Entering Gaussian System, Link 0=g03 Initial command: /apps/gaussian/g09_d01/g09/l1.exe "/home/scan-user-1/run/86467/Gau-14380.inp" -scrdir="/home/scan-user-1/run/86467/" Entering Link 1 = /apps/gaussian/g09_d01/g09/l1.exe PID= 14381. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: ES64L-G09RevD.01 24-Apr-2013 26-Jan-2014 ****************************************** %nprocshared=8 Will use up to 8 processors via shared memory. %mem=13000MB %NoSave %Chk=chk.chk %rwf=/tmp/pbs.6345744.cx1b/rwf ---------------------------------------------------------------------- # CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,solvent=chloroform ) CPHF=RdFreq ---------------------------------------------------------------------- 1/38=1,83=21/1; 2/12=2,17=6,18=5,40=1/2; 3/5=4,6=6,7=1114,11=2,16=1,25=1,30=1,36=2,70=2101,72=7,74=-40/1,2,3; 4//1; 5/5=2,38=5,53=7,96=-2,98=1/2; 8/6=4,10=90,11=11/1; 10/6=1,13=10,46=8,60=-2,72=3/2; 6/7=2,8=2,9=2,10=2,28=1/1; 99/5=1,9=1/99; ------------------------------------------------------- Title line, ie Optical rotation for literature compound ------------------------------------------------------- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C 2.34047 -4.17936 0.30698 C 2.43454 -5.50084 0.73342 C 3.67426 -6.02654 1.08565 C 4.81852 -5.2275 1.01133 C 4.75117 -3.88915 0.58802 C 3.48829 -3.38586 0.2344 C 5.99119 -3.04002 0.49867 C 6.64999 -2.53813 1.76245 O 5.89813 -1.66464 0.91609 H 1.37564 -3.7623 0.03084 H 1.54302 -6.11954 0.79081 H 3.75294 -7.05832 1.41791 H 5.77949 -5.65593 1.28826 H 3.39992 -2.35315 -0.09882 H 6.64111 -3.23431 -0.34956 H 7.72645 -2.42541 1.76828 H 6.21692 -2.79675 2.72069 Using perturbation frequencies: 0.077357 0.124831 Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 2.340470 -4.179360 0.306980 2 6 0 2.434540 -5.500840 0.733420 3 6 0 3.674260 -6.026540 1.085650 4 6 0 4.818520 -5.227500 1.011330 5 6 0 4.751170 -3.889150 0.588020 6 6 0 3.488290 -3.385860 0.234400 7 6 0 5.991190 -3.040020 0.498670 8 6 0 6.649990 -2.538130 1.762450 9 8 0 5.898130 -1.664640 0.916090 10 1 0 1.375640 -3.762300 0.030840 11 1 0 1.543020 -6.119540 0.790810 12 1 0 3.752940 -7.058320 1.417910 13 1 0 5.779490 -5.655930 1.288260 14 1 0 3.399920 -2.353150 -0.098820 15 1 0 6.641110 -3.234310 -0.349560 16 1 0 7.726450 -2.425410 1.768280 17 1 0 6.216920 -2.796750 2.720690 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 C 0.000000 2 C 1.391765 0.000000 3 C 2.407778 1.391881 0.000000 4 C 2.781266 2.415639 1.397612 0.000000 5 C 2.444316 2.825856 2.444546 1.405314 0.000000 6 C 1.397283 2.415067 2.780720 2.400994 1.404711 7 C 3.829177 4.331339 3.825181 2.534372 1.505541 8 C 4.835700 5.254196 4.634871 3.339337 2.609609 9 O 4.399065 5.171678 4.899033 3.724057 2.524201 10 H 1.086779 2.153464 3.394563 3.868022 3.423557 11 H 2.152746 1.086688 2.153547 3.401950 3.912543 12 H 3.393766 2.152312 1.086811 2.157005 3.424736 13 H 3.869112 3.394200 2.147183 1.087982 2.160854 14 H 2.149919 3.395959 3.869370 3.392160 2.157990 15 H 4.451929 4.899514 4.319557 3.024345 2.209014 16 H 5.849831 6.207537 5.463915 4.108618 3.519636 17 H 4.771213 5.056456 4.423801 3.284202 2.808922 6 7 8 9 10 6 C 0.000000 7 C 2.540463 0.000000 8 C 3.612469 1.510977 0.000000 9 O 3.038853 1.440337 1.429896 0.000000 10 H 2.155559 4.695088 5.684702 5.063276 0.000000 11 H 3.400981 5.418026 6.312822 6.231277 2.482368 12 H 3.867518 4.690576 5.379937 5.826272 4.294097 13 H 3.393145 2.740667 3.271590 4.010359 4.955889 14 H 1.088731 2.746537 3.749866 2.783009 2.469863 15 H 3.210023 1.086112 2.223810 2.148896 5.305530 16 H 4.608389 2.236243 1.082361 2.155865 6.718539 17 H 3.738196 2.246666 1.082893 2.154038 5.621883 11 12 13 14 15 11 H 0.000000 12 H 2.481594 0.000000 13 H 4.290696 2.467876 0.000000 14 H 4.292460 4.956180 4.300546 0.000000 15 H 5.967874 5.107693 3.047800 3.368178 0.000000 16 H 7.268896 6.113542 3.802280 4.712764 2.513469 17 H 6.050679 5.092093 3.227710 4.010225 3.130149 16 17 16 H 0.000000 17 H 1.823091 0.000000 Stoichiometry C8H8O Framework group C1[X(C8H8O)] Deg. of freedom 45 Full point group C1 NOp 1 Largest Abelian subgroup C1 NOp 1 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 1.875293 1.227915 -0.109944 2 6 0 2.613676 0.052062 -0.205717 3 6 0 1.977690 -1.177113 -0.057452 4 6 0 0.602286 -1.227191 0.185601 5 6 0 -0.167539 -0.055519 0.282885 6 6 0 0.500589 1.171086 0.133691 7 6 0 -1.646371 -0.119071 0.557969 8 6 0 -2.593293 -0.572162 -0.528814 9 8 0 -2.502971 0.801964 -0.143816 10 1 0 2.365348 2.191073 -0.225101 11 1 0 3.682855 0.094093 -0.395404 12 1 0 2.550301 -2.097985 -0.130030 13 1 0 0.122407 -2.196753 0.301233 14 1 0 -0.065179 2.098602 0.204097 15 1 0 -1.930928 -0.343871 1.581751 16 1 0 -3.482888 -1.115998 -0.238350 17 1 0 -2.192135 -0.844920 -1.496974 --------------------------------------------------------------------- Rotational constants (GHZ): 4.2423415 1.1132940 0.9302151 Standard basis: 6-311++G(2df,p) (5D, 7F) There are 407 symmetry adapted cartesian basis functions of A symmetry. There are 362 symmetry adapted basis functions of A symmetry. 362 basis functions, 540 primitive gaussians, 407 cartesian basis functions 32 alpha electrons 32 beta electrons nuclear repulsion energy 403.2151737093 Hartrees. NAtoms= 17 NActive= 17 NUniq= 17 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. ------------------------------------------------------------------------------ Polarizable Continuum Model (PCM) ================================= Model : C-PCM. Atomic radii : UFF (Universal Force Field). Polarization charges : Total charges. Charge compensation : None. Solution method : On-the-fly selection. Cavity type : Scaled VdW (van der Waals Surface) (Alpha=1.100). Cavity algorithm : GePol (No added spheres) Default sphere list used, NSphG= 17. Lebedev-Laikov grids with approx. 5.0 points / Ang**2. Smoothing algorithm: Karplus/York (Gamma=1.0000). Polarization charges: spherical gaussians, with point-specific exponents (IZeta= 3). Self-potential: point-specific (ISelfS= 7). Self-field : sphere-specific E.n sum rule (ISelfD= 2). Solvent : Chloroform, Eps= 4.711300 Eps(inf)= 2.090627 ------------------------------------------------------------------------------ Spheres list: ISph on Nord Re0 Alpha Xe Ye Ze 1 C 1 1.9255 1.100 1.875293 1.227915 -0.109944 2 C 2 1.9255 1.100 2.613676 0.052062 -0.205717 3 C 3 1.9255 1.100 1.977690 -1.177113 -0.057452 4 C 4 1.9255 1.100 0.602286 -1.227191 0.185601 5 C 5 1.9255 1.100 -0.167539 -0.055519 0.282885 6 C 6 1.9255 1.100 0.500589 1.171086 0.133691 7 C 7 1.9255 1.100 -1.646371 -0.119071 0.557969 8 C 8 1.9255 1.100 -2.593293 -0.572162 -0.528814 9 O 9 1.7500 1.100 -2.502971 0.801964 -0.143816 10 H 10 1.4430 1.100 2.365348 2.191073 -0.225101 11 H 11 1.4430 1.100 3.682855 0.094093 -0.395404 12 H 12 1.4430 1.100 2.550301 -2.097985 -0.130030 13 H 13 1.4430 1.100 0.122407 -2.196753 0.301233 14 H 14 1.4430 1.100 -0.065179 2.098602 0.204097 15 H 15 1.4430 1.100 -1.930928 -0.343871 1.581751 16 H 16 1.4430 1.100 -3.482888 -1.115998 -0.238350 17 H 17 1.4430 1.100 -2.192135 -0.844920 -1.496974 ------------------------------------------------------------------------------ One-electron integrals computed using PRISM. NBasis= 362 RedAO= T EigKep= 4.69D-06 NBF= 362 NBsUse= 361 1.00D-06 EigRej= 8.30D-07 NBFU= 361 ExpMin= 3.60D-02 ExpMax= 8.59D+03 ExpMxC= 1.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor=20419 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor=20419 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Inv3: Mode=1 IEnd= 6403563. Iteration 1 A*A^-1 deviation from unit magnitude is 3.33D-15 for 1408. Iteration 1 A*A^-1 deviation from orthogonality is 1.60D-15 for 1442 75. Iteration 1 A^-1*A deviation from unit magnitude is 3.33D-15 for 1408. Iteration 1 A^-1*A deviation from orthogonality is 2.06D-15 for 741 207. Error on total polarization charges = 0.01154 SCF Done: E(RCAM-B3LYP) = -384.762071990 A.U. after 13 cycles NFock= 13 Conv=0.75D-08 -V/T= 2.0044 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 361 NBasis= 362 NAE= 32 NBE= 32 NFC= 0 NFV= 0 NROrb= 361 NOA= 32 NOB= 32 NVA= 329 NVB= 329 **** Warning!!: The largest alpha MO coefficient is 0.10757841D+03 NEqPCM: Using non-equilibrium solvation (IEInf=1, Eps= 4.7113, EpsInf= 2.0906) Inv3: Mode=1 IEnd= 6403563. Iteration 1 A*A^-1 deviation from unit magnitude is 3.33D-15 for 1408. Iteration 1 A*A^-1 deviation from orthogonality is 1.60D-15 for 1442 75. Iteration 1 A^-1*A deviation from unit magnitude is 3.33D-15 for 1408. Iteration 1 A^-1*A deviation from orthogonality is 2.06D-15 for 741 207. Differentiating once with respect to magnetic field using GIAOs. Electric field/nuclear overlap derivatives assumed to be zero. FoFJK: IHMeth= 1 ICntrl= 6127 DoSepK=T KAlg= 0 I1Cent= 0 FoldK=F IRaf= 1 NMat= 1 IRICut= 1 DoRegI=T DoRafI=F ISym2E= 0. CalDSu exits because no D1Ps are significant. There are 6 degrees of freedom in the 1st order CPHF. IDoFFX=0 NUNeed= 6. LinEq1: Iter= 0 NonCon= 6 RMS=6.82D-02 Max=1.43D+00 NDo= 6 AX will form 6 AO Fock derivatives at one time. LinEq1: Iter= 1 NonCon= 6 RMS=8.95D-03 Max=3.32D-01 NDo= 6 LinEq1: Iter= 2 NonCon= 6 RMS=8.99D-03 Max=6.15D-01 NDo= 6 LinEq1: Iter= 3 NonCon= 6 RMS=2.67D-03 Max=1.59D-01 NDo= 6 LinEq1: Iter= 4 NonCon= 6 RMS=1.63D-03 Max=5.93D-02 NDo= 6 LinEq1: Iter= 5 NonCon= 6 RMS=8.21D-04 Max=3.71D-02 NDo= 6 LinEq1: Iter= 6 NonCon= 6 RMS=2.96D-04 Max=1.06D-02 NDo= 6 LinEq1: Iter= 7 NonCon= 6 RMS=1.79D-04 Max=7.53D-03 NDo= 6 LinEq1: Iter= 8 NonCon= 6 RMS=7.51D-05 Max=4.12D-03 NDo= 6 LinEq1: Iter= 9 NonCon= 6 RMS=3.72D-05 Max=2.21D-03 NDo= 6 LinEq1: Iter= 10 NonCon= 6 RMS=2.17D-05 Max=9.02D-04 NDo= 6 LinEq1: Iter= 11 NonCon= 6 RMS=1.08D-05 Max=4.58D-04 NDo= 6 LinEq1: Iter= 12 NonCon= 6 RMS=5.99D-06 Max=1.92D-04 NDo= 6 LinEq1: Iter= 13 NonCon= 6 RMS=2.36D-06 Max=1.19D-04 NDo= 6 LinEq1: Iter= 14 NonCon= 6 RMS=9.84D-07 Max=4.41D-05 NDo= 6 LinEq1: Iter= 15 NonCon= 6 RMS=4.68D-07 Max=2.36D-05 NDo= 6 LinEq1: Iter= 16 NonCon= 6 RMS=2.64D-07 Max=9.71D-06 NDo= 6 LinEq1: Iter= 17 NonCon= 6 RMS=9.12D-08 Max=2.81D-06 NDo= 6 LinEq1: Iter= 18 NonCon= 6 RMS=4.28D-08 Max=1.70D-06 NDo= 6 LinEq1: Iter= 19 NonCon= 3 RMS=1.84D-08 Max=4.50D-07 NDo= 6 LinEq1: Iter= 20 NonCon= 1 RMS=6.38D-09 Max=2.04D-07 NDo= 3 LinEq1: Iter= 21 NonCon= 0 RMS=2.96D-09 Max=6.20D-08 NDo= 1 Linear equations converged to 1.000D-08 1.000D-07 after 21 iterations. Dipole-magnetic dipole polarizability for W= 0.077357: 1 2 3 1 0.642826D+00 0.642581D+00 0.546210D+01 2 -0.291668D+02 -0.472185D+01 0.219748D+01 3 -0.145687D+01 -0.610046D+02 0.579575D+01 w= 0.077357 a.u., Optical Rotation Beta= -0.5722 au. Molar Mass = 120.1506 grams/mole, [Alpha] ( 5890.0 A) = -184.28 deg. Dipole-magnetic dipole polarizability for W= 0.124831: 1 2 3 1 0.129969D+01 0.665716D+00 0.586314D+01 2 -0.337746D+02 -0.515013D+01 0.372027D+01 3 -0.103849D+01 -0.726654D+02 0.633596D+01 w= 0.124831 a.u., Optical Rotation Beta= -0.8285 au. Molar Mass = 120.1506 grams/mole, [Alpha] ( 3650.0 A) = -694.75 deg. End of Minotr F.D. properties on file 721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 0.642826D+00 0.642581D+00 0.546210D+01 2 -0.291668D+02 -0.472185D+01 0.219748D+01 3 -0.145687D+01 -0.610046D+02 0.579575D+01 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 0.129969D+01 0.665716D+00 0.586314D+01 2 -0.337746D+02 -0.515013D+01 0.372027D+01 3 -0.103849D+01 -0.726654D+02 0.633596D+01 End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) Virtual (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) (A) The electronic state is 1-A. Alpha occ. eigenvalues -- -19.22397 -10.31424 -10.30168 -10.26718 -10.25557 Alpha occ. eigenvalues -- -10.25403 -10.25362 -10.25287 -10.25165 -1.16346 Alpha occ. eigenvalues -- -0.94804 -0.85222 -0.83268 -0.76007 -0.72858 Alpha occ. eigenvalues -- -0.68495 -0.66272 -0.60465 -0.57833 -0.55011 Alpha occ. eigenvalues -- -0.53109 -0.51959 -0.49220 -0.48091 -0.46977 Alpha occ. eigenvalues -- -0.44486 -0.41845 -0.41486 -0.37777 -0.35750 Alpha occ. eigenvalues -- -0.31705 -0.31127 Alpha virt. eigenvalues -- 0.01462 0.01847 0.02242 0.02768 0.03320 Alpha virt. eigenvalues -- 0.04026 0.04595 0.04976 0.06135 0.07883 Alpha virt. eigenvalues -- 0.08493 0.08594 0.09634 0.09850 0.11672 Alpha virt. eigenvalues -- 0.12604 0.13028 0.13421 0.14111 0.14220 Alpha virt. eigenvalues -- 0.14332 0.14696 0.15293 0.15630 0.16357 Alpha virt. eigenvalues -- 0.16515 0.16818 0.17306 0.17786 0.18359 Alpha virt. eigenvalues -- 0.18664 0.19142 0.19905 0.20951 0.21139 Alpha virt. eigenvalues -- 0.21631 0.22474 0.23209 0.23730 0.25146 Alpha virt. eigenvalues -- 0.25927 0.26929 0.27268 0.28229 0.29059 Alpha virt. eigenvalues -- 0.29886 0.30728 0.31530 0.32220 0.32684 Alpha virt. eigenvalues -- 0.33612 0.34277 0.34874 0.34982 0.36159 Alpha virt. eigenvalues -- 0.38174 0.38993 0.39989 0.40877 0.42075 Alpha virt. eigenvalues -- 0.43272 0.44263 0.50391 0.52386 0.53773 Alpha virt. eigenvalues -- 0.54896 0.56282 0.56954 0.57198 0.57915 Alpha virt. eigenvalues -- 0.58301 0.58586 0.59078 0.59667 0.61770 Alpha virt. eigenvalues -- 0.64169 0.64472 0.65273 0.65852 0.66778 Alpha virt. eigenvalues -- 0.67341 0.67911 0.69980 0.70459 0.71099 Alpha virt. eigenvalues -- 0.71581 0.72588 0.73933 0.74702 0.75272 Alpha virt. eigenvalues -- 0.75861 0.77750 0.79637 0.81617 0.82212 Alpha virt. eigenvalues -- 0.84700 0.85392 0.86855 0.87622 0.88121 Alpha virt. eigenvalues -- 0.88734 0.89352 0.89727 0.90617 0.92018 Alpha virt. eigenvalues -- 0.92464 0.94874 0.99296 1.01473 1.04378 Alpha virt. eigenvalues -- 1.06640 1.08301 1.09219 1.13414 1.15126 Alpha virt. eigenvalues -- 1.16568 1.16696 1.19458 1.22344 1.22766 Alpha virt. eigenvalues -- 1.26205 1.26999 1.28473 1.31666 1.33133 Alpha virt. eigenvalues -- 1.33786 1.36405 1.38243 1.38552 1.38877 Alpha virt. eigenvalues -- 1.40998 1.42895 1.43837 1.45475 1.46445 Alpha virt. eigenvalues -- 1.49361 1.53502 1.54313 1.56810 1.59589 Alpha virt. eigenvalues -- 1.60202 1.60574 1.65647 1.66344 1.67973 Alpha virt. eigenvalues -- 1.70456 1.73115 1.77124 1.81706 1.82103 Alpha virt. eigenvalues -- 1.83637 1.85090 1.91563 1.94356 2.00503 Alpha virt. eigenvalues -- 2.02443 2.04764 2.15033 2.17188 2.19367 Alpha virt. eigenvalues -- 2.24023 2.26821 2.29103 2.32303 2.34020 Alpha virt. eigenvalues -- 2.34618 2.38432 2.38597 2.43260 2.47125 Alpha virt. eigenvalues -- 2.51561 2.52760 2.53401 2.54698 2.58614 Alpha virt. eigenvalues -- 2.58730 2.59857 2.62758 2.63603 2.64364 Alpha virt. eigenvalues -- 2.65993 2.66921 2.67934 2.70014 2.70837 Alpha virt. eigenvalues -- 2.75140 2.79561 2.80633 2.82314 2.82844 Alpha virt. eigenvalues -- 2.83366 2.85173 2.86281 2.87047 2.88806 Alpha virt. eigenvalues -- 2.91002 2.91375 2.91786 2.93212 2.93798 Alpha virt. eigenvalues -- 2.96252 2.96773 2.97795 2.99427 3.01156 Alpha virt. eigenvalues -- 3.02693 3.03062 3.05265 3.06033 3.07159 Alpha virt. eigenvalues -- 3.12005 3.13656 3.17027 3.19209 3.20157 Alpha virt. eigenvalues -- 3.20965 3.21690 3.23750 3.27206 3.29766 Alpha virt. eigenvalues -- 3.32473 3.32895 3.33343 3.36557 3.37344 Alpha virt. eigenvalues -- 3.38447 3.40612 3.41805 3.42751 3.44718 Alpha virt. eigenvalues -- 3.45212 3.46930 3.49401 3.49959 3.51018 Alpha virt. eigenvalues -- 3.53705 3.54342 3.55094 3.56565 3.56984 Alpha virt. eigenvalues -- 3.58450 3.60071 3.61009 3.62008 3.62534 Alpha virt. eigenvalues -- 3.64108 3.67052 3.70881 3.72489 3.73109 Alpha virt. eigenvalues -- 3.76769 3.76911 3.79618 3.80820 3.82182 Alpha virt. eigenvalues -- 3.84234 3.89305 3.89830 3.91349 3.92329 Alpha virt. eigenvalues -- 3.93560 3.95769 3.98269 3.99397 4.02308 Alpha virt. eigenvalues -- 4.08302 4.13432 4.17244 4.18782 4.22352 Alpha virt. eigenvalues -- 4.23365 4.26231 4.27946 4.31310 4.33876 Alpha virt. eigenvalues -- 4.39906 4.40294 4.49191 4.51396 4.53625 Alpha virt. eigenvalues -- 4.53813 4.55169 4.56028 4.58711 4.60243 Alpha virt. eigenvalues -- 4.60939 4.69335 4.72870 4.75766 4.80690 Alpha virt. eigenvalues -- 4.83637 4.95822 4.98411 5.01659 5.12279 Alpha virt. eigenvalues -- 5.18047 5.19315 5.25438 5.27787 5.28966 Alpha virt. eigenvalues -- 5.31114 5.33236 5.36340 5.42921 5.51730 Alpha virt. eigenvalues -- 5.51917 5.56514 5.68877 5.69770 5.79154 Alpha virt. eigenvalues -- 5.86136 5.93701 6.42572 6.47567 6.58500 Alpha virt. eigenvalues -- 7.12743 7.16283 7.34695 7.64247 7.76951 Alpha virt. eigenvalues -- 23.91926 24.42455 24.43079 24.45242 24.48826 Alpha virt. eigenvalues -- 24.69154 24.69921 25.05631 50.09585 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 C 5.458684 0.510028 -0.085170 0.240277 -0.436303 0.322529 2 C 0.510028 5.356536 0.513467 -0.204692 -0.103707 -0.187717 3 C -0.085170 0.513467 5.255971 0.430220 -0.247330 0.130925 4 C 0.240277 -0.204692 0.430220 7.415745 0.096443 -1.713486 5 C -0.436303 -0.103707 -0.247330 0.096443 7.028260 -0.017887 6 C 0.322529 -0.187717 0.130925 -1.713486 -0.017887 7.508795 7 C 0.013354 0.029329 -0.044055 -0.242119 -0.921759 -0.132482 8 C -0.039353 0.004955 0.045981 -0.007589 0.111350 0.062622 9 O 0.030232 -0.006042 -0.000009 0.020586 -0.108570 -0.033481 10 H 0.427192 -0.050651 0.001930 0.012804 0.004486 -0.073366 11 H -0.067296 0.441005 -0.069259 -0.003230 0.034201 -0.003604 12 H 0.001983 -0.050654 0.418964 -0.059336 0.004799 0.009071 13 H 0.019019 -0.000881 -0.075636 0.391803 -0.033363 0.017065 14 H -0.061398 0.011145 0.017300 0.005530 -0.046774 0.407341 15 H -0.017142 -0.002882 -0.015629 -0.047769 0.055811 -0.019676 16 H 0.005280 -0.001523 -0.003534 -0.024121 0.008115 0.024432 17 H 0.000590 0.004166 0.000866 0.001248 0.011564 0.011129 7 8 9 10 11 12 1 C 0.013354 -0.039353 0.030232 0.427192 -0.067296 0.001983 2 C 0.029329 0.004955 -0.006042 -0.050651 0.441005 -0.050654 3 C -0.044055 0.045981 -0.000009 0.001930 -0.069259 0.418964 4 C -0.242119 -0.007589 0.020586 0.012804 -0.003230 -0.059336 5 C -0.921759 0.111350 -0.108570 0.004486 0.034201 0.004799 6 C -0.132482 0.062622 -0.033481 -0.073366 -0.003604 0.009071 7 C 6.966558 -0.333700 0.334770 0.008735 -0.001956 0.002380 8 C -0.333700 5.738313 0.030388 -0.000251 -0.000336 -0.000867 9 O 0.334770 0.030388 8.059084 0.000342 -0.000156 0.000442 10 H 0.008735 -0.000251 0.000342 0.498546 -0.009901 -0.001391 11 H -0.001956 -0.000336 -0.000156 -0.009901 0.504851 -0.009156 12 H 0.002380 -0.000867 0.000442 -0.001391 -0.009156 0.499349 13 H 0.000134 -0.000651 0.000031 0.001539 -0.001149 -0.011652 14 H -0.020746 -0.002948 0.004726 -0.013369 -0.000701 0.001402 15 H 0.401507 -0.067029 -0.031424 -0.000151 0.000141 0.000178 16 H -0.001047 0.373974 -0.048861 0.000018 -0.000034 0.000345 17 H -0.049838 0.396933 -0.030399 0.000043 0.000014 -0.000545 13 14 15 16 17 1 C 0.019019 -0.061398 -0.017142 0.005280 0.000590 2 C -0.000881 0.011145 -0.002882 -0.001523 0.004166 3 C -0.075636 0.017300 -0.015629 -0.003534 0.000866 4 C 0.391803 0.005530 -0.047769 -0.024121 0.001248 5 C -0.033363 -0.046774 0.055811 0.008115 0.011564 6 C 0.017065 0.407341 -0.019676 0.024432 0.011129 7 C 0.000134 -0.020746 0.401507 -0.001047 -0.049838 8 C -0.000651 -0.002948 -0.067029 0.373974 0.396933 9 O 0.000031 0.004726 -0.031424 -0.048861 -0.030399 10 H 0.001539 -0.013369 -0.000151 0.000018 0.000043 11 H -0.001149 -0.000701 0.000141 -0.000034 0.000014 12 H -0.011652 0.001402 0.000178 0.000345 -0.000545 13 H 0.503544 -0.001787 0.002432 -0.001224 0.001577 14 H -0.001787 0.499943 0.002411 0.000592 -0.000780 15 H 0.002432 0.002411 0.565969 -0.000696 -0.001083 16 H -0.001224 0.000592 -0.000696 0.555431 -0.048308 17 H 0.001577 -0.000780 -0.001083 -0.048308 0.535258 Mulliken charges: 1 1 C -0.322506 2 C -0.261880 3 C -0.275001 4 C -0.312315 5 C 0.560664 6 C -0.312210 7 C -0.009065 8 C -0.311792 9 O -0.221660 10 H 0.193444 11 H 0.186565 12 H 0.194686 13 H 0.189197 14 H 0.198114 15 H 0.175036 16 H 0.161162 17 H 0.167563 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.129062 2 C -0.075315 3 C -0.080314 4 C -0.123118 5 C 0.560664 6 C -0.114096 7 C 0.165970 8 C 0.016933 9 O -0.221660 Electronic spatial extent (au): = 1239.9166 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.8249 Y= -2.2284 Z= 0.2709 Tot= 2.3916 Quadrupole moment (field-independent basis, Debye-Ang): XX= -50.5717 YY= -49.9628 ZZ= -54.8417 XY= 6.4342 XZ= -1.7264 YZ= 0.5656 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.2204 YY= 1.8293 ZZ= -3.0496 XY= 6.4342 XZ= -1.7264 YZ= 0.5656 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 7.5348 YYY= 0.6005 ZZZ= 0.0401 XYY= 5.1992 XXY= -17.9728 XXZ= -4.2863 XZZ= -13.8319 YZZ= -0.8031 YYZ= -0.1014 XYZ= -2.0687 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -1157.5492 YYYY= -329.2472 ZZZZ= -107.1539 XXXY= 49.3533 XXXZ= -12.5639 YYYX= 0.5425 YYYZ= -0.4510 ZZZX= 0.4322 ZZZY= 0.8843 XXYY= -253.8049 XXZZ= -226.9367 YYZZ= -84.2655 XXYZ= 2.2762 YYXZ= -2.2598 ZZXY= 1.5026 N-N= 4.032151737093D+02 E-N=-1.702294109369D+03 KE= 3.830628904477D+02 AllDun F.D. properties on file 20721 Mask= 2 NFrqRd= 2 NDeriv= 1 ND12= 1 LenFil= 22: Frequencies= 0.077357 0.124831 Property number 2 -- FD Optical Rotation Tensor frequency 1 0.077357: 1 2 3 1 -0.404481D+01 -0.212085D+02 0.739588D+01 2 0.103668D+02 0.209931D+02 0.195985D+01 3 -0.446009D+02 0.370357D+02 -0.152316D+02 Property number 2 -- FD Optical Rotation Tensor frequency 2 0.124831: 1 2 3 1 -0.422100D+01 -0.248534D+02 0.925257D+01 2 0.123375D+02 0.248876D+02 0.915925D+00 3 -0.521863D+02 0.446268D+02 -0.181811D+02 1\1\GINC-CX1-15-34-1\SP\RCAM-B3LYP\6-311++G(2df,p)\C8H8O1\SCAN-USER-1\ 26-Jan-2014\0\\# CAM-B3LYP/6-311++g(2df,p) polar(optrot) scrf(cpcm,sol vent=chloroform) CPHF=RdFreq\\Title line, ie Optical rotation for lite rature compound\\0,1\C,0,2.34047,-4.17936,0.30698\C,0,2.43454,-5.50084 ,0.73342\C,0,3.67426,-6.02654,1.08565\C,0,4.81852,-5.2275,1.01133\C,0, 4.75117,-3.88915,0.58802\C,0,3.48829,-3.38586,0.2344\C,0,5.99119,-3.04 002,0.49867\C,0,6.64999,-2.53813,1.76245\O,0,5.89813,-1.66464,0.91609\ H,0,1.37564,-3.7623,0.03084\H,0,1.54302,-6.11954,0.79081\H,0,3.75294,- 7.05832,1.41791\H,0,5.77949,-5.65593,1.28826\H,0,3.39992,-2.35315,-0.0 9882\H,0,6.64111,-3.23431,-0.34956\H,0,7.72645,-2.42541,1.76828\H,0,6. 21692,-2.79675,2.72069\\Version=ES64L-G09RevD.01\State=1-A\HF=-384.762 072\RMSD=7.509e-09\Dipole=0.2943439,-0.8765636,0.1741742\Quadrupole=5. 4245198,-3.9928204,-1.4316994,-0.693763,1.8188865,-1.0563442\PG=C01 [X (C8H8O1)]\\@ IN THE FIGHT BETWEEN YOU AND THE WORLD, BACK THE WORLD -- FRANZ KAFKA Job cpu time: 0 days 3 hours 27 minutes 58.9 seconds. File lengths (MBytes): RWF= 238 Int= 0 D2E= 0 Chk= 7 Scr= 1 Normal termination of Gaussian 09 at Sun Jan 26 17:56:16 2014.