Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 12896. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 08-Mar-2019 ****************************************** %chk=H:\1styearlab\htrant_cs2_opt_2.chk Default route: MaxDisk=10GB --------------------------------------------------------------------- # opt freq b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine --------------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ----- test2 ----- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 C -0.68431 0.4562 0. S 0.02737 1.25912 0. S -1.50547 1.20438 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.0729 estimate D2E/DX2 ! ! R2 R(1,3) 1.1109 estimate D2E/DX2 ! ! A1 A(2,1,3) 89.2156 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.684307 0.456204 0.000000 2 16 0 0.027372 1.259124 0.000000 3 16 0 -1.505474 1.204380 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.072924 0.000000 3 S 1.110893 1.533824 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.654718 0.000000 2 16 0 0.766448 -0.096098 0.000000 3 16 0 -0.766448 -0.149421 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 82.8668991 13.4345677 11.5603739 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 181.3994039164 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 3.56D-03 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") Virtual (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') The electronic state of the initial guess is 1-A'. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -832.877042038 A.U. after 15 cycles NFock= 15 Conv=0.38D-08 -V/T= 1.9924 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') Virtual (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A") (A") (A') (A') (A') (A') (A") (A") (A') (A') (A') (A') (A") (A") (A') (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -88.89140 -88.88679 -10.21411 -8.02304 -8.00928 Alpha occ. eigenvalues -- -5.99043 -5.97565 -5.97111 -5.96567 -5.96032 Alpha occ. eigenvalues -- -5.95371 -1.25896 -0.74577 -0.65110 -0.59754 Alpha occ. eigenvalues -- -0.50969 -0.39878 -0.21089 -0.20566 Alpha virt. eigenvalues -- -0.06194 -0.00174 0.10059 0.18943 0.19560 Alpha virt. eigenvalues -- 0.24359 0.24968 0.37139 0.37264 0.42773 Alpha virt. eigenvalues -- 0.46801 0.48046 0.49112 0.51772 0.60605 Alpha virt. eigenvalues -- 0.71022 0.71271 0.74545 0.88329 0.99201 Alpha virt. eigenvalues -- 1.04036 1.09412 1.14513 1.60390 1.79414 Alpha virt. eigenvalues -- 1.95358 2.17460 2.23607 2.34672 3.01192 Alpha virt. eigenvalues -- 3.20990 3.92119 3.97209 4.43756 Condensed to atoms (all electrons): 1 2 3 1 C 5.776045 0.254155 0.207952 2 S 0.254155 15.928381 -0.348983 3 S 0.207952 -0.348983 16.069328 Mulliken charges: 1 1 C -0.238151 2 S 0.166448 3 S 0.071703 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.238151 2 S 0.166448 3 S 0.071703 Electronic spatial extent (au): = 143.5690 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.2652 Y= -0.7741 Z= 0.0000 Tot= 0.8183 Quadrupole moment (field-independent basis, Debye-Ang): XX= -30.2758 YY= -29.6829 ZZ= -28.0759 XY= -0.0577 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= -0.9309 YY= -0.3380 ZZ= 1.2690 XY= -0.0577 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.2924 YYY= -3.9674 ZZZ= 0.0000 XYY= 0.3224 XXY= 2.5599 XXZ= 0.0000 XZZ= 0.4450 YZZ= 0.1858 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -128.9054 YYYY= -52.6189 ZZZZ= -32.0387 XXXY= -1.6323 XXXZ= 0.0000 YYYX= -1.3465 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -27.1410 XXZZ= -28.6877 YYZZ= -13.3236 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= -0.6933 N-N= 1.813994039164D+02 E-N=-2.345775616924D+03 KE= 8.392163340244D+02 Symmetry A' KE= 7.610568349113D+02 Symmetry A" KE= 7.815949911307D+01 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.109774254 -2.595814090 0.000000000 2 16 1.960121857 1.514207447 0.000000000 3 16 -1.850347604 1.081606642 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 2.595814090 RMS 1.393590975 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 2.433313142 RMS 1.931701013 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 A1 R1 13.42147 R2 0.00000 9.01328 A1 0.00000 0.00000 0.25000 ITU= 0 Eigenvalues --- 0.25000 9.01328 13.42147 RFO step: Lambda=-1.36731658D+00 EMin= 2.50000000D-01 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.472 Iteration 1 RMS(Cart)= 0.17329068 RMS(Int)= 0.04858280 Iteration 2 RMS(Cart)= 0.05415362 RMS(Int)= 0.00154005 Iteration 3 RMS(Cart)= 0.00144006 RMS(Int)= 0.00000016 Iteration 4 RMS(Cart)= 0.00000018 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.88D-16 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.02753 2.43331 0.00000 0.07766 0.07766 2.10519 R2 2.09928 2.09622 0.00000 0.09531 0.09531 2.19460 A1 1.55711 0.93768 0.00000 0.27365 0.27365 1.83076 Item Value Threshold Converged? Maximum Force 2.433313 0.000450 NO RMS Force 1.931701 0.000300 NO Maximum Displacement 0.256220 0.001800 NO RMS Displacement 0.221540 0.001200 NO Predicted change in Energy=-5.545906D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.685251 0.512167 0.000000 2 16 0 0.162958 1.234375 0.000000 3 16 0 -1.640116 1.173166 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.114021 0.000000 3 S 1.161330 1.804113 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.584132 0.000000 2 16 0 0.901222 -0.070728 0.000000 3 16 0 -0.901222 -0.148321 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 104.1663354 9.7110513 8.8829280 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 164.4344923039 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 5.69D-03 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999993 0.000000 0.000000 -0.003673 Ang= -0.42 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -833.320953632 A.U. after 16 cycles NFock= 16 Conv=0.48D-08 -V/T= 1.9953 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.178495930 -1.887693781 0.000000000 2 16 1.384425612 1.112103399 0.000000000 3 16 -1.205929682 0.775590382 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 1.887693781 RMS 0.989077218 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 1.775060637 RMS 1.318545527 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -4.44D-01 DEPred=-5.55D-01 R= 8.00D-01 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0000D-01 Trust test= 8.00D-01 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 A1 R1 8.70534 R2 -3.65448 6.23556 A1 1.20778 1.28896 2.24439 ITU= 1 0 Use linear search instead of GDIIS. Linear search step of 0.600 exceeds DXMaxT= 0.505 but not scaled. Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.21958464 RMS(Int)= 0.21026968 Iteration 2 RMS(Cart)= 0.13457719 RMS(Int)= 0.09538139 Iteration 3 RMS(Cart)= 0.10349563 RMS(Int)= 0.00646619 Iteration 4 RMS(Cart)= 0.00623710 RMS(Int)= 0.00000073 Iteration 5 RMS(Cart)= 0.00000077 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 1.33D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.10519 1.77506 0.15532 0.00000 0.15532 2.26052 R2 2.19460 1.43298 0.19063 0.00000 0.19063 2.38522 A1 1.83076 0.10685 0.54730 0.00000 0.54730 2.37806 Item Value Threshold Converged? Maximum Force 1.775061 0.000450 NO RMS Force 1.318546 0.000300 NO Maximum Displacement 0.453585 0.001800 NO RMS Displacement 0.423855 0.001200 NO Predicted change in Energy=-7.603931D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.687864 0.669028 0.000000 2 16 0 0.402985 1.159921 0.000000 3 16 0 -1.877530 1.090759 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.196214 0.000000 3 S 1.262205 2.281563 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.386509 0.000000 2 16 0 1.137354 0.015897 0.000000 3 16 0 -1.137354 -0.160838 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 238.9047178 6.0721594 5.9216508 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 142.0916888761 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 8.13D-03 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999865 0.000000 0.000000 -0.016454 Ang= -1.89 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -833.957429619 A.U. after 15 cycles NFock= 15 Conv=0.57D-08 -V/T= 1.9981 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.285773366 -0.517223805 0.000000000 2 16 1.089576185 0.355707497 0.000000000 3 16 -0.803802818 0.161516309 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 1.089576185 RMS 0.509365341 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 1.139577094 RMS 0.823465852 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 The second derivative matrix: R1 R2 A1 R1 10.70012 R2 -1.74161 8.06807 A1 -1.26893 -1.18047 0.45949 ITU= 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.05871 7.56667 11.60229 RFO step: Lambda=-1.41471035D-01 EMin= 5.87118227D-02 Quartic linear search produced a step of 0.50993. Maximum step size ( 0.505) exceeded in Quadratic search. -- Step size scaled by 0.782 Iteration 1 RMS(Cart)= 0.11387662 RMS(Int)= 0.01904599 Iteration 2 RMS(Cart)= 0.02423178 RMS(Int)= 0.00022445 Iteration 3 RMS(Cart)= 0.00017579 RMS(Int)= 0.00000001 Iteration 4 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.22D-16 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.26052 1.13958 0.07920 -0.02112 0.05808 2.31860 R2 2.38522 0.81157 0.09721 -0.05069 0.04652 2.43174 A1 2.37806 0.27749 0.27909 -0.50154 -0.22245 2.15560 Item Value Threshold Converged? Maximum Force 1.139577 0.000450 NO RMS Force 0.823466 0.000300 NO Maximum Displacement 0.172306 0.001800 NO RMS Displacement 0.132390 0.001200 NO Predicted change in Energy=-1.983894D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.685617 0.577847 0.000000 2 16 0 0.368354 1.205981 0.000000 3 16 0 -1.845146 1.135879 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.226951 0.000000 3 S 1.286821 2.214610 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.501412 0.000000 2 16 0 1.105501 -0.030825 0.000000 3 16 0 -1.105501 -0.157204 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 141.5653307 6.4448701 6.1642384 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 142.0529628708 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 9.44D-03 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999951 0.000000 0.000000 0.009884 Ang= 1.13 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -833.980672525 A.U. after 15 cycles NFock= 15 Conv=0.27D-08 -V/T= 1.9986 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.205014191 -0.535111788 0.000000000 2 16 0.944364493 0.361908940 0.000000000 3 16 -0.739350302 0.173202848 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.944364493 RMS 0.462819369 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.996503111 RMS 0.753368969 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 2 3 4 DE= -2.32D-02 DEPred=-1.98D-02 R= 1.17D+00 TightC=F SS= 1.41D+00 RLast= 2.35D-01 DXNew= 8.4853D-01 7.0371D-01 Trust test= 1.17D+00 RLast= 2.35D-01 DXMaxT set to 7.04D-01 The second derivative matrix: R1 R2 A1 R1 5.82649 R2 -5.10644 5.81485 A1 -0.18959 -0.43322 0.41128 ITU= 1 0 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.09513 1.02755 10.92993 RFO step: Lambda=-1.13848413D+00 EMin= 9.51299329D-02 Quartic linear search produced a step of 0.08002. Maximum step size ( 0.704) exceeded in Quadratic search. -- Step size scaled by 0.773 Iteration 1 RMS(Cart)= 0.23840345 RMS(Int)= 0.20437738 Iteration 2 RMS(Cart)= 0.22681197 RMS(Int)= 0.01344625 Iteration 3 RMS(Cart)= 0.01669636 RMS(Int)= 0.00007202 Iteration 4 RMS(Cart)= 0.00006852 RMS(Int)= 0.00000000 Iteration 5 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.88D-16 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.31860 0.99650 0.00465 0.42561 0.43026 2.74886 R2 2.43174 0.74132 0.00372 0.41760 0.42132 2.85306 A1 2.15560 0.40014 -0.01780 0.37373 0.35593 2.51153 Item Value Threshold Converged? Maximum Force 0.996503 0.000450 NO RMS Force 0.753369 0.000300 NO Maximum Displacement 0.576354 0.001800 NO RMS Displacement 0.481317 0.001200 NO Predicted change in Energy=-8.217369D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.691909 0.667932 0.000000 2 16 0 0.673348 1.169967 0.000000 3 16 0 -2.143847 1.081809 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.454636 0.000000 3 S 1.509774 2.818574 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.387371 0.000000 2 16 0 1.406485 0.016201 0.000000 3 16 0 -1.406485 -0.161465 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 237.3381366 3.9791280 3.9135154 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 116.6346817816 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.70D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.999996 0.000000 0.000000 -0.002909 Ang= -0.33 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A') (A') (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.436077165 A.U. after 14 cycles NFock= 14 Conv=0.63D-08 -V/T= 2.0027 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.073100789 -0.002278988 0.000000000 2 16 0.175341146 0.017398627 0.000000000 3 16 -0.102240357 -0.015119638 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.175341146 RMS 0.072324764 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.170572627 RMS 0.132559134 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 4 5 DE= -4.55D-01 DEPred=-8.22D-01 R= 5.54D-01 TightC=F SS= 1.41D+00 RLast= 7.00D-01 DXNew= 1.1835D+00 2.0986D+00 Trust test= 5.54D-01 RLast= 7.00D-01 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 6.09331 R2 -4.60130 6.31203 A1 0.40129 -0.09127 0.40593 ITU= 1 1 0 1 Use linear search instead of GDIIS. Eigenvalues --- 0.35446 1.64007 10.81675 RFO step: Lambda=-1.15067873D-01 EMin= 3.54456427D-01 Quartic linear search produced a step of 0.80212. Iteration 1 RMS(Cart)= 0.23991078 RMS(Int)= 0.33257610 Iteration 2 RMS(Cart)= 0.15608304 RMS(Int)= 0.21993933 Iteration 3 RMS(Cart)= 0.14505390 RMS(Int)= 0.10512296 New curvilinear step failed, DQL= 6.97D-02 SP=-9.85D-01. ITry= 1 IFail=1 DXMaxC= 5.21D-01 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.23991078 RMS(Int)= 0.30649879 Iteration 2 RMS(Cart)= 0.15895597 RMS(Int)= 0.19344783 Iteration 3 RMS(Cart)= 0.14549079 RMS(Int)= 0.07891187 New curvilinear step failed, DQL= 2.46D-02 SP=-7.92D-01. ITry= 2 IFail=1 DXMaxC= 5.20D-01 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.23991078 RMS(Int)= 0.28083167 Iteration 2 RMS(Cart)= 0.16214728 RMS(Int)= 0.16691436 Iteration 3 RMS(Cart)= 0.14592691 RMS(Int)= 0.05290970 Iteration 4 RMS(Cart)= 0.06550549 RMS(Int)= 0.03621231 Iteration 5 RMS(Cart)= 0.04529833 RMS(Int)= 0.03594734 Iteration 6 RMS(Cart)= 0.04499640 RMS(Int)= 0.03592850 Iteration 7 RMS(Cart)= 0.04497303 RMS(Int)= 0.03592826 Iteration 8 RMS(Cart)= 0.04497274 RMS(Int)= 0.03592824 Iteration 9 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 10 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 11 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 12 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 13 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 14 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 15 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 16 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 17 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 18 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 19 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 20 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 21 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 22 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 23 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 24 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 25 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 26 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 27 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 28 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 29 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 30 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 31 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 32 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 33 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 34 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 35 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 36 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 37 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 38 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 39 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 40 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 41 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 42 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 43 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 44 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 45 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 46 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 47 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 48 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 49 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 50 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 51 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 52 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 53 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 54 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 55 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 56 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 57 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 58 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 59 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 60 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 61 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 62 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 63 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 64 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 65 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 66 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 67 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 68 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 69 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 70 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 71 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 72 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 73 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 74 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 75 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 76 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 77 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 78 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 79 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 80 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 81 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 82 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 83 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 84 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 85 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 86 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 87 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 88 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 89 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 90 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 91 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 92 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 93 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 94 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 95 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 96 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 97 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 98 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration 99 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 Iteration100 RMS(Cart)= 0.04497272 RMS(Int)= 0.03592824 New curvilinear step not converged. ITry= 3 IFail=1 DXMaxC= 6.10D-01 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.23991078 RMS(Int)= 0.25569827 Iteration 2 RMS(Cart)= 0.16564079 RMS(Int)= 0.14034461 Iteration 3 RMS(Cart)= 0.14636276 RMS(Int)= 0.02784509 Iteration 4 RMS(Cart)= 0.03340008 RMS(Int)= 0.00059950 Iteration 5 RMS(Cart)= 0.00060760 RMS(Int)= 0.00000003 Iteration 6 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000000 ITry= 4 IFail=0 DXMaxC= 5.62D-01 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F ClnCor: largest displacement from symmetrization is 1.11D-15 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.74886 0.17057 0.34512 -0.10815 0.26942 3.01828 R2 2.85306 0.09418 0.33795 -0.07966 0.28218 3.13524 A1 2.51153 0.12145 0.28550 0.46957 0.61420 3.12573 Item Value Threshold Converged? Maximum Force 0.170573 0.000450 NO RMS Force 0.132559 0.000300 NO Maximum Displacement 0.561832 0.001800 NO RMS Displacement 0.521486 0.001200 NO Predicted change in Energy=-1.026581D-01 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.699926 0.965241 0.000000 2 16 0 0.896152 1.025212 0.000000 3 16 0 -2.358635 0.929256 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.597204 0.000000 3 S 1.659100 3.256202 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.028239 0.000000 2 16 0 0.626826 1.497303 0.000000 3 16 0 -0.626826 -1.507893 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 300098.0473021 2.9814604 2.9814307 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 104.0293271853 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 2.00D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.849490 0.000000 0.000000 -0.527605 Ang= -63.69 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.480443912 A.U. after 14 cycles NFock= 14 Conv=0.15D-08 -V/T= 2.0040 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.036235695 0.000965677 0.000000000 2 16 -0.036265536 -0.001961467 0.000000000 3 16 0.072501231 0.000995790 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.072501231 RMS 0.029609335 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.072505771 RMS 0.046829593 Search for a local minimum. Step number 6 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 5 6 DE= -4.44D-02 DEPred=-1.03D-01 R= 4.32D-01 Trust test= 4.32D-01 RLast= 7.28D-01 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 5.64008 R2 -4.97865 5.99796 A1 0.15021 -0.30042 0.26694 ITU= 0 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.24030 0.85405 10.81063 RFO step: Lambda=-1.04398353D-03 EMin= 2.40296384D-01 Quartic linear search produced a step of -0.25629. Iteration 1 RMS(Cart)= 0.10872748 RMS(Int)= 0.00463838 Iteration 2 RMS(Cart)= 0.00465192 RMS(Int)= 0.00000432 Iteration 3 RMS(Cart)= 0.00000503 RMS(Int)= 0.00000000 Iteration 4 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.88D-16 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.01828 -0.03631 -0.06905 -0.01264 -0.08169 2.93659 R2 3.13524 -0.07251 -0.07232 -0.01476 -0.08708 3.04816 A1 3.12573 0.00181 -0.15741 0.04227 -0.11514 3.01059 Item Value Threshold Converged? Maximum Force 0.072506 0.000450 NO RMS Force 0.046830 0.000300 NO Maximum Displacement 0.114257 0.001800 NO RMS Displacement 0.109611 0.001200 NO Predicted change in Energy=-2.758029D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.699029 0.904779 0.000000 2 16 0 0.847708 1.054604 0.000000 3 16 0 -2.311088 0.960325 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.553976 0.000000 3 S 1.613016 3.160203 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.090741 0.000000 2 16 0 1.519386 0.416792 0.000000 3 16 0 -1.519386 -0.450819 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 4659.2056999 3.1653544 3.1632054 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 107.0526969306 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.85D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.901034 0.000000 0.000000 0.433748 Ang= 51.41 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.485696240 A.U. after 13 cycles NFock= 13 Conv=0.21D-08 -V/T= 2.0037 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.046265193 0.012143313 0.000000000 2 16 0.006444428 -0.005189877 0.000000000 3 16 0.039820765 -0.006953436 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.046265193 RMS 0.021056636 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.040036537 RMS 0.025343257 Search for a local minimum. Step number 7 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 5 6 7 DE= -5.25D-03 DEPred=-2.76D-03 R= 1.90D+00 TightC=F SS= 1.41D+00 RLast= 1.66D-01 DXNew= 1.9904D+00 4.9763D-01 Trust test= 1.90D+00 RLast= 1.66D-01 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 5.69173 R2 -5.06405 5.55255 A1 0.15874 -0.32479 0.26495 ITU= 1 0 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.21231 0.59910 10.69782 RFO step: Lambda=-1.57712996D-03 EMin= 2.12312149D-01 Quartic linear search produced a step of 0.11188. Iteration 1 RMS(Cart)= 0.03857148 RMS(Int)= 0.00079596 Iteration 2 RMS(Cart)= 0.00081976 RMS(Int)= 0.00000008 Iteration 3 RMS(Cart)= 0.00000009 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.16D-16 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.93659 0.00591 -0.00914 -0.01213 -0.02127 2.91532 R2 3.04816 -0.04004 -0.00974 -0.01386 -0.02360 3.02456 A1 3.01059 0.01700 -0.01288 0.06282 0.04994 3.06052 Item Value Threshold Converged? Maximum Force 0.040037 0.000450 NO RMS Force 0.025343 0.000300 NO Maximum Displacement 0.050274 0.001800 NO RMS Displacement 0.038649 0.001200 NO Predicted change in Energy=-8.316303D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.700267 0.931383 0.000000 2 16 0 0.838570 1.040776 0.000000 3 16 0 -2.300712 0.947549 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.542720 0.000000 3 S 1.600527 3.140667 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.058889 0.000000 2 16 0 1.429682 0.638541 0.000000 3 16 0 -1.429682 -0.660624 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 12340.3380118 3.2048625 3.2040304 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 107.8036204637 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.78D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.997253 0.000000 0.000000 -0.074074 Ang= -8.50 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.486972457 A.U. after 12 cycles NFock= 12 Conv=0.47D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.048553282 0.006317139 0.000000000 2 16 0.018242547 -0.002431522 0.000000000 3 16 0.030310735 -0.003885616 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.048553282 RMS 0.020193148 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.030348509 RMS 0.021317308 Search for a local minimum. Step number 8 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 5 6 7 8 DE= -1.28D-03 DEPred=-8.32D-04 R= 1.53D+00 TightC=F SS= 1.41D+00 RLast= 5.92D-02 DXNew= 1.9904D+00 1.7756D-01 Trust test= 1.53D+00 RLast= 5.92D-02 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 5.88079 R2 -4.75119 4.71936 A1 0.01699 0.01260 0.13664 ITU= 1 1 0 1 Use linear search instead of GDIIS. Eigenvalues --- 0.13550 0.51466 10.08662 RFO step: Lambda=-2.70872956D-04 EMin= 1.35499724D-01 Quartic linear search produced a step of 1.01654. Iteration 1 RMS(Cart)= 0.05402883 RMS(Int)= 0.00175651 Iteration 2 RMS(Cart)= 0.00176259 RMS(Int)= 0.00000016 Iteration 3 RMS(Cart)= 0.00000019 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.16D-16 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.91532 0.01802 -0.02162 0.00894 -0.01268 2.90264 R2 3.02456 -0.03035 -0.02399 0.00468 -0.01931 3.00525 A1 3.06052 0.01083 0.05076 0.02488 0.07564 3.13617 Item Value Threshold Converged? Maximum Force 0.030349 0.000450 NO RMS Force 0.021317 0.000300 NO Maximum Displacement 0.074761 0.001800 NO RMS Displacement 0.054107 0.001200 NO Predicted change in Energy=-6.315077D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.702627 0.970945 0.000000 2 16 0 0.832584 1.020442 0.000000 3 16 0 -2.292366 0.928322 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.536009 0.000000 3 S 1.590311 3.126308 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.023141 0.000000 2 16 0 0.241117 1.540107 0.000000 3 16 0 -0.241117 -1.548785 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ):2783952.0476189 3.2343890 3.2343852 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 108.3495335434 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.74D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.880122 0.000000 0.000000 -0.474748 Ang= -56.69 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.487642370 A.U. after 11 cycles NFock= 11 Conv=0.86D-08 -V/T= 2.0035 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.047801973 -0.000919588 0.000000000 2 16 0.025832991 0.000577357 0.000000000 3 16 0.021968982 0.000342231 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.047801973 RMS 0.019540000 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.025838180 RMS 0.019586165 Search for a local minimum. Step number 9 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 6 7 8 9 DE= -6.70D-04 DEPred=-6.32D-04 R= 1.06D+00 TightC=F SS= 1.41D+00 RLast= 7.91D-02 DXNew= 1.9904D+00 2.3728D-01 Trust test= 1.06D+00 RLast= 7.91D-02 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 6.05771 R2 -4.48184 4.08926 A1 -0.23149 0.18146 0.14092 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.13181 0.48488 9.67120 RFO step: Lambda=-1.21457346D-04 EMin= 1.31807742D-01 Quartic linear search produced a step of 0.14386. New curvilinear step failed, DQL= 4.74D-03 SP=-1.30D-01. ITry= 1 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 4.42D-03 SP=-1.27D-01. ITry= 2 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 4.12D-03 SP=-1.19D-01. ITry= 3 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 3.85D-03 SP=-1.03D-01. ITry= 4 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 3.62D-03 SP=-7.78D-02. ITry= 5 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F New curvilinear step failed, DQL= 3.42D-03 SP=-4.20D-02. ITry= 6 IFail=1 DXMaxC= 0.00D+00 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00082883 RMS(Int)= 0.00630174 New curvilinear step failed, DQL= 3.49D-03 SP=-3.41D-01. ITry= 7 IFail=1 DXMaxC= 1.15D-03 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00196057 RMS(Int)= 0.00522915 New curvilinear step failed, DQL= 4.15D-03 SP=-6.38D-01. ITry= 8 IFail=1 DXMaxC= 2.71D-03 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00394752 RMS(Int)= 0.00358064 New curvilinear step failed, DQL= 5.97D-03 SP=-8.58D-01. ITry= 9 IFail=1 DXMaxC= 5.45D-03 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F Iteration 1 RMS(Cart)= 0.00590708 RMS(Int)= 0.00493784 New curvilinear step failed, DQL= 2.93D-03 SP=-9.28D-01. ITry=10 IFail=1 DXMaxC= 8.13D-03 DCOld= 1.00D+10 DXMaxT= 1.18D+00 DXLimC= 3.00D+00 Rises=F RedQX1 iteration 1 Try 1 RMS(Cart)= 0.00182379 RMS(Int)= 0.00628374 XScale= 5.00032044 RedQX1 iteration 1 Try 2 RMS(Cart)= 0.00182381 RMS(Int)= 0.00471312 XScale= 2.50029932 RedQX1 iteration 1 Try 3 RMS(Cart)= 0.00182387 RMS(Int)= 0.00574992 XScale= 3.37974014 RedQX1 iteration 1 Try 4 RMS(Cart)= 0.00342772 RMS(Int)= 0.00851086 XScale= 3.52525175 RedQX1 iteration 1 Try 5 RMS(Cart)= 0.01024662 RMS(Int)= 0.01699462 XScale= 0.79789740 RedQX1 iteration 2 Try 1 RMS(Cart)= 0.00204932 RMS(Int)= 0.01020378 XScale= 2.28913394 RedQX1 iteration 2 Try 2 RMS(Cart)= 0.00307334 RMS(Int)= 0.01274914 XScale= 1.37502487 RedQX1 iteration 2 Try 3 RMS(Cart)= 0.00512184 RMS(Int)= 0.01699642 XScale= 0.80164418 RedQX1 iteration 3 Try 1 RMS(Cart)= 0.00307310 RMS(Int)= 0.01529727 XScale= 0.96448141 RedQX1 iteration 4 Try 1 RMS(Cart)= 0.00061462 RMS(Int)= 0.01325869 XScale= 1.26869565 RedQX1 iteration 4 Try 2 RMS(Cart)= 0.00066584 RMS(Int)= 0.01381077 XScale= 1.16978201 RedQX1 iteration 4 Try 3 RMS(Cart)= 0.00072374 RMS(Int)= 0.01441093 XScale= 1.07772450 RedQX1 iteration 4 Try 4 RMS(Cart)= 0.00078953 RMS(Int)= 0.01506572 XScale= 0.99198479 RedQX1 iteration 5 Try 1 RMS(Cart)= 0.00069479 RMS(Int)= 0.01498714 XScale= 1.00157382 RedQX1 iteration 5 Try 2 RMS(Cart)= 0.00075269 RMS(Int)= 0.01561142 XScale= 0.93001245 RedQX1 iteration 6 Try 1 RMS(Cart)= 0.00072258 RMS(Int)= 0.01558645 XScale= 0.93268447 RedQX1 iteration 7 Try 1 RMS(Cart)= 0.00014452 RMS(Int)= 0.01510700 XScale= 0.98702316 RedQX1 iteration 8 Try 1 RMS(Cart)= 0.00002890 RMS(Int)= 0.01501111 XScale= 0.99863076 RedQX1 iteration 9 Try 1 RMS(Cart)= 0.00000578 RMS(Int)= 0.01499194 XScale= 1.00098387 RedQX1 iteration 9 Try 2 RMS(Cart)= 0.00000578 RMS(Int)= 0.01499673 XScale= 1.00039422 RedQX1 iteration 9 Try 3 RMS(Cart)= 0.00000579 RMS(Int)= 0.01500154 XScale= 0.99980486 RedQX1 iteration 9 Try 4 RMS(Cart)= 0.00000579 RMS(Int)= 0.01500634 XScale= 0.99921579 RedQX1 iteration 9 Try 5 RMS(Cart)= 0.00000580 RMS(Int)= 0.01501115 XScale= 0.99862701 RedQX1 iteration 10 Try 1 RMS(Cart)= 0.00000579 RMS(Int)= 0.01501114 XScale= 0.99862777 RedQX1 iteration 11 Try 1 RMS(Cart)= 0.00000116 RMS(Int)= 0.01500730 XScale= 0.99909813 RedQX1 iteration 11 Try 2 RMS(Cart)= 0.00000116 RMS(Int)= 0.01500826 XScale= 0.99898049 RedQX1 iteration 12 Try 1 RMS(Cart)= 0.00000116 RMS(Int)= 0.01500826 XScale= 0.99898049 RedQX1 iteration 13 Try 1 RMS(Cart)= 0.00000023 RMS(Int)= 0.01500749 XScale= 0.99907460 RedQX1 iteration 13 Try 2 RMS(Cart)= 0.00000023 RMS(Int)= 0.01500768 XScale= 0.99905107 RedQX1 iteration 13 Try 3 RMS(Cart)= 0.00000023 RMS(Int)= 0.01500788 XScale= 0.99902754 RedQX1 iteration 13 Try 4 RMS(Cart)= 0.00000023 RMS(Int)= 0.01500807 XScale= 0.99900402 RedQX1 iteration 13 Try 5 RMS(Cart)= 0.00000023 RMS(Int)= 0.01500826 XScale= 0.99898049 RedQX1 iteration 14 Try 1 RMS(Cart)= 0.00000023 RMS(Int)= 0.01500826 XScale= 0.99898049 RedQX1 iteration 15 Try 1 RMS(Cart)= 0.00000005 RMS(Int)= 0.01500811 XScale= 0.99899931 RedQX1 iteration 16 Try 1 RMS(Cart)= 0.00000001 RMS(Int)= 0.01500807 XScale= 0.99900307 ClnCor: largest displacement from symmetrization is 2.66D-15 for atom 3. TrRot= 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.90264 0.02584 -0.00182 0.00375 0.00189 2.90452 R2 3.00525 -0.02197 -0.00278 -0.00105 -0.00329 3.00196 A1 3.13617 0.00074 0.01088 0.00203 -0.01308 3.12309 Item Value Threshold Converged? Maximum Force 0.025838 0.000450 NO RMS Force 0.019586 0.000300 NO Maximum Displacement 0.023486 0.001800 NO RMS Displacement 0.016709 0.001200 NO Predicted change in Energy=-2.501764D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.703906 0.983373 0.000000 2 16 0 0.832794 1.014108 0.000000 3 16 0 -2.291296 0.922227 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.537007 0.000000 3 S 1.588567 3.125441 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.024890 0.000000 2 16 0 -0.764219 1.358442 0.000000 3 16 0 0.764219 -1.367775 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 239427.7960058 3.2361985 3.2361547 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 108.3751182047 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.74D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.000000 -0.177107 0.984192 0.000000 Ang=-180.00 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.487739149 A.U. after 10 cycles NFock= 10 Conv=0.28D-08 -V/T= 2.0035 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.045407972 -0.003005143 0.000000000 2 16 0.024868080 0.001367660 0.000000000 3 16 0.020539893 0.001637483 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.045407972 RMS 0.018606377 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.024890444 RMS 0.018706526 Search for a local minimum. Step number 10 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 7 8 9 10 DE= -9.68D-05 DEPred=-2.50D-05 R= 3.87D+00 TightC=F SS= 1.41D+00 RLast= 1.36D-02 DXNew= 1.9904D+00 4.0854D-02 Trust test= 3.87D+00 RLast= 1.36D-02 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 1.06694 R2 -0.28811 0.60794 A1 0.15412 -0.08903 0.18166 ITU= 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.15123 0.46963 1.23568 RFO step: Lambda=-7.98758046D-04 EMin= 1.51230697D-01 Quartic linear search produced a step of 2.00000. Iteration 1 RMS(Cart)= 0.01117984 RMS(Int)= 0.00000712 Iteration 2 RMS(Cart)= 0.00000751 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.97D-16 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.90452 0.02489 0.00378 0.01298 0.01676 2.92128 R2 3.00196 -0.02059 -0.00659 -0.01931 -0.02590 2.97605 A1 3.12309 0.00253 -0.02616 0.02169 -0.00447 3.11862 Item Value Threshold Converged? Maximum Force 0.024890 0.000450 NO RMS Force 0.018707 0.000300 NO Maximum Displacement 0.014342 0.001800 NO RMS Displacement 0.011181 0.001200 NO Predicted change in Energy=-4.802796D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.711496 0.985461 0.000000 2 16 0 0.834135 1.012938 0.000000 3 16 0 -2.285048 0.921309 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.545875 0.000000 3 S 1.574859 3.120529 0.000000 Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.019408 0.000000 2 16 0 -1.213166 0.977510 0.000000 3 16 0 1.213166 -0.984788 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ): 155762.1981134 3.2464903 3.2464227 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 108.5321004027 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.75D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.982028 0.000000 0.000000 -0.188735 Ang= -21.76 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -834.488462205 A.U. after 9 cycles NFock= 9 Conv=0.47D-08 -V/T= 2.0035 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.025803184 -0.002817811 0.000000000 2 16 0.016411967 0.001373807 0.000000000 3 16 0.009391217 0.001444005 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.025803184 RMS 0.010725175 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.016433799 RMS 0.011093520 Search for a local minimum. Step number 11 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 8 9 10 11 DE= -7.23D-04 DEPred=-4.80D-04 R= 1.51D+00 TightC=F SS= 1.41D+00 RLast= 3.12D-02 DXNew= 1.9904D+00 9.3523D-02 Trust test= 1.51D+00 RLast= 3.12D-02 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 0.66167 R2 0.09966 0.49332 A1 0.01124 0.00814 0.13486 ITU= 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.13452 0.44707 0.70827 RFO step: Lambda=-1.84707201D-04 EMin= 1.34516802D-01 Quartic linear search produced a step of 1.14860. Iteration 1 RMS(Cart)= 0.02019470 RMS(Int)= 0.00015680 Iteration 2 RMS(Cart)= 0.00015704 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.14D-16 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.92128 0.01643 0.01925 0.00871 0.02795 2.94924 R2 2.97605 -0.00944 -0.02975 0.00504 -0.02472 2.95133 A1 3.11862 0.00316 -0.00513 0.02796 0.02282 3.14144 Item Value Threshold Converged? Maximum Force 0.016434 0.000450 NO RMS Force 0.011094 0.000300 NO Maximum Displacement 0.022936 0.001800 NO RMS Displacement 0.020196 0.001200 NO Predicted change in Energy=-3.867876D-04 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.720435 0.973324 0.000000 2 16 0 0.839563 1.019036 0.000000 3 16 0 -2.281537 0.927348 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.560668 0.000000 3 S 1.561779 3.122447 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000478 0.000000 2 16 0 -0.319436 1.528105 0.000000 3 16 0 0.319436 -1.528284 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ):*************** 3.2425474 3.2425474 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 108.4641219915 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.76D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.941972 0.000000 0.000000 0.335692 Ang= 39.23 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') (A') (A") (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") ExpMin= 1.17D-01 ExpMax= 2.19D+04 ExpMxC= 3.30D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -834.488860753 A.U. after 11 cycles NFock= 11 Conv=0.29D-08 -V/T= 2.0035 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000984881 -0.000042522 0.000000000 2 16 0.002504185 0.000081623 0.000000000 3 16 -0.001519303 -0.000039101 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.002504185 RMS 0.001030599 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.002505501 RMS 0.001691916 Search for a local minimum. Step number 12 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 9 10 11 12 DE= -3.99D-04 DEPred=-3.87D-04 R= 1.03D+00 TightC=F SS= 1.41D+00 RLast= 4.37D-02 DXNew= 1.9904D+00 1.3122D-01 Trust test= 1.03D+00 RLast= 4.37D-02 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 0.57922 R2 0.09689 0.55677 A1 0.00578 0.00403 0.13476 ITU= 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.13466 0.47046 0.66563 RFO step: Lambda=-1.15947584D-05 EMin= 1.34663488D-01 Quartic linear search produced a step of 0.04514. Iteration 1 RMS(Cart)= 0.00250187 RMS(Int)= 0.00000004 Iteration 2 RMS(Cart)= 0.00000005 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.97D-16 for atom 2. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.94924 0.00251 0.00126 0.00273 0.00399 2.95322 R2 2.95133 0.00152 -0.00112 0.00315 0.00203 2.95337 A1 3.14144 0.00002 0.00103 -0.00110 -0.00007 3.14137 Item Value Threshold Converged? Maximum Force 0.002506 0.000450 NO RMS Force 0.001692 0.000300 NO Maximum Displacement 0.003337 0.001800 NO RMS Displacement 0.002502 0.001200 NO Predicted change in Energy=-6.539939D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.720781 0.973351 0.000000 2 16 0 0.841329 1.019069 0.000000 3 16 0 -2.282957 0.927287 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.562779 0.000000 3 S 1.562855 3.125634 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000148 0.000000 2 16 0 -1.525707 0.338520 0.000000 3 16 0 1.525707 -0.338576 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ):*************** 3.2359388 3.2359388 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 108.3535254269 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.77D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 0.840176 0.000000 0.000000 -0.542314 Ang= -65.68 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') Virtual (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A') (A") (A") (A") (A") (A") (A") (A") (A") (A") (A") Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -834.488868258 A.U. after 8 cycles NFock= 8 Conv=0.37D-08 -V/T= 2.0036 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000066337 -0.000022226 0.000000000 2 16 0.000379275 0.000019813 0.000000000 3 16 -0.000312938 0.000002412 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000379275 RMS 0.000165688 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000379692 RMS 0.000284528 Search for a local minimum. Step number 13 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 10 11 12 13 DE= -7.50D-06 DEPred=-6.54D-06 R= 1.15D+00 TightC=F SS= 1.41D+00 RLast= 4.48D-03 DXNew= 1.9904D+00 1.3433D-02 Trust test= 1.15D+00 RLast= 4.48D-03 DXMaxT set to 1.18D+00 The second derivative matrix: R1 R2 A1 R1 0.51286 R2 0.03944 0.51617 A1 0.00009 -0.00017 0.13472 ITU= 1 1 1 1 Use linear search instead of GDIIS. Eigenvalues --- 0.13472 0.47504 0.55399 RFO step: Lambda=-2.15973450D-08 EMin= 1.34716988D-01 Quartic linear search produced a step of 0.21192. Iteration 1 RMS(Cart)= 0.00057027 RMS(Int)= 0.00000003 SLEqS3 Cycle: 91 Max:0.154354E-12 RMS:0.764715E-13 Conv:0.364863E-13 SLEqS3 Cycle: 91 Max:0.716213E-11 RMS:0.296054E-11 Conv:0.364863E-13 Iteration 2 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 9.16D-16 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.95322 0.00038 0.00085 -0.00008 0.00076 2.95398 R2 2.95337 0.00031 0.00043 0.00015 0.00058 2.95395 A1 3.14137 0.00003 -0.00002 0.00023 0.00022 3.14159 Item Value Threshold Converged? Maximum Force 0.000380 0.000450 YES RMS Force 0.000285 0.000300 YES Maximum Displacement 0.000698 0.001800 YES RMS Displacement 0.000570 0.001200 YES Predicted change in Energy=-2.209300D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5628 -DE/DX = 0.0004 ! ! R2 R(1,3) 1.5629 -DE/DX = 0.0003 ! ! A1 A(2,1,3) 179.9874 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.720781 0.973351 0.000000 2 16 0 0.841329 1.019069 0.000000 3 16 0 -2.282957 0.927287 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.562779 0.000000 3 S 1.562855 3.125634 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000148 0.000000 2 16 0 -1.525707 0.338520 0.000000 3 16 0 1.525707 -0.338576 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ):*************** 3.2359388 3.2359388 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -88.91655 -88.91654 -10.31773 -7.97990 -7.97984 Alpha occ. eigenvalues -- -5.94360 -5.94352 -5.93841 -5.93841 -5.93838 Alpha occ. eigenvalues -- -5.93838 -0.86416 -0.77515 -0.51193 -0.43331 Alpha occ. eigenvalues -- -0.39174 -0.39174 -0.27776 -0.27776 Alpha virt. eigenvalues -- -0.07487 -0.07487 0.04938 0.12141 0.17604 Alpha virt. eigenvalues -- 0.29368 0.31949 0.31949 0.33900 0.37606 Alpha virt. eigenvalues -- 0.37606 0.54129 0.58615 0.58615 0.65655 Alpha virt. eigenvalues -- 0.65655 0.73991 0.73991 0.74924 0.74924 Alpha virt. eigenvalues -- 0.91287 0.93132 0.93132 1.00517 1.03828 Alpha virt. eigenvalues -- 1.28218 1.64059 1.64059 1.94824 1.94824 Alpha virt. eigenvalues -- 2.66198 3.87499 3.90784 4.23393 Condensed to atoms (all electrons): 1 2 3 1 C 5.041980 0.503936 0.503899 2 S 0.503936 15.561347 -0.090210 3 S 0.503899 -0.090210 15.561422 Mulliken charges: 1 1 C -0.049815 2 S 0.024926 3 S 0.024889 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.049815 2 S 0.024926 3 S 0.024889 Electronic spatial extent (au): = 347.1463 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0005 Y= 0.0000 Z= 0.0000 Tot= 0.0005 Quadrupole moment (field-independent basis, Debye-Ang): XX= -29.4108 YY= -31.0137 ZZ= -31.0967 XY= -0.3741 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.0963 YY= -0.5066 ZZ= -0.5896 XY= -0.3741 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0025 YYY= -0.0003 ZZZ= 0.0000 XYY= 0.0001 XXY= -0.0016 XXZ= 0.0000 XZZ= -0.0006 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -363.0357 YYYY= -55.9256 ZZZZ= -38.2956 XXXY= 32.1413 XXXZ= 0.0000 YYYX= 39.5343 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -73.9561 XXZZ= -72.7291 YYZZ= -15.7177 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 13.3057 N-N= 1.083535254269D+02 E-N=-2.197317226210D+03 KE= 8.315301212668D+02 Symmetry A' KE= 7.547966656262D+02 Symmetry A" KE= 7.673345564062D+01 1|1| IMPERIAL COLLEGE-SKCH-135-002|FOpt|RB3LYP|6-31G(d,p)|C1S2|HT4218| 08-Mar-2019|0||# opt freq b3lyp/6-31g(d,p) geom=connectivity integral= grid=ultrafine||test2||0,1|C,-0.7207808423,0.9733511575,0.|S,0.8413289 578,1.0190694393,0.|S,-2.2829567255,0.9272873831,0.||Version=EM64W-G09 RevD.01|State=1-A'|HF=-834.4888683|RMSD=3.684e-009|RMSF=1.657e-004|Dip ole=0.0001873,-0.0000258,0.|Quadrupole=0.8756218,-0.4372444,-0.4383775 ,0.0386021,0.,0.|PG=CS [SG(C1S2)]||@ COMMON SENSE IS NOT SO COMMON. -- VOLTAIRE Job cpu time: 0 days 0 hours 2 minutes 19.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Fri Mar 08 11:39:35 2019. Link1: Proceeding to internal job step number 2. ---------------------------------------------------------------------- #N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/6-31G(d,p) Freq ---------------------------------------------------------------------- 1/10=4,29=7,30=1,38=1,40=1/1,3; 2/12=2,40=1/2; 3/5=1,6=6,7=101,11=2,14=-4,16=1,25=1,30=1,70=2,71=2,74=-5,75=-5,116=1,140=1/1,2,3; 4/5=101/1; 5/5=2,98=1/2; 8/6=4,10=90,11=11/1; 11/6=1,8=1,9=11,15=111,16=1/1,2,10; 10/6=1/2; 6/7=2,8=2,9=2,10=2,18=1,28=1/1; 7/8=1,10=1,25=1/1,2,3,16; 1/10=4,30=1/3; 99//99; Structure from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" ----- test2 ----- Charge = 0 Multiplicity = 1 Redundant internal coordinates found in file. C,0,-0.7207808423,0.9733511575,0. S,0,0.8413289578,1.0190694393,0. S,0,-2.2829567255,0.9272873831,0. Recover connectivity data from disk. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5628 calculate D2E/DX2 analytically ! ! R2 R(1,3) 1.5629 calculate D2E/DX2 analytically ! ! A1 A(2,1,3) 179.9874 calculate D2E/DX2 analytically ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-07 Number of steps in this run= 2 maximum allowed number of steps= 2. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 -0.720781 0.973351 0.000000 2 16 0 0.841329 1.019069 0.000000 3 16 0 -2.282957 0.927287 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 1 C 0.000000 2 S 1.562779 0.000000 3 S 1.562855 3.125634 0.000000 This structure is nearly, but not quite of a higher symmetry. Consider Symm=Loose if the higher symmetry is desired. Stoichiometry CS2 Framework group CS[SG(CS2)] Deg. of freedom 3 Full point group CS NOp 2 Largest Abelian subgroup CS NOp 2 Largest concise Abelian subgroup C1 NOp 1 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 6 0 0.000000 0.000148 0.000000 2 16 0 -1.525707 0.338520 0.000000 3 16 0 1.525707 -0.338576 0.000000 --------------------------------------------------------------------- Rotational constants (GHZ):*************** 3.2359388 3.2359388 Standard basis: 6-31G(d,p) (6D, 7F) There are 39 symmetry adapted cartesian basis functions of A' symmetry. There are 14 symmetry adapted cartesian basis functions of A" symmetry. There are 39 symmetry adapted basis functions of A' symmetry. There are 14 symmetry adapted basis functions of A" symmetry. 53 basis functions, 132 primitive gaussians, 53 cartesian basis functions 19 alpha electrons 19 beta electrons nuclear repulsion energy 108.3535254269 Hartrees. NAtoms= 3 NActive= 3 NUniq= 3 SFac= 1.00D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 53 RedAO= T EigKep= 1.77D-02 NBF= 39 14 NBsUse= 53 1.00D-06 EigRej= -1.00D+00 NBFU= 39 14 Initial guess from the checkpoint file: "H:\1styearlab\htrant_cs2_opt_2.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') Keep R1 ints in memory in symmetry-blocked form, NReq=1931403. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -834.488868258 A.U. after 1 cycles NFock= 1 Conv=0.51D-09 -V/T= 2.0036 DoSCS=F DFT=T ScalE2(SS,OS)= 1.000000 1.000000 Range of M.O.s used for correlation: 1 53 NBasis= 53 NAE= 19 NBE= 19 NFC= 0 NFV= 0 NROrb= 53 NOA= 19 NOB= 19 NVA= 34 NVB= 34 Symmetrizing basis deriv contribution to polar: IMax=3 JMax=2 DiffMx= 0.00D+00 G2DrvN: will do 4 centers at a time, making 1 passes. Calling FoFCou, ICntrl= 3107 FMM=F I1Cent= 0 AccDes= 0.00D+00. End of G2Drv F.D. properties file 721 does not exist. End of G2Drv F.D. properties file 722 does not exist. End of G2Drv F.D. properties file 788 does not exist. IDoAtm=111 Differentiating once with respect to electric field. with respect to dipole field. Differentiating once with respect to nuclear coordinates. Keep R1 ints in memory in symmetry-blocked form, NReq=1901787. There are 12 degrees of freedom in the 1st order CPHF. IDoFFX=6 NUNeed= 3. 9 vectors produced by pass 0 Test12= 5.38D-15 8.33D-09 XBig12= 2.41D+02 1.07D+01. AX will form 9 AO Fock derivatives at one time. 9 vectors produced by pass 1 Test12= 5.38D-15 8.33D-09 XBig12= 6.86D+01 3.57D+00. 9 vectors produced by pass 2 Test12= 5.38D-15 8.33D-09 XBig12= 3.05D-01 1.93D-01. 9 vectors produced by pass 3 Test12= 5.38D-15 8.33D-09 XBig12= 1.47D-03 1.91D-02. 9 vectors produced by pass 4 Test12= 5.38D-15 8.33D-09 XBig12= 3.13D-06 4.22D-04. 9 vectors produced by pass 5 Test12= 5.38D-15 8.33D-09 XBig12= 2.68D-09 1.86D-05. 5 vectors produced by pass 6 Test12= 5.38D-15 8.33D-09 XBig12= 5.34D-12 9.79D-07. 2 vectors produced by pass 7 Test12= 5.38D-15 8.33D-09 XBig12= 1.09D-14 3.57D-08. InvSVY: IOpt=1 It= 1 EMax= 1.11D-15 Solved reduced A of dimension 61 with 9 vectors. Isotropic polarizability for W= 0.000000 41.99 Bohr**3. End of Minotr F.D. properties file 721 does not exist. End of Minotr F.D. properties file 722 does not exist. End of Minotr F.D. properties file 788 does not exist. ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A') (A') (A') (A') (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') Virtual (A') (A") (A') (A') (A') (A') (A") (A') (A') (A") (A') (A') (A') (A") (A") (A') (A") (A') (A") (A') (A') (A") (A') (A') (A') (A') (A") (A') (A") (A') (A') (A') (A') (A') The electronic state is 1-A'. Alpha occ. eigenvalues -- -88.91655 -88.91654 -10.31773 -7.97990 -7.97984 Alpha occ. eigenvalues -- -5.94360 -5.94352 -5.93841 -5.93841 -5.93838 Alpha occ. eigenvalues -- -5.93838 -0.86416 -0.77515 -0.51193 -0.43331 Alpha occ. eigenvalues -- -0.39174 -0.39174 -0.27776 -0.27776 Alpha virt. eigenvalues -- -0.07487 -0.07487 0.04938 0.12141 0.17604 Alpha virt. eigenvalues -- 0.29368 0.31949 0.31949 0.33900 0.37606 Alpha virt. eigenvalues -- 0.37606 0.54129 0.58615 0.58615 0.65655 Alpha virt. eigenvalues -- 0.65655 0.73991 0.73991 0.74924 0.74924 Alpha virt. eigenvalues -- 0.91287 0.93132 0.93132 1.00517 1.03828 Alpha virt. eigenvalues -- 1.28218 1.64059 1.64059 1.94824 1.94824 Alpha virt. eigenvalues -- 2.66198 3.87499 3.90784 4.23393 Condensed to atoms (all electrons): 1 2 3 1 C 5.041980 0.503936 0.503899 2 S 0.503936 15.561347 -0.090210 3 S 0.503899 -0.090210 15.561422 Mulliken charges: 1 1 C -0.049815 2 S 0.024926 3 S 0.024889 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 C -0.049815 2 S 0.024926 3 S 0.024889 APT charges: 1 1 C 0.799106 2 S -0.399542 3 S -0.399564 Sum of APT charges = 0.00000 APT charges with hydrogens summed into heavy atoms: 1 1 C 0.799106 2 S -0.399542 3 S -0.399564 Electronic spatial extent (au): = 347.1463 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= -0.0005 Y= 0.0000 Z= 0.0000 Tot= 0.0005 Quadrupole moment (field-independent basis, Debye-Ang): XX= -29.4108 YY= -31.0137 ZZ= -31.0967 XY= -0.3741 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 1.0963 YY= -0.5066 ZZ= -0.5896 XY= -0.3741 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= -0.0025 YYY= -0.0003 ZZZ= 0.0000 XYY= 0.0001 XXY= -0.0016 XXZ= 0.0000 XZZ= -0.0006 YZZ= 0.0000 YYZ= 0.0000 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -363.0357 YYYY= -55.9256 ZZZZ= -38.2956 XXXY= 32.1413 XXXZ= 0.0000 YYYX= 39.5343 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -73.9561 XXZZ= -72.7291 YYZZ= -15.7177 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 13.3057 N-N= 1.083535254269D+02 E-N=-2.197317225916D+03 KE= 8.315301211328D+02 Symmetry A' KE= 7.547966655293D+02 Symmetry A" KE= 7.673345560350D+01 Exact polarizability: 82.357 -13.774 23.340 0.000 0.000 20.284 Approx polarizability: 213.437 -40.995 37.787 0.000 0.000 28.690 Calling FoFJK, ICntrl= 100127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. Full mass-weighted force constant matrix: Low frequencies --- -9.6831 -8.8128 0.0036 0.0059 0.0063 404.2213 Low frequencies --- 404.3546 674.7481 1559.7513 Diagonal vibrational polarizability: 6.8292049 0.4760492 0.0000000 Harmonic frequencies (cm**-1), IR intensities (KM/Mole), Raman scattering activities (A**4/AMU), depolarization ratios for plane and unpolarized incident light, reduced masses (AMU), force constants (mDyne/A), and normal coordinates: 1 2 3 A' A' A' Frequencies -- 404.2213 674.7481 1559.7513 Red. masses -- 13.3142 31.9721 13.3142 Frc consts -- 1.2817 8.5764 19.0843 IR Inten -- 0.8931 0.0000 647.1114 Atom AN X Y Z X Y Z X Y Z 1 6 0.21 0.94 0.00 0.00 0.00 0.00 0.94 -0.21 0.00 2 16 -0.04 -0.18 0.00 0.69 -0.15 0.00 -0.18 0.04 0.00 3 16 -0.04 -0.18 0.00 -0.69 0.15 0.00 -0.18 0.04 0.00 ------------------- - Thermochemistry - ------------------- Temperature 298.150 Kelvin. Pressure 1.00000 Atm. Atom 1 has atomic number 6 and mass 12.00000 Atom 2 has atomic number 16 and mass 31.97207 Atom 3 has atomic number 16 and mass 31.97207 Molecular mass: 75.94414 amu. Principal axes and moments of inertia in atomic units: 1 2 3 Eigenvalues -- 0.00000 557.71797 557.71797 X 0.97625 0.21663 0.00000 Y -0.21663 0.97625 0.00000 Z 0.00000 0.00000 1.00000 This molecule is an asymmetric top. Rotational symmetry number 1. Rotational temperatures (Kelvin) ************ 0.15530 0.15530 Rotational constants (GHZ): ************ 3.23594 3.23594 Zero-point vibrational energy 15783.1 (Joules/Mol) 3.77224 (Kcal/Mol) Warning -- explicit consideration of 1 degrees of freedom as vibrations may cause significant error Vibrational temperatures: 581.58 970.81 2244.13 (Kelvin) Zero-point correction= 0.006011 (Hartree/Particle) Thermal correction to Energy= 0.009276 Thermal correction to Enthalpy= 0.010221 Thermal correction to Gibbs Free Energy= -0.012061 Sum of electronic and zero-point Energies= -834.482857 Sum of electronic and thermal Energies= -834.479592 Sum of electronic and thermal Enthalpies= -834.478648 Sum of electronic and thermal Free Energies= -834.500929 E (Thermal) CV S KCal/Mol Cal/Mol-Kelvin Cal/Mol-Kelvin Total 5.821 8.362 46.896 Electronic 0.000 0.000 0.000 Translational 0.889 2.981 38.898 Rotational 0.889 2.981 6.704 Vibrational 4.044 2.400 1.294 Vibration 1 0.769 1.461 0.947 Q Log10(Q) Ln(Q) Total Bot 0.352950D+06 5.547714 12.774082 Total V=0 0.205486D+09 8.312782 19.140887 Vib (Bot) 0.208372D-02 -2.681161 -6.173602 Vib (Bot) 1 0.439571D+00 -0.356971 -0.821956 Vib (V=0) 0.121313D+01 0.083907 0.193203 Vib (V=0) 1 0.116575D+01 0.066605 0.153364 Electronic 0.100000D+01 0.000000 0.000000 Translational 0.260134D+08 7.415197 17.074121 Rotational 0.651146D+01 0.813678 1.873563 ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 6 -0.000066342 -0.000022225 0.000000000 2 16 0.000379277 0.000019813 0.000000000 3 16 -0.000312935 0.000002412 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000379277 RMS 0.000165688 FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Internal Forces: Max 0.000379694 RMS 0.000284528 Search for a local minimum. Step number 1 out of a maximum of 2 All quantities printed in internal units (Hartrees-Bohrs-Radians) Second derivative matrix not updated -- analytic derivatives used. The second derivative matrix: R1 R2 A1 R1 0.50810 R2 0.04288 0.50788 A1 0.00000 0.00005 0.13674 ITU= 0 Eigenvalues --- 0.13674 0.46511 0.55087 Angle between quadratic step and forces= 10.34 degrees. Linear search not attempted -- first point. Iteration 1 RMS(Cart)= 0.00053649 RMS(Int)= 0.00000003 SLEqS3 Cycle: 88 Max:0.602667E-11 RMS:0.252151E-11 Conv:0.341798E-13 Iteration 2 RMS(Cart)= 0.00000004 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.56D-15 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 2.95322 0.00038 0.00000 0.00070 0.00070 2.95392 R2 2.95337 0.00031 0.00000 0.00056 0.00056 2.95392 A1 3.14137 0.00003 0.00000 0.00022 0.00022 3.14159 Item Value Threshold Converged? Maximum Force 0.000380 0.000450 YES RMS Force 0.000285 0.000300 YES Maximum Displacement 0.000649 0.001800 YES RMS Displacement 0.000536 0.001200 YES Predicted change in Energy=-2.232842D-07 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 1.5628 -DE/DX = 0.0004 ! ! R2 R(1,3) 1.5629 -DE/DX = 0.0003 ! ! A1 A(2,1,3) 179.9874 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad 1|1| IMPERIAL COLLEGE-SKCH-135-002|Freq|RB3LYP|6-31G(d,p)|C1S2|HT4218| 08-Mar-2019|0||#N Geom=AllCheck Guess=TCheck SCRF=Check GenChk RB3LYP/ 6-31G(d,p) Freq||test2||0,1|C,-0.7207808423,0.9733511575,0.|S,0.841328 9578,1.0190694393,0.|S,-2.2829567255,0.9272873831,0.||Version=EM64W-G0 9RevD.01|State=1-A'|HF=-834.4888683|RMSD=5.103e-010|RMSF=1.657e-004|Ze roPoint=0.0060114|Thermal=0.0092763|Dipole=0.0001873,-0.0000257,0.|Dip oleDeriv=2.5874345,0.0788247,0.,0.0788112,-0.0938945,0.,0.,0.,-0.09622 1,-1.2937541,-0.0394094,0.,-0.0392601,0.0469844,0.,0.,0.,0.0481432,-1. 2936805,-0.0394153,0.,-0.0395511,0.0469101,0.,0.,0.,0.0480778|Polar=85 .3567744,1.9116751,20.3402282,0.,0.,20.2836579|PG=CS [SG(C1S2)]|NImag= 0||0.92948263,0.02543872,0.06322302,0.,0.,0.06251784,-0.46485026,-0.01 268419,0.,0.50767535,-0.01267526,-0.03159855,0.,0.01439673,0.01597307, 0.,0.,-0.03124844,0.,0.,0.01557199,-0.46463238,-0.01275453,0.,-0.04282 509,-0.00172147,0.,0.50745746,-0.01276345,-0.03162447,0.,-0.00171254,0 .01562548,0.,0.01447599,0.01599898,0.,0.,-0.03126941,0.,0.,0.01567644, 0.,0.,0.01559296||0.00006634,0.00002223,0.,-0.00037928,-0.00001981,0., 0.00031294,-0.00000241,0.|||@ ADVERTISING-- HE WHO HAS SOMETHING TO SELL AND GOES AND WHISPERS IN A WELL, IS NOT SO APT TO GET THE DOLLARS AS HE WHO CLIMBS A TREE AND HOLLERS. -- FROM THE BACK OF A SUGAR PACKET Job cpu time: 0 days 0 hours 0 minutes 20.0 seconds. File lengths (MBytes): RWF= 5 Int= 0 D2E= 0 Chk= 1 Scr= 1 Normal termination of Gaussian 09 at Fri Mar 08 11:39:55 2019.