Br -0.182924 4 Br -0.182924 Electronic spatial extent (au): = 2232.4476 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -73.7487 YY= -73.7487 ZZ= -69.5913 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.3858 YY= -1.3858 ZZ= 2.7716 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 4.3909 ZZZ= 0.0000 XYY= 0.0000 XXY= -4.3909 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -972.2516 YYYY= -972.2516 ZZZZ= -84.6746 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -324.0839 XXZZ= -184.3535 YYZZ= -184.3535 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.210655188845D+03 E-N=-2.548309997555D+04 KE= 9.635283266028D+03 Symmetry A1 KE= 5.473237525576D+03 Symmetry A2 KE= 4.449991775869D+02 Symmetry B1 KE= 2.769211838110D+03 Symmetry B2 KE= 9.478347247553D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 31 0.000000000 0.000000000 0.000000000 2 35 0.000000000 -0.014968502 0.000000000 3 35 -0.012963103 0.007484251 0.000000000 4 35 0.012963103 0.007484251 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.014968502 RMS 0.007484251 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.014968502 RMS 0.009799185 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.12221 R2 0.00000 0.12221 R3 0.00000 0.00000 0.12221 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.02223 ITU= 0 Eigenvalues --- 0.02223 0.12221 0.12221 0.12221 0.25000 Eigenvalues --- 0.25000 RFO step: Lambda=-5.27249675D-03 EMin= 2.22288305D-02 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.07686494 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.62D-11 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.44120 -0.01497 0.00000 -0.11741 -0.11741 4.32379 R2 4.44120 -0.01497 0.00000 -0.11741 -0.11741 4.32379 R3 4.44120 -0.01497 0.00000 -0.11741 -0.11741 4.32379 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.014969 0.000015 NO RMS Force 0.009799 0.000010 NO Maximum Displacement 0.117413 0.000060 NO RMS Displacement 0.076865 0.000040 NO Predicted change in Energy=-2.745277D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.288050 0.000000 3 35 0 1.981509 -1.144025 0.000000 4 35 0 -1.981509 -1.144025 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Ga 0.000000 2 Br 2.288050 0.000000 3 Br 2.288050 3.963018 0.000000 4 Br 2.288050 3.963018 3.963018 0.000000 Stoichiometry Br3Ga Framework group D3H[O(Ga),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.288050 0.000000 3 35 0 1.981509 -1.144025 0.000000 4 35 0 -1.981509 -1.144025 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.8154872 0.8154872 0.4077436 Standard basis: 6-311G(d,p) (5D, 7F) There are 82 symmetry adapted cartesian basis functions of A1 symmetry. There are 19 symmetry adapted cartesian basis functions of A2 symmetry. There are 54 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 73 symmetry adapted basis functions of A1 symmetry. There are 19 symmetry adapted basis functions of A2 symmetry. There are 51 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. 176 basis functions, 360 primitive gaussians, 188 cartesian basis functions 68 alpha electrons 68 beta electrons nuclear repulsion energy 1243.5307225952 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 176 RedAO= T EigKep= 9.92D-03 NBF= 73 19 51 33 NBsUse= 176 1.00D-06 EigRej= -1.00D+00 NBFU= 73 19 51 33 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1') (E') (E') (A1') (A1') (E') (E') (E') (E') (A1') (A2") (E") (E") (E') (E') (A2') (A1') (A2") (E') (E') (A1') (E') (E') (E') (E') (A1') (E") (E") (A2") (A2') (E') (E') (A1') (A2") (E') (E') (E') (E') (A1') (E") (E") (A2") (E') (E') (A2') (A1") (E") (E") (E') (E') (A1') (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A2') Virtual (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) ExpMin= 3.99D-02 ExpMax= 4.40D+05 ExpMxC= 1.51D+04 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=152779402. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -9647.47846660 A.U. after 10 cycles NFock= 10 Conv=0.37D-09 -V/T= 2.0012 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 31 0.000000000 0.000000000 0.000000000 2 35 0.000000000 -0.000419923 0.000000000 3 35 -0.000363664 0.000209961 0.000000000 4 35 0.000363664 0.000209961 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000419923 RMS 0.000209961 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000419923 RMS 0.000274904 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 DE= -2.83D-03 DEPred=-2.75D-03 R= 1.03D+00 TightC=F SS= 1.41D+00 RLast= 2.03D-01 DXNew= 5.0454D-01 6.1010D-01 Trust test= 1.03D+00 RLast= 2.03D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.12278 R2 0.00057 0.12278 R3 0.00057 0.00057 0.12278 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.02223 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.02223 0.12221 0.12221 0.12391 0.25000 Eigenvalues --- 0.25000 RFO step: Lambda= 0.00000000D+00 EMin= 2.22288305D-02 Quartic linear search produced a step of 0.02508. Iteration 1 RMS(Cart)= 0.00192813 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.60D-12 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.32379 -0.00042 -0.00295 0.00000 -0.00295 4.32084 R2 4.32379 -0.00042 -0.00295 0.00000 -0.00295 4.32084 R3 4.32379 -0.00042 -0.00295 0.00000 -0.00295 4.32084 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000420 0.000015 NO RMS Force 0.000275 0.000010 NO Maximum Displacement 0.002945 0.000060 NO RMS Displacement 0.001928 0.000040 NO Predicted change in Energy=-2.098060D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.286491 0.000000 3 35 0 1.980159 -1.143246 0.000000 4 35 0 -1.980159 -1.143246 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Ga 0.000000 2 Br 2.286491 0.000000 3 Br 2.286491 3.960319 0.000000 4 Br 2.286491 3.960319 3.960319 0.000000 Stoichiometry Br3Ga Framework group D3H[O(Ga),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.286491 0.000000 3 35 0 1.980159 -1.143246 0.000000 4 35 0 -1.980159 -1.143246 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.8165993 0.8165993 0.4082996 Standard basis: 6-311G(d,p) (5D, 7F) There are 82 symmetry adapted cartesian basis functions of A1 symmetry. There are 19 symmetry adapted cartesian basis functions of A2 symmetry. There are 54 symmetry adapted cartesian basis functions of B1 symmetry. There are 33 symmetry adapted cartesian basis functions of B2 symmetry. There are 73 symmetry adapted basis functions of A1 symmetry. There are 19 symmetry adapted basis functions of A2 symmetry. There are 51 symmetry adapted basis functions of B1 symmetry. There are 33 symmetry adapted basis functions of B2 symmetry. 176 basis functions, 360 primitive gaussians, 188 cartesian basis functions 68 alpha electrons 68 beta electrons nuclear repulsion energy 1244.3783661670 Hartrees. NAtoms= 4 NActive= 4 NUniq= 2 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 176 RedAO= T EigKep= 9.92D-03 NBF= 73 19 51 33 NBsUse= 176 1.00D-06 EigRej= -1.00D+00 NBFU= 73 19 51 33 Initial guess from the checkpoint file: "chk.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1') (E') (E') (A1') (A1') (E') (E') (E') (E') (A1') (A2") (E") (E") (E') (E') (A2') (A1') (A2") (E') (E') (A1') (E') (E') (E') (E') (A1') (E") (E") (A2") (A2') (E') (E') (A1') (A2") (E') (E') (E') (E') (A1') (E") (E") (A2") (E') (E') (A2') (A1") (E") (E") (E') (E') (A1') (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A2') Virtual (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?A) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) (?B) Keep R1 ints in memory in symmetry-blocked form, NReq=152779402. Requested convergence on RMS density matrix=1.00D-09 within 128 cycles. Requested convergence on MAX density matrix=1.00D-07. Requested convergence on energy=1.00D-07. No special actions if energy rises. SCF Done: E(RB3LYP) = -9647.47846846 A.U. after 9 cycles NFock= 9 Conv=0.13D-09 -V/T= 2.0012 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 31 0.000000000 0.000000000 0.000000000 2 35 0.000000000 0.000000904 0.000000000 3 35 0.000000783 -0.000000452 0.000000000 4 35 -0.000000783 -0.000000452 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000000904 RMS 0.000000452 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000000904 RMS 0.000000592 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 DE= -1.85D-06 DEPred=-2.10D-06 R= 8.84D-01 TightC=F SS= 1.41D+00 RLast= 5.10D-03 DXNew= 8.4853D-01 1.5304D-02 Trust test= 8.84D-01 RLast= 5.10D-03 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.12910 R2 0.00689 0.12910 R3 0.00689 0.00689 0.12910 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.02223 ITU= 1 1 0 Eigenvalues --- 0.02223 0.12221 0.12221 0.14288 0.25000 Eigenvalues --- 0.25000 En-DIIS/RFO-DIIS IScMMF= 0 using points: 3 2 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 0.99785 0.00215 Iteration 1 RMS(Cart)= 0.00000414 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.88D-13 for atom 4. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.32084 0.00000 0.00001 0.00000 0.00001 4.32085 R2 4.32084 0.00000 0.00001 0.00000 0.00001 4.32085 R3 4.32084 0.00000 0.00001 0.00000 0.00001 4.32085 A1 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A2 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 A3 2.09440 0.00000 0.00000 0.00000 0.00000 2.09440 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000001 0.000015 YES RMS Force 0.000001 0.000010 YES Maximum Displacement 0.000006 0.000060 YES RMS Displacement 0.000004 0.000040 YES Predicted change in Energy=-8.584711D-12 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.2865 -DE/DX = 0.0 ! ! R2 R(1,3) 2.2865 -DE/DX = 0.0 ! ! R3 R(1,4) 2.2865 -DE/DX = 0.0 ! ! A1 A(2,1,3) 120.0 -DE/DX = 0.0 ! ! A2 A(2,1,4) 120.0 -DE/DX = 0.0 ! ! A3 A(3,1,4) 120.0 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.286491 0.000000 3 35 0 1.980159 -1.143246 0.000000 4 35 0 -1.980159 -1.143246 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Ga 0.000000 2 Br 2.286491 0.000000 3 Br 2.286491 3.960319 0.000000 4 Br 2.286491 3.960319 3.960319 0.000000 Stoichiometry Br3Ga Framework group D3H[O(Ga),3C2(Br)] Deg. of freedom 1 Full point group D3H NOp 12 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 31 0 0.000000 0.000000 0.000000 2 35 0 0.000000 2.286491 0.000000 3 35 0 1.980159 -1.143246 0.000000 4 35 0 -1.980159 -1.143246 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 0.8165993 0.8165993 0.4082996 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1') (E') (E') (A1') (A1') (E') (E') (E') (E') (A1') (A2") (E") (E") (E') (E') (A2') (A1') (A2") (E') (E') (A1') (E') (E') (E') (E') (A1') (E") (E") (A2") (A2') (E') (E') (A1') (A2") (E') (E') (E') (E') (A1') (E") (E") (A2") (E') (E') (A2') (A1") (E") (E") (E') (E') (A1') (A1') (E') (E') (E") (E") (A1') (E') (E') (A1') (E') (E') (A2") (E') (E') (E") (E") (A2') Virtual (A1') (A2") (E') (E') (A2") (E') (E') (A1') (E') (E') (A1') (E") (E") (E') (E') (E") (E") (A2') (A1') (A2") (E') (E') (E') (E') (A1') (A2") (E') (E') (A2') (E") (E") (A1") (A1') (E') (E') (A2") (E") (E") (E') (E') (A1') (E') (E') (A1') (E") (E") (E') (E') (A2') (E") (E") (A2") (E') (E') (A1') (E') (E') (A2") (E') (E') (A2') (E") (E") (A1") (E') (E') (A1') (A2") (A1') (E") (E") (E') (E') (E') (E') (A1') (E') (E') (A1') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (A1') (E') (E') (A1') (A2") (E') (E') (E") (E") (A2') (E') (E') (A2") (A1') (E') (E') (A1') (E') (E') (A1') The electronic state is 1-A1'. Alpha occ. eigenvalues -- -482.84586-482.84586-482.84586-372.62623 -62.49920 Alpha occ. eigenvalues -- -62.49920 -62.49920 -56.31855 -56.31855 -56.31855 Alpha occ. eigenvalues -- -56.31625 -56.31625 -56.31625 -56.31584 -56.31584 Alpha occ. eigenvalues -- -56.31584 -45.99896 -40.75339 -40.75020 -40.75020 Alpha occ. eigenvalues -- -8.70862 -8.70862 -8.70862 -6.53719 -6.53719 Alpha occ. eigenvalues -- -6.53719 -6.52909 -6.52909 -6.52909 -6.52783 Alpha occ. eigenvalues -- -6.52783 -6.52783 -5.58124 -3.86893 -3.86272 Alpha occ. eigenvalues -- -3.86272 -2.64871 -2.64871 -2.64869 -2.64659 Alpha occ. eigenvalues -- -2.64659 -2.64658 -2.64560 -2.64560 -2.64558 Alpha occ. eigenvalues -- -2.63918 -2.63918 -2.63918 -2.63914 -2.63914 Alpha occ. eigenvalues -- -2.63914 -0.92011 -0.91694 -0.91694 -0.91457 Alpha occ. eigenvalues -- -0.91457 -0.79898 -0.78132 -0.78132 -0.47974 Alpha occ. eigenvalues -- -0.38238 -0.38238 -0.34482 -0.32266 -0.32266 Alpha occ. eigenvalues -- -0.32076 -0.32076 -0.30878 Alpha virt. eigenvalues -- -0.10365 -0.07559 0.02787 0.02787 0.07238 Alpha virt. eigenvalues -- 0.08428 0.08428 0.09032 0.20970 0.20970 Alpha virt. eigenvalues -- 0.21861 0.23325 0.23325 0.29144 0.29144 Alpha virt. eigenvalues -- 0.29201 0.29201 0.34055 0.34689 0.35406 Alpha virt. eigenvalues -- 0.44538 0.44538 0.53677 0.53677 0.56610 Alpha virt. eigenvalues -- 0.56789 0.58808 0.58808 0.59580 0.60045 Alpha virt. eigenvalues -- 0.60045 0.60346 0.64849 0.68331 0.68331 Alpha virt. eigenvalues -- 0.70105 0.76868 0.76868 0.84340 0.84340 Alpha virt. eigenvalues -- 0.90306 1.03114 1.03114 1.77705 1.83994 Alpha virt. eigenvalues -- 1.83994 1.86164 1.86164 1.88674 1.90574 Alpha virt. eigenvalues -- 1.90574 1.91792 1.93930 1.93930 2.05837 Alpha virt. eigenvalues -- 2.13150 2.13150 3.59545 3.72238 3.72238 Alpha virt. eigenvalues -- 4.10738 4.11258 4.11258 4.11338 4.11895 Alpha virt. eigenvalues -- 4.11895 4.13407 4.16360 4.16781 4.19868 Alpha virt. eigenvalues -- 4.19868 4.26389 4.26389 4.46116 4.46116 Alpha virt. eigenvalues -- 4.92406 6.49360 6.49360 6.53295 7.44130 Alpha virt. eigenvalues -- 7.44130 7.45945 7.47698 7.47698 7.48758 Alpha virt. eigenvalues -- 7.54221 7.58410 7.58410 40.23136 47.79540 Alpha virt. eigenvalues -- 47.79540 47.82937 207.22725 207.38184 207.38184 Alpha virt. eigenvalues -- 289.64417 289.64417 289.66422 289.67289 289.67289 Alpha virt. eigenvalues -- 289.68995 289.74169 289.80632 289.80632 786.21154 Alpha virt. eigenvalues -- 1020.555241020.555241020.59967 Condensed to atoms (all electrons): 1 2 3 4 1 Ga 29.344792 0.372162 0.372162 0.372162 2 Br 0.372162 34.851521 -0.022055 -0.022055 3 Br 0.372162 -0.022055 34.851521 -0.022055 4 Br 0.372162 -0.022055 -0.022055 34.851521 Mulliken charges: 1 1 Ga 0.538722 2 Br -0.179574 3 Br -0.179574 4 Br -0.179574 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Ga 0.538722 2 Br -0.179574 3 Br -0.179574 4 Br -0.179574 Electronic spatial extent (au): = 2120.8458 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -73.2827 YY= -73.2827 ZZ= -69.3527 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -1.3100 YY= -1.3100 ZZ= 2.6200 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 4.1863 ZZZ= 0.0000 XYY= 0.0000 XXY= -4.1863 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -923.2782 YYYY= -923.2782 ZZZZ= -83.9129 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -307.7594 XXZZ= -175.2023 YYZZ= -175.2023 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 1.244378366167D+03 E-N=-2.555087526893D+04 KE= 9.635484705960D+03 Symmetry A1 KE= 5.473389373181D+03 Symmetry A2 KE= 4.449884297315D+02 Symmetry B1 KE= 2.769321434518D+03 Symmetry B2 KE= 9.477854685286D+02 1\1\GINC-CX1-6-1-11\FOpt\RB3LYP\6-311G(d,p)\Br3Ga1\SCAN-USER-1\17-Oct- 2014\0\\# opt=tight b3lyp/6-311g(d,p) geom=connectivity integral=grid= ultrafine scf=conver=9\\GaBr3 optimisation\\0,1\Ga,0.,0.,0.\Br,0.00000 00022,2.2864910789,0.\Br,1.9801593588,-1.1432455413,0.\Br,-1.980159361 ,-1.1432455376,0.\\Version=ES64L-G09RevD.01\State=1-A1'\HF=-9647.47846 85\RMSD=1.285e-10\RMSF=4.521e-07\Dipole=0.,0.,0.\Quadrupole=-0.9739603 ,-0.9739603,1.9479206,0.,0.,0.\PG=D03H [O(Ga1),3C2(Br1)]\\@ THERE'S A SUCKER BORN EVERY MINUTE -- PHINEAS TAYLOR (P.T.) BARNUM Job cpu time: 0 days 0 hours 1 minutes 21.9 seconds. File lengths (MBytes): RWF= 16 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Fri Oct 17 01:53:51 2014.