Default is to use a total of 4 processors: 4 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 4716. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 20-Oct-2014 ****************************************** %chk=\\icnas1.cc.ic.ac.uk\mom12\Desktop\3rd Year Lab\Monday 20.10.14\MOM_P(CH3)4 Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----------------------- [P(CH3]4]+ Optimisation ----------------------- Symbolic Z-matrix: Charge = 1 Multiplicity = 1 P 0. 0. 0. C 0. 0. 1.81638 H 0.89011 -0.51391 2.18904 H 0. 1.02781 2.18904 H -0.89011 -0.51391 2.18904 C 0. -1.7125 -0.60546 H -0.89011 -2.23515 -0.24516 H 0. -1.72124 -1.69871 H 0.89011 -2.23515 -0.24516 C -1.48307 0.85625 -0.60546 H -1.49064 1.88843 -0.24516 H -1.49064 0.86062 -1.69871 H -2.38075 0.34672 -0.24516 C 1.48307 0.85625 -0.60546 H 2.38075 0.34672 -0.24516 H 1.49064 0.86062 -1.69871 H 1.49064 1.88843 -0.24516 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.8164 estimate D2E/DX2 ! ! R2 R(1,6) 1.8164 estimate D2E/DX2 ! ! R3 R(1,10) 1.8164 estimate D2E/DX2 ! ! R4 R(1,14) 1.8164 estimate D2E/DX2 ! ! R5 R(2,3) 1.0933 estimate D2E/DX2 ! ! R6 R(2,4) 1.0933 estimate D2E/DX2 ! ! R7 R(2,5) 1.0933 estimate D2E/DX2 ! ! R8 R(6,7) 1.0933 estimate D2E/DX2 ! ! R9 R(6,8) 1.0933 estimate D2E/DX2 ! ! R10 R(6,9) 1.0933 estimate D2E/DX2 ! ! R11 R(10,11) 1.0933 estimate D2E/DX2 ! ! R12 R(10,12) 1.0933 estimate D2E/DX2 ! ! R13 R(10,13) 1.0933 estimate D2E/DX2 ! ! R14 R(14,15) 1.0933 estimate D2E/DX2 ! ! R15 R(14,16) 1.0933 estimate D2E/DX2 ! ! R16 R(14,17) 1.0933 estimate D2E/DX2 ! ! A1 A(2,1,6) 109.4712 estimate D2E/DX2 ! ! A2 A(2,1,10) 109.4712 estimate D2E/DX2 ! ! A3 A(2,1,14) 109.4712 estimate D2E/DX2 ! ! A4 A(6,1,10) 109.4712 estimate D2E/DX2 ! ! A5 A(6,1,14) 109.4712 estimate D2E/DX2 ! ! A6 A(10,1,14) 109.4712 estimate D2E/DX2 ! ! A7 A(1,2,3) 109.9295 estimate D2E/DX2 ! ! A8 A(1,2,4) 109.9295 estimate D2E/DX2 ! ! A9 A(1,2,5) 109.9295 estimate D2E/DX2 ! ! A10 A(3,2,4) 109.0091 estimate D2E/DX2 ! ! A11 A(3,2,5) 109.0091 estimate D2E/DX2 ! ! A12 A(4,2,5) 109.0091 estimate D2E/DX2 ! ! A13 A(1,6,7) 109.9295 estimate D2E/DX2 ! ! A14 A(1,6,8) 109.9295 estimate D2E/DX2 ! ! A15 A(1,6,9) 109.9295 estimate D2E/DX2 ! ! A16 A(7,6,8) 109.0091 estimate D2E/DX2 ! ! A17 A(7,6,9) 109.0091 estimate D2E/DX2 ! ! A18 A(8,6,9) 109.0091 estimate D2E/DX2 ! ! A19 A(1,10,11) 109.9295 estimate D2E/DX2 ! ! A20 A(1,10,12) 109.9295 estimate D2E/DX2 ! ! A21 A(1,10,13) 109.9295 estimate D2E/DX2 ! ! A22 A(11,10,12) 109.0091 estimate D2E/DX2 ! ! A23 A(11,10,13) 109.0091 estimate D2E/DX2 ! ! A24 A(12,10,13) 109.0091 estimate D2E/DX2 ! ! A25 A(1,14,15) 109.9295 estimate D2E/DX2 ! ! A26 A(1,14,16) 109.9295 estimate D2E/DX2 ! ! A27 A(1,14,17) 109.9295 estimate D2E/DX2 ! ! A28 A(15,14,16) 109.0091 estimate D2E/DX2 ! ! A29 A(15,14,17) 109.0091 estimate D2E/DX2 ! ! A30 A(16,14,17) 109.0091 estimate D2E/DX2 ! ! D1 D(6,1,2,3) 60.0 estimate D2E/DX2 ! ! D2 D(6,1,2,4) 180.0 estimate D2E/DX2 ! ! D3 D(6,1,2,5) -60.0 estimate D2E/DX2 ! ! D4 D(10,1,2,3) 180.0 estimate D2E/DX2 ! ! D5 D(10,1,2,4) -60.0 estimate D2E/DX2 ! ! D6 D(10,1,2,5) 60.0 estimate D2E/DX2 ! ! D7 D(14,1,2,3) -60.0 estimate D2E/DX2 ! ! D8 D(14,1,2,4) 60.0 estimate D2E/DX2 ! ! D9 D(14,1,2,5) 180.0 estimate D2E/DX2 ! ! D10 D(2,1,6,7) 60.0 estimate D2E/DX2 ! ! D11 D(2,1,6,8) 180.0 estimate D2E/DX2 ! ! D12 D(2,1,6,9) -60.0 estimate D2E/DX2 ! ! D13 D(10,1,6,7) -60.0 estimate D2E/DX2 ! ! D14 D(10,1,6,8) 60.0 estimate D2E/DX2 ! ! D15 D(10,1,6,9) -180.0 estimate D2E/DX2 ! ! D16 D(14,1,6,7) 180.0 estimate D2E/DX2 ! ! D17 D(14,1,6,8) -60.0 estimate D2E/DX2 ! ! D18 D(14,1,6,9) 60.0 estimate D2E/DX2 ! ! D19 D(2,1,10,11) 60.0 estimate D2E/DX2 ! ! D20 D(2,1,10,12) 180.0 estimate D2E/DX2 ! ! D21 D(2,1,10,13) -60.0 estimate D2E/DX2 ! ! D22 D(6,1,10,11) 180.0 estimate D2E/DX2 ! ! D23 D(6,1,10,12) -60.0 estimate D2E/DX2 ! ! D24 D(6,1,10,13) 60.0 estimate D2E/DX2 ! ! D25 D(14,1,10,11) -60.0 estimate D2E/DX2 ! ! D26 D(14,1,10,12) 60.0 estimate D2E/DX2 ! ! D27 D(14,1,10,13) 180.0 estimate D2E/DX2 ! ! D28 D(2,1,14,15) 60.0 estimate D2E/DX2 ! ! D29 D(2,1,14,16) 180.0 estimate D2E/DX2 ! ! D30 D(2,1,14,17) -60.0 estimate D2E/DX2 ! ! D31 D(6,1,14,15) -60.0 estimate D2E/DX2 ! ! D32 D(6,1,14,16) 60.0 estimate D2E/DX2 ! ! D33 D(6,1,14,17) 180.0 estimate D2E/DX2 ! ! D34 D(10,1,14,15) 180.0 estimate D2E/DX2 ! ! D35 D(10,1,14,16) -60.0 estimate D2E/DX2 ! ! D36 D(10,1,14,17) 60.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 92 maximum allowed number of steps= 102. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.816379 3 1 0 0.890111 -0.513906 2.189040 4 1 0 0.000000 1.027812 2.189040 5 1 0 -0.890111 -0.513906 2.189040 6 6 0 0.000000 -1.712499 -0.605460 7 1 0 -0.890111 -2.235148 -0.245165 8 1 0 0.000000 -1.721243 -1.698710 9 1 0 0.890111 -2.235148 -0.245165 10 6 0 -1.483067 0.856249 -0.605460 11 1 0 -1.490640 1.888433 -0.245165 12 1 0 -1.490640 0.860621 -1.698710 13 1 0 -2.380751 0.346715 -0.245165 14 6 0 1.483067 0.856249 -0.605460 15 1 0 2.380751 0.346715 -0.245165 16 1 0 1.490640 0.860621 -1.698710 17 1 0 1.490640 1.888433 -0.245165 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 P 0.000000 2 C 1.816379 0.000000 3 H 2.418324 1.093285 0.000000 4 H 2.418324 1.093285 1.780222 0.000000 5 H 2.418324 1.093285 1.780222 1.780222 0.000000 6 C 1.816379 2.966135 3.168304 3.913889 3.168304 7 H 2.418324 3.168304 3.472350 4.167080 2.981280 8 H 2.418324 3.913889 4.167080 4.761501 4.167080 9 H 2.418324 3.168304 2.981280 4.167080 3.472350 10 C 1.816379 2.966135 3.913889 3.168304 3.168304 11 H 2.418324 3.168304 4.167080 2.981280 3.472351 12 H 2.418324 3.913889 4.761502 4.167080 4.167080 13 H 2.418324 3.168304 4.167080 3.472351 2.981280 14 C 1.816379 2.966135 3.168304 3.168304 3.913889 15 H 2.418324 3.168304 2.981280 3.472351 4.167080 16 H 2.418324 3.913889 4.167080 4.167080 4.761502 17 H 2.418324 3.168304 3.472351 2.981280 4.167080 6 7 8 9 10 6 C 0.000000 7 H 1.093285 0.000000 8 H 1.093285 1.780222 0.000000 9 H 1.093285 1.780222 1.780222 0.000000 10 C 2.966135 3.168304 3.168304 3.913889 0.000000 11 H 3.913889 4.167080 4.167080 4.761502 1.093285 12 H 3.168304 3.472351 2.981280 4.167080 1.093285 13 H 3.168304 2.981280 3.472351 4.167080 1.093285 14 C 2.966135 3.913889 3.168304 3.168304 2.966135 15 H 3.168304 4.167080 3.472351 2.981280 3.913889 16 H 3.168304 4.167080 2.981280 3.472351 3.168304 17 H 3.913889 4.761502 4.167080 4.167080 3.168304 11 12 13 14 15 11 H 0.000000 12 H 1.780222 0.000000 13 H 1.780222 1.780222 0.000000 14 C 3.168304 3.168304 3.913889 0.000000 15 H 4.167080 4.167080 4.761502 1.093285 0.000000 16 H 3.472351 2.981280 4.167080 1.093285 1.780222 17 H 2.981280 3.472351 4.167080 1.093285 1.780222 16 17 16 H 0.000000 17 H 1.780222 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048687 1.048687 1.048687 3 1 0 1.683445 0.424638 1.683445 4 1 0 1.683445 1.683445 0.424638 5 1 0 0.424638 1.683445 1.683445 6 6 0 -1.048687 -1.048687 1.048687 7 1 0 -1.683445 -0.424638 1.683445 8 1 0 -1.683445 -1.683445 0.424638 9 1 0 -0.424638 -1.683445 1.683445 10 6 0 -1.048687 1.048687 -1.048687 11 1 0 -0.424638 1.683445 -1.683445 12 1 0 -1.683445 0.424638 -1.683445 13 1 0 -1.683445 1.683445 -0.424638 14 6 0 1.048687 -1.048687 -1.048687 15 1 0 1.683445 -1.683445 -0.424638 16 1 0 0.424638 -1.683445 -1.683445 17 1 0 1.683445 -0.424638 -1.683445 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3090156 3.3090156 3.3090156 Standard basis: 6-31G(d,p) (6D, 7F) There are 37 symmetry adapted cartesian basis functions of A symmetry. There are 34 symmetry adapted cartesian basis functions of B1 symmetry. There are 34 symmetry adapted cartesian basis functions of B2 symmetry. There are 34 symmetry adapted cartesian basis functions of B3 symmetry. There are 37 symmetry adapted basis functions of A symmetry. There are 34 symmetry adapted basis functions of B1 symmetry. There are 34 symmetry adapted basis functions of B2 symmetry. There are 34 symmetry adapted basis functions of B3 symmetry. 139 basis functions, 248 primitive gaussians, 139 cartesian basis functions 25 alpha electrons 25 beta electrons nuclear repulsion energy 262.6805406933 Hartrees. NAtoms= 17 NActive= 17 NUniq= 3 SFac= 4.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 139 RedAO= T EigKep= 3.42D-03 NBF= 37 34 34 34 NBsUse= 139 1.00D-06 EigRej= -1.00D+00 NBFU= 37 34 34 34 ExpMin= 9.98D-02 ExpMax= 1.94D+04 ExpMxC= 2.91D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (E) (E) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=59284081. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -500.827030389 A.U. after 10 cycles NFock= 10 Conv=0.34D-08 -V/T= 2.0060 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (T2) (T2) (T2) (A1) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) Virtual (T2) (T2) (T2) (A1) (A1) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (A1) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (T2) (T2) (T2) (E) (E) (T2) (T2) (T2) (T2) (T2) (T2) (T1) (T1) (T1) (A1) (E) (E) (T2) (T2) (T2) (A1) (T1) (T1) (T1) (A2) (E) (E) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (T1) (T1) (T1) (T2) (T2) (T2) (E) (E) (A1) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (T2) (T2) (T2) (A1) (T2) (T2) (T2) (T2) (T2) (T2) (E) (E) (T1) (T1) (T1) (A1) (A1) (T2) (T2) (T2) The electronic state is 1-A1. Alpha occ. eigenvalues -- -77.34285 -10.37611 -10.37611 -10.37611 -10.37611 Alpha occ. eigenvalues -- -6.80827 -4.96981 -4.96981 -4.96981 -0.99275 Alpha occ. eigenvalues -- -0.89086 -0.89086 -0.89086 -0.73301 -0.63375 Alpha occ. eigenvalues -- -0.63375 -0.63375 -0.60226 -0.60226 -0.57876 Alpha occ. eigenvalues -- -0.57876 -0.57876 -0.53929 -0.53929 -0.53929 Alpha virt. eigenvalues -- -0.11005 -0.11005 -0.11005 -0.10153 -0.05098 Alpha virt. eigenvalues -- -0.04129 -0.04129 -0.03824 -0.03824 -0.03824 Alpha virt. eigenvalues -- 0.00638 0.00638 0.00638 0.02557 0.02557 Alpha virt. eigenvalues -- 0.02557 0.19721 0.19721 0.19721 0.24760 Alpha virt. eigenvalues -- 0.24760 0.29671 0.43579 0.43579 0.43579 Alpha virt. eigenvalues -- 0.46739 0.46739 0.46739 0.47404 0.56966 Alpha virt. eigenvalues -- 0.56966 0.57690 0.57690 0.57690 0.68547 Alpha virt. eigenvalues -- 0.68547 0.68547 0.69737 0.69737 0.69737 Alpha virt. eigenvalues -- 0.71108 0.71621 0.71621 0.71621 0.74110 Alpha virt. eigenvalues -- 0.74110 0.81616 0.81616 0.81616 1.09570 Alpha virt. eigenvalues -- 1.09570 1.09570 1.22825 1.22825 1.22825 Alpha virt. eigenvalues -- 1.23839 1.30723 1.30723 1.50576 1.50576 Alpha virt. eigenvalues -- 1.50576 1.75111 1.85232 1.85232 1.85232 Alpha virt. eigenvalues -- 1.85330 1.87436 1.87436 1.88009 1.88009 Alpha virt. eigenvalues -- 1.88009 1.93275 1.93275 1.93275 1.96538 Alpha virt. eigenvalues -- 1.96538 1.96538 2.14681 2.14681 2.14681 Alpha virt. eigenvalues -- 2.19107 2.19107 2.19107 2.19408 2.19408 Alpha virt. eigenvalues -- 2.41970 2.47513 2.47513 2.47513 2.61137 Alpha virt. eigenvalues -- 2.61137 2.65368 2.65368 2.65368 2.67390 Alpha virt. eigenvalues -- 2.67390 2.67390 2.95830 3.00656 3.00656 Alpha virt. eigenvalues -- 3.00656 3.22461 3.22461 3.22461 3.24336 Alpha virt. eigenvalues -- 3.24336 3.25160 3.25160 3.25160 3.34972 Alpha virt. eigenvalues -- 4.26249 4.27343 4.27343 4.27343 Condensed to atoms (all electrons): 1 2 3 4 5 6 1 P 13.150860 0.345291 -0.021435 -0.021435 -0.021435 0.345291 2 C 0.345291 5.135712 0.377514 0.377514 0.377514 -0.032267 3 H -0.021435 0.377514 0.484053 -0.016361 -0.016361 -0.001795 4 H -0.021435 0.377514 -0.016361 0.484053 -0.016361 0.001668 5 H -0.021435 0.377514 -0.016361 -0.016361 0.484053 -0.001795 6 C 0.345291 -0.032267 -0.001795 0.001668 -0.001795 5.135712 7 H -0.021435 -0.001795 -0.000137 0.000006 0.000785 0.377514 8 H -0.021435 0.001668 0.000006 -0.000029 0.000006 0.377514 9 H -0.021435 -0.001795 0.000785 0.000006 -0.000137 0.377514 10 C 0.345291 -0.032267 0.001668 -0.001795 -0.001795 -0.032267 11 H -0.021435 -0.001795 0.000006 0.000785 -0.000137 0.001668 12 H -0.021435 0.001668 -0.000029 0.000006 0.000006 -0.001795 13 H -0.021435 -0.001795 0.000006 -0.000137 0.000785 -0.001795 14 C 0.345291 -0.032267 -0.001795 -0.001795 0.001668 -0.032267 15 H -0.021435 -0.001795 0.000785 -0.000137 0.000006 -0.001795 16 H -0.021435 0.001668 0.000006 0.000006 -0.000029 -0.001795 17 H -0.021435 -0.001795 -0.000137 0.000785 0.000006 0.001668 7 8 9 10 11 12 1 P -0.021435 -0.021435 -0.021435 0.345291 -0.021435 -0.021435 2 C -0.001795 0.001668 -0.001795 -0.032267 -0.001795 0.001668 3 H -0.000137 0.000006 0.000785 0.001668 0.000006 -0.000029 4 H 0.000006 -0.000029 0.000006 -0.001795 0.000785 0.000006 5 H 0.000785 0.000006 -0.000137 -0.001795 -0.000137 0.000006 6 C 0.377514 0.377514 0.377514 -0.032267 0.001668 -0.001795 7 H 0.484053 -0.016361 -0.016361 -0.001795 0.000006 -0.000137 8 H -0.016361 0.484053 -0.016361 -0.001795 0.000006 0.000785 9 H -0.016361 -0.016361 0.484053 0.001668 -0.000029 0.000006 10 C -0.001795 -0.001795 0.001668 5.135712 0.377514 0.377514 11 H 0.000006 0.000006 -0.000029 0.377514 0.484053 -0.016361 12 H -0.000137 0.000785 0.000006 0.377514 -0.016361 0.484053 13 H 0.000785 -0.000137 0.000006 0.377514 -0.016361 -0.016361 14 C 0.001668 -0.001795 -0.001795 -0.032267 -0.001795 -0.001795 15 H 0.000006 -0.000137 0.000785 0.001668 0.000006 0.000006 16 H 0.000006 0.000785 -0.000137 -0.001795 -0.000137 0.000785 17 H -0.000029 0.000006 0.000006 -0.001795 0.000785 -0.000137 13 14 15 16 17 1 P -0.021435 0.345291 -0.021435 -0.021435 -0.021435 2 C -0.001795 -0.032267 -0.001795 0.001668 -0.001795 3 H 0.000006 -0.001795 0.000785 0.000006 -0.000137 4 H -0.000137 -0.001795 -0.000137 0.000006 0.000785 5 H 0.000785 0.001668 0.000006 -0.000029 0.000006 6 C -0.001795 -0.032267 -0.001795 -0.001795 0.001668 7 H 0.000785 0.001668 0.000006 0.000006 -0.000029 8 H -0.000137 -0.001795 -0.000137 0.000785 0.000006 9 H 0.000006 -0.001795 0.000785 -0.000137 0.000006 10 C 0.377514 -0.032267 0.001668 -0.001795 -0.001795 11 H -0.016361 -0.001795 0.000006 -0.000137 0.000785 12 H -0.016361 -0.001795 0.000006 0.000785 -0.000137 13 H 0.484053 0.001668 -0.000029 0.000006 0.000006 14 C 0.001668 5.135712 0.377514 0.377514 0.377514 15 H -0.000029 0.377514 0.484053 -0.016361 -0.016361 16 H 0.000006 0.377514 -0.016361 0.484053 -0.016361 17 H 0.000006 0.377514 -0.016361 -0.016361 0.484053 Mulliken charges: 1 1 P 0.725202 2 C -0.510975 3 H 0.193225 4 H 0.193225 5 H 0.193225 6 C -0.510975 7 H 0.193225 8 H 0.193225 9 H 0.193225 10 C -0.510975 11 H 0.193225 12 H 0.193225 13 H 0.193225 14 C -0.510975 15 H 0.193225 16 H 0.193225 17 H 0.193225 Sum of Mulliken charges = 1.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 P 0.725202 2 C 0.068700 6 C 0.068700 10 C 0.068700 14 C 0.068700 Electronic spatial extent (au): = 603.1092 Charge= 1.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.0000 Tot= 0.0000 Quadrupole moment (field-independent basis, Debye-Ang): XX= -31.2635 YY= -31.2635 ZZ= -31.2635 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 0.0000 YY= 0.0000 ZZ= 0.0000 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 0.0000 XYY= 0.0000 XXY= 0.0000 XXZ= 0.0000 XZZ= 0.0000 YZZ= 0.0000 YYZ= 0.0000 XYZ= 1.9857 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -246.8496 YYYY= -246.8496 ZZZZ= -246.8496 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -74.3955 XXZZ= -74.3955 YYZZ= -74.3955 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 2.626805406933D+02 E-N=-1.693578151218D+03 KE= 4.978542796884D+02 Symmetry A KE= 2.853339494153D+02 Symmetry B1 KE= 7.084011009105D+01 Symmetry B2 KE= 7.084011009105D+01 Symmetry B3 KE= 7.084011009105D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 15 0.000000000 0.000000000 0.000000000 2 6 0.000000000 0.000000000 -0.000005539 3 1 0.000000404 -0.000000233 0.000000850 4 1 0.000000000 0.000000466 0.000000850 5 1 -0.000000404 -0.000000233 0.000000850 6 6 0.000000000 0.000005222 0.000001846 7 1 -0.000000404 -0.000000879 -0.000000063 8 1 0.000000000 -0.000000646 -0.000000723 9 1 0.000000404 -0.000000879 -0.000000063 10 6 0.000004522 -0.000002611 0.000001846 11 1 -0.000000559 0.000000789 -0.000000063 12 1 -0.000000559 0.000000323 -0.000000723 13 1 -0.000000963 0.000000090 -0.000000063 14 6 -0.000004522 -0.000002611 0.000001846 15 1 0.000000963 0.000000090 -0.000000063 16 1 0.000000559 0.000000323 -0.000000723 17 1 0.000000559 0.000000789 -0.000000063 ------------------------------------------------------------------- Cartesian Forces: Max 0.000005539 RMS 0.000001621 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000002990 RMS 0.000000800 Search for a local minimum. Step number 1 out of a maximum of 92 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Second derivative matrix not updated -- first step. ITU= 0 Eigenvalues --- 0.00948 0.00948 0.00948 0.00948 0.05321 Eigenvalues --- 0.05321 0.05321 0.06102 0.06102 0.06102 Eigenvalues --- 0.06102 0.06102 0.06102 0.06102 0.06102 Eigenvalues --- 0.14692 0.14692 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.16000 Eigenvalues --- 0.16000 0.16000 0.16000 0.16000 0.24868 Eigenvalues --- 0.24868 0.24868 0.24868 0.34436 0.34436 Eigenvalues --- 0.34436 0.34436 0.34436 0.34436 0.34436 Eigenvalues --- 0.34436 0.34436 0.34436 0.34436 0.34436 RFO step: Lambda= 0.00000000D+00 EMin= 9.47587242D-03 Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00000298 RMS(Int)= 0.00000000 Iteration 2 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.55D-09 for atom 13. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.43246 0.00000 0.00000 -0.00001 -0.00001 3.43245 R2 3.43246 0.00000 0.00000 -0.00001 -0.00001 3.43245 R3 3.43246 0.00000 0.00000 -0.00001 -0.00001 3.43245 R4 3.43246 0.00000 0.00000 -0.00001 -0.00001 3.43245 R5 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R6 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R7 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R8 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R9 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R10 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R11 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R12 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R13 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R14 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R15 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 R16 2.06601 0.00000 0.00000 0.00000 0.00000 2.06601 A1 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A2 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A3 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A4 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A5 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A6 1.91063 0.00000 0.00000 0.00000 0.00000 1.91063 A7 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A8 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A9 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A10 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A11 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A12 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A13 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A14 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A15 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A16 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A17 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A18 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A19 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A20 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A21 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A22 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A23 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A24 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A25 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A26 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A27 1.91863 0.00000 0.00000 0.00000 0.00000 1.91864 A28 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A29 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 A30 1.90257 0.00000 0.00000 0.00000 0.00000 1.90256 D1 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D2 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D3 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D4 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D5 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D6 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D7 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D8 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D9 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D10 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D11 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D12 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D13 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D14 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D15 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D16 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D17 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D18 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D19 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D20 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D21 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D22 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D23 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D24 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D25 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D26 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D27 3.14159 0.00000 0.00000 0.00000 0.00000 -3.14159 D28 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D29 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D30 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D31 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D32 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 D33 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D34 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 D35 -1.04720 0.00000 0.00000 0.00000 0.00000 -1.04720 D36 1.04720 0.00000 0.00000 0.00000 0.00000 1.04720 Item Value Threshold Converged? Maximum Force 0.000003 0.000450 YES RMS Force 0.000001 0.000300 YES Maximum Displacement 0.000012 0.001800 YES RMS Displacement 0.000003 0.001200 YES Predicted change in Energy=-1.133393D-10 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.8164 -DE/DX = 0.0 ! ! R2 R(1,6) 1.8164 -DE/DX = 0.0 ! ! R3 R(1,10) 1.8164 -DE/DX = 0.0 ! ! R4 R(1,14) 1.8164 -DE/DX = 0.0 ! ! R5 R(2,3) 1.0933 -DE/DX = 0.0 ! ! R6 R(2,4) 1.0933 -DE/DX = 0.0 ! ! R7 R(2,5) 1.0933 -DE/DX = 0.0 ! ! R8 R(6,7) 1.0933 -DE/DX = 0.0 ! ! R9 R(6,8) 1.0933 -DE/DX = 0.0 ! ! R10 R(6,9) 1.0933 -DE/DX = 0.0 ! ! R11 R(10,11) 1.0933 -DE/DX = 0.0 ! ! R12 R(10,12) 1.0933 -DE/DX = 0.0 ! ! R13 R(10,13) 1.0933 -DE/DX = 0.0 ! ! R14 R(14,15) 1.0933 -DE/DX = 0.0 ! ! R15 R(14,16) 1.0933 -DE/DX = 0.0 ! ! R16 R(14,17) 1.0933 -DE/DX = 0.0 ! ! A1 A(2,1,6) 109.4712 -DE/DX = 0.0 ! ! A2 A(2,1,10) 109.4712 -DE/DX = 0.0 ! ! A3 A(2,1,14) 109.4712 -DE/DX = 0.0 ! ! A4 A(6,1,10) 109.4712 -DE/DX = 0.0 ! ! A5 A(6,1,14) 109.4712 -DE/DX = 0.0 ! ! A6 A(10,1,14) 109.4712 -DE/DX = 0.0 ! ! A7 A(1,2,3) 109.9295 -DE/DX = 0.0 ! ! A8 A(1,2,4) 109.9295 -DE/DX = 0.0 ! ! A9 A(1,2,5) 109.9295 -DE/DX = 0.0 ! ! A10 A(3,2,4) 109.0091 -DE/DX = 0.0 ! ! A11 A(3,2,5) 109.0091 -DE/DX = 0.0 ! ! A12 A(4,2,5) 109.0091 -DE/DX = 0.0 ! ! A13 A(1,6,7) 109.9295 -DE/DX = 0.0 ! ! A14 A(1,6,8) 109.9295 -DE/DX = 0.0 ! ! A15 A(1,6,9) 109.9295 -DE/DX = 0.0 ! ! A16 A(7,6,8) 109.0091 -DE/DX = 0.0 ! ! A17 A(7,6,9) 109.0091 -DE/DX = 0.0 ! ! A18 A(8,6,9) 109.0091 -DE/DX = 0.0 ! ! A19 A(1,10,11) 109.9295 -DE/DX = 0.0 ! ! A20 A(1,10,12) 109.9295 -DE/DX = 0.0 ! ! A21 A(1,10,13) 109.9295 -DE/DX = 0.0 ! ! A22 A(11,10,12) 109.0091 -DE/DX = 0.0 ! ! A23 A(11,10,13) 109.0091 -DE/DX = 0.0 ! ! A24 A(12,10,13) 109.0091 -DE/DX = 0.0 ! ! A25 A(1,14,15) 109.9295 -DE/DX = 0.0 ! ! A26 A(1,14,16) 109.9295 -DE/DX = 0.0 ! ! A27 A(1,14,17) 109.9295 -DE/DX = 0.0 ! ! A28 A(15,14,16) 109.0091 -DE/DX = 0.0 ! ! A29 A(15,14,17) 109.0091 -DE/DX = 0.0 ! ! A30 A(16,14,17) 109.0091 -DE/DX = 0.0 ! ! D1 D(6,1,2,3) 60.0 -DE/DX = 0.0 ! ! D2 D(6,1,2,4) 180.0 -DE/DX = 0.0 ! ! D3 D(6,1,2,5) -60.0 -DE/DX = 0.0 ! ! D4 D(10,1,2,3) 180.0 -DE/DX = 0.0 ! ! D5 D(10,1,2,4) -60.0 -DE/DX = 0.0 ! ! D6 D(10,1,2,5) 60.0 -DE/DX = 0.0 ! ! D7 D(14,1,2,3) -60.0 -DE/DX = 0.0 ! ! D8 D(14,1,2,4) 60.0 -DE/DX = 0.0 ! ! D9 D(14,1,2,5) 180.0 -DE/DX = 0.0 ! ! D10 D(2,1,6,7) 60.0 -DE/DX = 0.0 ! ! D11 D(2,1,6,8) 180.0 -DE/DX = 0.0 ! ! D12 D(2,1,6,9) -60.0 -DE/DX = 0.0 ! ! D13 D(10,1,6,7) -60.0 -DE/DX = 0.0 ! ! D14 D(10,1,6,8) 60.0 -DE/DX = 0.0 ! ! D15 D(10,1,6,9) 180.0 -DE/DX = 0.0 ! ! D16 D(14,1,6,7) 180.0 -DE/DX = 0.0 ! ! D17 D(14,1,6,8) -60.0 -DE/DX = 0.0 ! ! D18 D(14,1,6,9) 60.0 -DE/DX = 0.0 ! ! D19 D(2,1,10,11) 60.0 -DE/DX = 0.0 ! ! D20 D(2,1,10,12) 180.0 -DE/DX = 0.0 ! ! D21 D(2,1,10,13) -60.0 -DE/DX = 0.0 ! ! D22 D(6,1,10,11) 180.0 -DE/DX = 0.0 ! ! D23 D(6,1,10,12) -60.0 -DE/DX = 0.0 ! ! D24 D(6,1,10,13) 60.0 -DE/DX = 0.0 ! ! D25 D(14,1,10,11) -60.0 -DE/DX = 0.0 ! ! D26 D(14,1,10,12) 60.0 -DE/DX = 0.0 ! ! D27 D(14,1,10,13) -180.0 -DE/DX = 0.0 ! ! D28 D(2,1,14,15) 60.0 -DE/DX = 0.0 ! ! D29 D(2,1,14,16) 180.0 -DE/DX = 0.0 ! ! D30 D(2,1,14,17) -60.0 -DE/DX = 0.0 ! ! D31 D(6,1,14,15) -60.0 -DE/DX = 0.0 ! ! D32 D(6,1,14,16) 60.0 -DE/DX = 0.0 ! ! D33 D(6,1,14,17) 180.0 -DE/DX = 0.0 ! ! D34 D(10,1,14,15) 180.0 -DE/DX = 0.0 ! ! D35 D(10,1,14,16) -60.0 -DE/DX = 0.0 ! ! D36 D(10,1,14,17) 60.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.816379 3 1 0 0.890111 -0.513906 2.189040 4 1 0 0.000000 1.027812 2.189040 5 1 0 -0.890111 -0.513906 2.189040 6 6 0 0.000000 -1.712499 -0.605460 7 1 0 -0.890111 -2.235148 -0.245165 8 1 0 0.000000 -1.721243 -1.698710 9 1 0 0.890111 -2.235148 -0.245165 10 6 0 -1.483067 0.856249 -0.605460 11 1 0 -1.490640 1.888433 -0.245165 12 1 0 -1.490640 0.860621 -1.698710 13 1 0 -2.380751 0.346715 -0.245165 14 6 0 1.483067 0.856249 -0.605460 15 1 0 2.380751 0.346715 -0.245165 16 1 0 1.490640 0.860621 -1.698710 17 1 0 1.490640 1.888433 -0.245165 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 5 1 P 0.000000 2 C 1.816379 0.000000 3 H 2.418324 1.093285 0.000000 4 H 2.418324 1.093285 1.780222 0.000000 5 H 2.418324 1.093285 1.780222 1.780222 0.000000 6 C 1.816379 2.966135 3.168304 3.913889 3.168304 7 H 2.418324 3.168304 3.472350 4.167080 2.981280 8 H 2.418324 3.913889 4.167080 4.761502 4.167080 9 H 2.418324 3.168304 2.981280 4.167080 3.472350 10 C 1.816379 2.966135 3.913889 3.168304 3.168304 11 H 2.418324 3.168304 4.167080 2.981280 3.472350 12 H 2.418324 3.913889 4.761502 4.167080 4.167080 13 H 2.418324 3.168304 4.167080 3.472350 2.981280 14 C 1.816379 2.966135 3.168304 3.168304 3.913889 15 H 2.418324 3.168304 2.981280 3.472350 4.167080 16 H 2.418324 3.913889 4.167080 4.167080 4.761502 17 H 2.418324 3.168304 3.472350 2.981280 4.167080 6 7 8 9 10 6 C 0.000000 7 H 1.093285 0.000000 8 H 1.093285 1.780222 0.000000 9 H 1.093285 1.780222 1.780222 0.000000 10 C 2.966135 3.168304 3.168304 3.913889 0.000000 11 H 3.913889 4.167080 4.167080 4.761502 1.093285 12 H 3.168304 3.472350 2.981280 4.167080 1.093285 13 H 3.168304 2.981280 3.472350 4.167080 1.093285 14 C 2.966135 3.913889 3.168304 3.168304 2.966135 15 H 3.168304 4.167080 3.472350 2.981280 3.913889 16 H 3.168304 4.167080 2.981280 3.472350 3.168304 17 H 3.913889 4.761502 4.167080 4.167080 3.168304 11 12 13 14 15 11 H 0.000000 12 H 1.780222 0.000000 13 H 1.780222 1.780222 0.000000 14 C 3.168304 3.168304 3.913889 0.000000 15 H 4.167080 4.167080 4.761502 1.093285 0.000000 16 H 3.472350 2.981280 4.167080 1.093285 1.780222 17 H 2.981280 3.472350 4.167080 1.093285 1.780222 16 17 16 H 0.000000 17 H 1.780222 0.000000 Stoichiometry C4H12P(1+) Framework group TD[O(P),4C3(C),6SGD(H2)] Deg. of freedom 3 Full point group TD NOp 24 Largest Abelian subgroup D2 NOp 4 Largest concise Abelian subgroup D2 NOp 4 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 15 0 0.000000 0.000000 0.000000 2 6 0 1.048687 1.048687 1.048687 3 1 0 1.683445 0.424638 1.683445 4 1 0 1.683445 1.683445 0.424638 5 1 0 0.424638 1.683445 1.683445 6 6 0 -1.048687 -1.048687 1.048687 7 1 0 -1.683445 -0.424638 1.683445 8 1 0 -1.683445 -1.683445 0.424638 9 1 0 -0.424638 -1.683445 1.683445 10 6 0 -1.048687 1.048687 -1.048687 11 1 0 -0.424638 1.683445 -1.683445 12 1 0 -1.683445 0.424638 -1.683445 13 1 0 -1.683445 1.683445 -0.424638 14 6 0 1.048687 -1.048687 -1.048687 15 1 0 1.683445 -1.683445 -0.424638 16 1 0 0.424638 -1.683445 -1.683445 17 1 0 1.683445 -0.424638 -1.683445 --------------------------------------------------------------------- Rotational constants (GHZ): 3.3090156 3.3090156 3.3090156 1|1| IMPERIAL COLLEGE-CHWS-273|FOpt|RB3LYP|6-31G(d,p)|C4H12P1(1+)|MOM1 2|20-Oct-2014|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral=gri d=ultrafine||[P(CH3]4]+ Optimisation||1,1|P,0.,-0.0000000002,0.0000000 018|C,-0.0000000003,-0.0000000006,1.81637917|H,0.8901109698,-0.5139058 104,2.18903971|H,0.0000000009,1.0278116166,2.1890397102|H,-0.890110971 9,-0.5139058081,2.1890397097|C,-0.0000000021,-1.7124987028,-0.60545972 13|H,-0.8901109737,-2.2351483644,-0.2451648587|H,-0.0000000019,-1.7212 425567,-1.6987099871|H,0.890110968,-2.2351483668,-0.2451648584|C,-1.48 30673793,0.8562493532,-0.6054597211|H,-1.4906397778,1.8884328974,-0.24 5164858|H,-1.4906397789,0.8606212805,-1.6987099868|H,-2.3807507506,0.3 467154728,-0.2451648584|C,1.4830673818,0.8562493494,-0.6054597205|H,2. 3807507516,0.3467154666,-0.2451648576|H,1.4906397817,0.8606212766,-1.6 987099863|H,1.4906397828,1.8884328936,-0.2451648574||Version=EM64W-G09 RevD.01|State=1-A1|HF=-500.8270304|RMSD=3.371e-009|RMSF=1.621e-006|Dip ole=0.,0.,0.|Quadrupole=0.,0.,0.,0.,0.,0.|PG=TD [O(P1),4C3(C1),6SGD(H2 )]||@ ...THE PHYSICISTS HAVE MADE THEIR UNIVERSE, AND IF YOU DO NOT LIKE IT, YOU MUST MAKE YOUR OWN. -- E. R. HARRISON IN "COSMOLOGY" (1980) Job cpu time: 0 days 0 hours 0 minutes 13.0 seconds. File lengths (MBytes): RWF= 10 Int= 0 D2E= 0 Chk= 3 Scr= 1 Normal termination of Gaussian 09 at Mon Oct 20 15:07:10 2014.