Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 7868. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 17-May-2018 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\hz6415\Desktop\2ndyear lab\NH3BH3OP2.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ------------------- NH3BH3 optimisation ------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 H H 1 B1 H 2 B2 1 A1 H 3 B3 2 A2 1 D1 0 H 4 B4 3 A3 2 D2 0 H 5 B5 4 A4 3 D3 0 B 1 B6 3 A5 2 D4 0 N 7 B7 1 A6 3 D5 0 Variables: B1 2.0282 B2 2.0282 B3 2.575 B4 1.64677 B5 1.64677 B6 1.21004 B7 1.66806 A1 60. A2 66.80724 A3 94.24747 A4 60. A5 33.063 A6 104.59725 D1 -98.87764 D2 59.09355 D3 65.59875 D4 -27.51313 D5 -113.58206 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,7) 1.21 estimate D2E/DX2 ! ! R2 R(2,7) 1.21 estimate D2E/DX2 ! ! R3 R(3,7) 1.21 estimate D2E/DX2 ! ! R4 R(4,8) 1.0186 estimate D2E/DX2 ! ! R5 R(5,8) 1.0186 estimate D2E/DX2 ! ! R6 R(6,8) 1.0186 estimate D2E/DX2 ! ! R7 R(7,8) 1.6681 estimate D2E/DX2 ! ! A1 A(1,7,2) 113.874 estimate D2E/DX2 ! ! A2 A(1,7,3) 113.874 estimate D2E/DX2 ! ! A3 A(1,7,8) 104.5972 estimate D2E/DX2 ! ! A4 A(2,7,3) 113.874 estimate D2E/DX2 ! ! A5 A(2,7,8) 104.5972 estimate D2E/DX2 ! ! A6 A(3,7,8) 104.5972 estimate D2E/DX2 ! ! A7 A(4,8,5) 107.8691 estimate D2E/DX2 ! ! A8 A(4,8,6) 107.8691 estimate D2E/DX2 ! ! A9 A(4,8,7) 111.0294 estimate D2E/DX2 ! ! A10 A(5,8,6) 107.8691 estimate D2E/DX2 ! ! A11 A(5,8,7) 111.0294 estimate D2E/DX2 ! ! A12 A(6,8,7) 111.0294 estimate D2E/DX2 ! ! D1 D(1,7,8,4) 180.0 estimate D2E/DX2 ! ! D2 D(1,7,8,5) -60.0 estimate D2E/DX2 ! ! D3 D(1,7,8,6) 60.0 estimate D2E/DX2 ! ! D4 D(2,7,8,4) -60.0 estimate D2E/DX2 ! ! D5 D(2,7,8,5) 60.0 estimate D2E/DX2 ! ! D6 D(2,7,8,6) 180.0 estimate D2E/DX2 ! ! D7 D(3,7,8,4) 60.0 estimate D2E/DX2 ! ! D8 D(3,7,8,5) 180.0 estimate D2E/DX2 ! ! D9 D(3,7,8,6) -60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 38 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 2.028202 3 1 0 1.756474 0.000000 1.014101 4 1 0 1.060873 -2.338546 1.837486 5 1 0 -0.365271 -2.338546 1.014101 6 1 0 1.060873 -2.338546 0.190716 7 5 0 0.585491 -0.304958 1.014101 8 7 0 0.585491 -1.973022 1.014101 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 2.028202 0.000000 3 H 2.028202 2.028202 0.000000 4 H 3.157626 2.574999 2.574999 0.000000 5 H 2.574999 2.574999 3.157626 1.646770 0.000000 6 H 2.574999 3.157626 2.574999 1.646770 1.646770 7 B 1.210042 1.210042 1.210042 2.244868 2.244868 8 N 2.294345 2.294345 2.294345 1.018606 1.018606 6 7 8 6 H 0.000000 7 B 2.244868 0.000000 8 N 1.018606 1.668064 0.000000 Stoichiometry BH6N Framework group C3V[C3(BN),3SGV(H2)] Deg. of freedom 5 Full point group C3V NOp 6 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 -1.170983 -1.241755 2 1 0 -1.014101 0.585491 -1.241755 3 1 0 1.014101 0.585491 -1.241755 4 1 0 0.000000 0.950763 1.096792 5 1 0 -0.823385 -0.475381 1.096792 6 1 0 0.823385 -0.475381 1.096792 7 5 0 0.000000 0.000000 -0.936797 8 7 0 0.000000 0.000000 0.731267 --------------------------------------------------------------------- Rotational constants (GHZ): 73.4683931 17.4992977 17.4992977 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A' symmetry. There are 20 symmetry adapted cartesian basis functions of A" symmetry. There are 40 symmetry adapted basis functions of A' symmetry. There are 20 symmetry adapted basis functions of A" symmetry. 60 basis functions, 98 primitive gaussians, 60 cartesian basis functions 9 alpha electrons 9 beta electrons nuclear repulsion energy 40.4349643433 Hartrees. NAtoms= 8 NActive= 8 NUniq= 4 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 60 RedAO= T EigKep= 1.10D-02 NBF= 40 20 NBsUse= 60 1.00D-06 EigRej= -1.00D+00 NBFU= 40 20 ExpMin= 1.27D-01 ExpMax= 4.17D+03 ExpMxC= 6.27D+02 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (A1) (A1) (E) (E) (A1) (E) (E) Virtual (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A2) (A2) (E) (E) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (E) (E) (A1) (A1) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=2594141. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -83.2246889134 A.U. after 11 cycles NFock= 11 Conv=0.41D-08 -V/T= 2.0104 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (A1) (E) (E) (A1) (A1) (E) (E) Virtual (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A2) (A2) (E) (E) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (E) (E) (A1) (A1) (E) (E) (E) (E) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -14.41343 -6.67465 -0.94739 -0.54784 -0.54784 Alpha occ. eigenvalues -- -0.50377 -0.34682 -0.26699 -0.26699 Alpha virt. eigenvalues -- 0.02811 0.10580 0.10580 0.18568 0.22063 Alpha virt. eigenvalues -- 0.22063 0.24956 0.45500 0.45500 0.47855 Alpha virt. eigenvalues -- 0.65294 0.65294 0.66862 0.78871 0.80133 Alpha virt. eigenvalues -- 0.80133 0.88737 0.95654 0.95654 0.99942 Alpha virt. eigenvalues -- 1.18498 1.18498 1.44147 1.54901 1.54901 Alpha virt. eigenvalues -- 1.66068 1.76070 1.76070 2.00515 2.08658 Alpha virt. eigenvalues -- 2.18091 2.18091 2.27029 2.27029 2.29435 Alpha virt. eigenvalues -- 2.44309 2.44309 2.44799 2.69152 2.69152 Alpha virt. eigenvalues -- 2.72445 2.90642 2.90642 3.04019 3.16338 Alpha virt. eigenvalues -- 3.21876 3.21876 3.40166 3.40166 3.63707 Alpha virt. eigenvalues -- 4.11335 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 H 0.766714 -0.020038 -0.020038 0.003400 -0.001439 -0.001439 2 H -0.020038 0.766714 -0.020038 -0.001439 -0.001439 0.003400 3 H -0.020038 -0.020038 0.766714 -0.001439 0.003400 -0.001439 4 H 0.003400 -0.001439 -0.001439 0.418969 -0.021357 -0.021357 5 H -0.001439 -0.001439 0.003400 -0.021357 0.418969 -0.021357 6 H -0.001439 0.003400 -0.001439 -0.021357 -0.021357 0.418969 7 B 0.417343 0.417343 0.417343 -0.017535 -0.017535 -0.017535 8 N -0.027546 -0.027546 -0.027546 0.338484 0.338484 0.338484 7 8 1 H 0.417343 -0.027546 2 H 0.417343 -0.027546 3 H 0.417343 -0.027546 4 H -0.017535 0.338484 5 H -0.017535 0.338484 6 H -0.017535 0.338484 7 B 3.582093 0.182850 8 N 0.182850 6.475919 Mulliken charges: 1 1 H -0.116957 2 H -0.116957 3 H -0.116957 4 H 0.302274 5 H 0.302274 6 H 0.302274 7 B 0.035634 8 N -0.591584 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 7 B -0.315238 8 N 0.315238 Electronic spatial extent (au): = 117.9534 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 5.5651 Tot= 5.5651 Quadrupole moment (field-independent basis, Debye-Ang): XX= -15.5751 YY= -15.5751 ZZ= -16.1083 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.1777 YY= 0.1777 ZZ= -0.3555 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 1.5918 ZZZ= 18.3935 XYY= 0.0000 XXY= -1.5918 XXZ= 8.1087 XZZ= 0.0000 YZZ= 0.0000 YYZ= 8.1087 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -34.2963 YYYY= -34.2963 ZZZZ= -106.7230 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.7843 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -11.4321 XXZZ= -23.5234 YYZZ= -23.5234 XXYZ= -0.7843 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.043496434328D+01 E-N=-2.729564910943D+02 KE= 8.236637644475D+01 Symmetry A' KE= 7.822409686536D+01 Symmetry A" KE= 4.142279579391D+00 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 1 0.000057559 -0.000040733 0.000099696 2 1 0.000057559 -0.000040733 -0.000099696 3 1 -0.000115119 -0.000040733 0.000000000 4 1 -0.000050177 0.000051829 -0.000086910 5 1 0.000100355 0.000051829 0.000000000 6 1 -0.000050177 0.000051829 0.000086910 7 5 0.000000000 0.000022932 0.000000000 8 7 0.000000000 -0.000056218 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000115119 RMS 0.000060102 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000121669 RMS 0.000057915 Search for a local minimum. Step number 1 out of a maximum of 38 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00230 0.05427 0.05427 0.06602 0.06602 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.19630 0.23947 0.23947 0.23947 Eigenvalues --- 0.44561 0.44561 0.44561 RFO step: Lambda=-3.32006995D-07 EMin= 2.30000000D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00029724 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 6.38D-09 for atom 6. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.28665 -0.00012 0.00000 -0.00051 -0.00051 2.28614 R2 2.28665 -0.00012 0.00000 -0.00051 -0.00051 2.28614 R3 2.28665 -0.00012 0.00000 -0.00051 -0.00051 2.28614 R4 1.92489 -0.00011 0.00000 -0.00025 -0.00025 1.92463 R5 1.92489 -0.00011 0.00000 -0.00025 -0.00025 1.92463 R6 1.92489 -0.00011 0.00000 -0.00025 -0.00025 1.92463 R7 3.15218 -0.00010 0.00000 -0.00051 -0.00051 3.15168 A1 1.98748 0.00001 0.00000 0.00007 0.00007 1.98755 A2 1.98748 0.00001 0.00000 0.00007 0.00007 1.98755 A3 1.82557 -0.00001 0.00000 -0.00009 -0.00009 1.82548 A4 1.98748 0.00001 0.00000 0.00007 0.00007 1.98755 A5 1.82557 -0.00001 0.00000 -0.00009 -0.00009 1.82548 A6 1.82557 -0.00001 0.00000 -0.00009 -0.00009 1.82548 A7 1.88267 0.00001 0.00000 0.00007 0.00007 1.88274 A8 1.88267 0.00001 0.00000 0.00007 0.00007 1.88274 A9 1.93783 -0.00001 0.00000 -0.00007 -0.00007 1.93776 A10 1.88267 0.00001 0.00000 0.00007 0.00007 1.88274 A11 1.93783 -0.00001 0.00000 -0.00007 -0.00007 1.93776 A12 1.93783 -0.00001 0.00000 -0.00007 -0.00007 1.93776 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D2 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D3 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D4 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D5 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D6 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D7 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D8 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D9 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 Item Value Threshold Converged? Maximum Force 0.000122 0.000450 YES RMS Force 0.000058 0.000300 YES Maximum Displacement 0.000540 0.001800 YES RMS Displacement 0.000297 0.001200 YES Predicted change in Energy=-1.660035D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,7) 1.21 -DE/DX = -0.0001 ! ! R2 R(2,7) 1.21 -DE/DX = -0.0001 ! ! R3 R(3,7) 1.21 -DE/DX = -0.0001 ! ! R4 R(4,8) 1.0186 -DE/DX = -0.0001 ! ! R5 R(5,8) 1.0186 -DE/DX = -0.0001 ! ! R6 R(6,8) 1.0186 -DE/DX = -0.0001 ! ! R7 R(7,8) 1.6681 -DE/DX = -0.0001 ! ! A1 A(1,7,2) 113.874 -DE/DX = 0.0 ! ! A2 A(1,7,3) 113.874 -DE/DX = 0.0 ! ! A3 A(1,7,8) 104.5972 -DE/DX = 0.0 ! ! A4 A(2,7,3) 113.874 -DE/DX = 0.0 ! ! A5 A(2,7,8) 104.5972 -DE/DX = 0.0 ! ! A6 A(3,7,8) 104.5972 -DE/DX = 0.0 ! ! A7 A(4,8,5) 107.8691 -DE/DX = 0.0 ! ! A8 A(4,8,6) 107.8691 -DE/DX = 0.0 ! ! A9 A(4,8,7) 111.0294 -DE/DX = 0.0 ! ! A10 A(5,8,6) 107.8691 -DE/DX = 0.0 ! ! A11 A(5,8,7) 111.0294 -DE/DX = 0.0 ! ! A12 A(6,8,7) 111.0294 -DE/DX = 0.0 ! ! D1 D(1,7,8,4) 180.0 -DE/DX = 0.0 ! ! D2 D(1,7,8,5) -60.0 -DE/DX = 0.0 ! ! D3 D(1,7,8,6) 60.0 -DE/DX = 0.0 ! ! D4 D(2,7,8,4) -60.0 -DE/DX = 0.0 ! ! D5 D(2,7,8,5) 60.0 -DE/DX = 0.0 ! ! D6 D(2,7,8,6) 180.0 -DE/DX = 0.0 ! ! D7 D(3,7,8,4) 60.0 -DE/DX = 0.0 ! ! D8 D(3,7,8,5) 180.0 -DE/DX = 0.0 ! ! D9 D(3,7,8,6) -60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 0.000000 0.000000 2 1 0 0.000000 0.000000 2.028202 3 1 0 1.756474 0.000000 1.014101 4 1 0 1.060873 -2.338546 1.837486 5 1 0 -0.365271 -2.338546 1.014101 6 1 0 1.060873 -2.338546 0.190716 7 5 0 0.585491 -0.304958 1.014101 8 7 0 0.585491 -1.973022 1.014101 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 H 0.000000 2 H 2.028202 0.000000 3 H 2.028202 2.028202 0.000000 4 H 3.157626 2.574999 2.574999 0.000000 5 H 2.574999 2.574999 3.157626 1.646770 0.000000 6 H 2.574999 3.157626 2.574999 1.646770 1.646770 7 B 1.210042 1.210042 1.210042 2.244868 2.244868 8 N 2.294345 2.294345 2.294345 1.018606 1.018606 6 7 8 6 H 0.000000 7 B 2.244868 0.000000 8 N 1.018606 1.668064 0.000000 Stoichiometry BH6N Framework group C3V[C3(BN),3SGV(H2)] Deg. of freedom 5 Full point group C3V NOp 6 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup CS NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 1 0 0.000000 -1.170983 -1.241755 2 1 0 -1.014101 0.585491 -1.241755 3 1 0 1.014101 0.585491 -1.241755 4 1 0 0.000000 0.950763 1.096792 5 1 0 -0.823385 -0.475381 1.096792 6 1 0 0.823385 -0.475381 1.096792 7 5 0 0.000000 0.000000 -0.936797 8 7 0 0.000000 0.000000 0.731267 --------------------------------------------------------------------- Rotational constants (GHZ): 73.4683931 17.4992977 17.4992977 B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Final structure in terms of initial Z-matrix: H H,1,B1 H,2,B2,1,A1 H,3,B3,2,A2,1,D1,0 H,4,B4,3,A3,2,D2,0 H,5,B5,4,A4,3,D3,0 B,1,B6,3,A5,2,D4,0 N,7,B7,1,A6,3,D5,0 Variables: B1=2.02820195 B2=2.02820195 B3=2.57499947 B4=1.64676966 B5=1.64676966 B6=1.21004153 B7=1.668064 A1=60. A2=66.80724372 A3=94.24747476 A4=60. A5=33.06299809 A6=104.5972459 D1=-98.87763594 D2=59.09355489 D3=65.59875383 D4=-27.5131288 D5=-113.58205688 1|1| IMPERIAL COLLEGE-CHWS-107|FOpt|RB3LYP|6-31G(d,p)|B1H6N1|HZ6415|17 -May-2018|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ul trafine||NH3BH3 optimisation||0,1|H,-0.0000000013,0.0000000002,0.00000 00009|H,-0.0000000005,-0.0000000011,2.0282019552|H,1.7564744155,0.0000 000002,1.0141009774|H,1.0608729268,-2.3385461856,1.8374858083|H,-0.365 2714368,-2.3385461856,1.0141009768|H,1.0608729262,-2.3385461846,0.1907 161442|B,0.5854914713,-0.3049581054,1.0141009777|N,0.585491472,-1.9730 221054,1.0141009767||Version=EM64W-G09RevD.01|State=1-A1|HF=-83.224688 9|RMSD=4.084e-009|RMSF=6.010e-005|Dipole=0.,-2.1894935,0.|Quadrupole=0 .1321508,-0.2643016,0.1321508,0.,0.,0.|PG=C03V [C3(B1N1),3SGV(H2)]||@ HOW IS IT THAT THE SKY FEEDS THE STARS? -- LUCRETIUS Job cpu time: 0 days 0 hours 1 minutes 39.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Thu May 17 15:03:39 2018.