Default is to use a total of 8 processors: 8 via shared-memory 1 via Linda Entering Link 1 = C:\G09W\l1.exe PID= 8356. Copyright (c) 1988,1990,1992,1993,1995,1998,2003,2009,2013, Gaussian, Inc. All Rights Reserved. This is part of the Gaussian(R) 09 program. It is based on the Gaussian(R) 03 system (copyright 2003, Gaussian, Inc.), the Gaussian(R) 98 system (copyright 1998, Gaussian, Inc.), the Gaussian(R) 94 system (copyright 1995, Gaussian, Inc.), the Gaussian 92(TM) system (copyright 1992, Gaussian, Inc.), the Gaussian 90(TM) system (copyright 1990, Gaussian, Inc.), the Gaussian 88(TM) system (copyright 1988, Gaussian, Inc.), the Gaussian 86(TM) system (copyright 1986, Carnegie Mellon University), and the Gaussian 82(TM) system (copyright 1983, Carnegie Mellon University). Gaussian is a federally registered trademark of Gaussian, Inc. This software contains proprietary and confidential information, including trade secrets, belonging to Gaussian, Inc. This software is provided under written license and may be used, copied, transmitted, or stored only in accord with that written license. The following legend is applicable only to US Government contracts under FAR: RESTRICTED RIGHTS LEGEND Use, reproduction and disclosure by the US Government is subject to restrictions as set forth in subparagraphs (a) and (c) of the Commercial Computer Software - Restricted Rights clause in FAR 52.227-19. Gaussian, Inc. 340 Quinnipiac St., Bldg. 40, Wallingford CT 06492 --------------------------------------------------------------- Warning -- This program may not be used in any manner that competes with the business of Gaussian, Inc. or will provide assistance to any competitor of Gaussian, Inc. The licensee of this program is prohibited from giving any competitor of Gaussian, Inc. access to this program. By using this program, the user acknowledges that Gaussian, Inc. is engaged in the business of creating and licensing software in the field of computational chemistry and represents and warrants to the licensee that it is not a competitor of Gaussian, Inc. and that it will not use this program in any manner prohibited above. --------------------------------------------------------------- Cite this work as: Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013. ****************************************** Gaussian 09: EM64W-G09RevD.01 13-Apr-2013 24-May-2019 ****************************************** %chk=\\icnas4.cc.ic.ac.uk\hm1017\Desktop\huishu comp lab\mhsmonomer.chk Default route: MaxDisk=10GB ---------------------------------------------------------------- # opt b3lyp/6-31g(d,p) geom=connectivity integral=grid=ultrafine ---------------------------------------------------------------- 1/14=-1,18=20,19=15,26=4,38=1,57=2/1,3; 2/9=110,12=2,17=6,18=5,40=1/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4//1; 5/5=2,38=5/2; 6/7=2,8=2,9=2,10=2,28=1/1; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(2); 2/9=110/2; 99//99; 2/9=110/2; 3/5=1,6=6,7=101,11=2,16=1,25=1,30=1,71=1,74=-5,75=-5/1,2,3; 4/5=5,16=3,69=1/1; 5/5=2,38=5/2; 7//1,2,3,16; 1/14=-1,18=20,19=15,26=4/3(-5); 2/9=110/2; 6/7=2,8=2,9=2,10=2,19=2,28=1/1; 99/9=1/99; ---- mhsm ---- Symbolic Z-matrix: Charge = 0 Multiplicity = 1 Al -0.43344 -0.17028 0. Cl -1.55344 1.76962 0. Cl 1.80656 -0.17028 0. Br -1.62844 -2.24008 0. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Initialization pass. ---------------------------- ! Initial Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.24 estimate D2E/DX2 ! ! R2 R(1,3) 2.24 estimate D2E/DX2 ! ! R3 R(1,4) 2.39 estimate D2E/DX2 ! ! A1 A(2,1,3) 120.0 estimate D2E/DX2 ! ! A2 A(2,1,4) 120.0 estimate D2E/DX2 ! ! A3 A(3,1,4) 120.0 estimate D2E/DX2 ! ! D1 D(2,1,4,3) 180.0 estimate D2E/DX2 ! -------------------------------------------------------------------------------- Trust Radius=3.00D-01 FncErr=1.00D-07 GrdErr=1.00D-06 Number of steps in this run= 20 maximum allowed number of steps= 100. GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.433437 -0.170279 0.000000 2 17 0 -1.553437 1.769618 0.000000 3 17 0 1.806563 -0.170279 0.000000 4 35 0 -1.628437 -2.240079 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.240000 0.000000 3 Cl 2.240000 3.879794 0.000000 4 Br 2.390000 4.010399 4.010399 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.555732 2 17 0 0.000000 -1.939897 -1.675732 3 17 0 0.000000 1.939897 -1.675732 4 35 0 0.000000 0.000000 1.834268 --------------------------------------------------------------------- Rotational constants (GHZ): 1.9202091 1.0767653 0.6899006 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A1 symmetry. There are 8 symmetry adapted cartesian basis functions of A2 symmetry. There are 15 symmetry adapted cartesian basis functions of B1 symmetry. There are 24 symmetry adapted cartesian basis functions of B2 symmetry. There are 40 symmetry adapted basis functions of A1 symmetry. There are 8 symmetry adapted basis functions of A2 symmetry. There are 15 symmetry adapted basis functions of B1 symmetry. There are 24 symmetry adapted basis functions of B2 symmetry. 87 basis functions, 239 primitive gaussians, 87 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 401.6005600441 Hartrees. NAtoms= 4 NActive= 4 NUniq= 3 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.44D-03 NBF= 40 8 15 24 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 40 8 15 24 ExpMin= 5.57D-02 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=3 IRadAn= 5 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 5 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 5 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (A1) (A1) (A1) (B2) (B1) (B2) (A1) (A1) (B2) (A1) (A1) (B2) (B1) (A2) (A1) (B2) (B1) (A1) (A1) (B2) (B1) (A1) (B2) (B1) (A1) (A2) (A1) (A1) (B2) (A1) (B2) (A1) (B1) (B2) (B1) (A1) (A2) (B2) Virtual (A1) (B1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (A1) (B2) (A2) (B1) (B2) (A2) (B2) (A1) (B1) (A1) (A1) (B2) (B1) (A1) (B2) (A1) (A2) (B2) (B1) (B1) (A1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (A1) The electronic state of the initial guess is 1-A1. Keep R1 ints in memory in symmetry-blocked form, NReq=9325697. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -3734.72983458 A.U. after 12 cycles NFock= 12 Conv=0.73D-08 -V/T= 2.0054 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (B1) (B2) (A1) (A1) (A1) (B1) (B2) (B1) (A1) (B2) (A2) (A1) (A1) (B2) (A1) (A2) (B1) (A2) (B2) (A1) (B2) (B1) (A1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (B2) (B1) (B1) (B2) (A2) (A1) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -482.93357-101.55965-101.55965 -61.89570 -56.41398 Alpha occ. eigenvalues -- -56.41179 -56.41162 -56.19215 -9.47576 -9.47575 Alpha occ. eigenvalues -- -8.60527 -7.23692 -7.23691 -7.23165 -7.23164 Alpha occ. eigenvalues -- -7.23096 -7.23096 -6.55544 -6.54793 -6.54703 Alpha occ. eigenvalues -- -4.26467 -2.82155 -2.81648 -2.81635 -2.67162 Alpha occ. eigenvalues -- -2.66971 -2.66899 -2.66299 -2.66297 -0.82848 Alpha occ. eigenvalues -- -0.82130 -0.77710 -0.45974 -0.39607 -0.38463 Alpha occ. eigenvalues -- -0.35599 -0.34500 -0.34236 -0.33947 -0.32317 Alpha occ. eigenvalues -- -0.31624 Alpha virt. eigenvalues -- -0.10982 -0.07821 0.02362 0.02807 0.07634 Alpha virt. eigenvalues -- 0.14294 0.14732 0.15605 0.30623 0.30824 Alpha virt. eigenvalues -- 0.32281 0.34987 0.35012 0.40325 0.43990 Alpha virt. eigenvalues -- 0.44058 0.45246 0.46707 0.47919 0.48999 Alpha virt. eigenvalues -- 0.51839 0.52595 0.52599 0.53033 0.56667 Alpha virt. eigenvalues -- 0.58000 0.60541 0.62322 0.68956 0.85527 Alpha virt. eigenvalues -- 0.85531 0.85582 0.85636 0.89053 0.90377 Alpha virt. eigenvalues -- 0.91245 0.91593 0.95468 1.12590 1.18051 Alpha virt. eigenvalues -- 1.63278 2.01404 4.23881 4.24331 8.68350 Alpha virt. eigenvalues -- 74.79429 Condensed to atoms (all electrons): 1 2 3 4 1 Al 11.241006 0.333618 0.333618 0.373060 2 Cl 0.333618 16.950522 -0.012908 -0.013755 3 Cl 0.333618 -0.012908 16.950522 -0.013755 4 Br 0.373060 -0.013755 -0.013755 34.858191 Mulliken charges: 1 1 Al 0.718698 2 Cl -0.257478 3 Cl -0.257478 4 Br -0.203742 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Al 0.718698 2 Cl -0.257478 3 Cl -0.257478 4 Br -0.203742 Electronic spatial extent (au): = 1362.5276 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.6212 Tot= 0.6212 Quadrupole moment (field-independent basis, Debye-Ang): XX= -53.0625 YY= -61.7623 ZZ= -59.7687 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 5.1354 YY= -3.5645 ZZ= -1.5709 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 60.4668 XYY= 0.0000 XXY= 0.0000 XXZ= 14.2208 XZZ= 0.0000 YZZ= 0.0000 YYZ= 21.9740 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -63.9462 YYYY= -648.6488 ZZZZ= -876.0334 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -120.9936 XXZZ= -160.1253 YYZZ= -261.6406 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.016005600441D+02 E-N=-9.701444205802D+03 KE= 3.714673668985D+03 Symmetry A1 KE= 2.459048623857D+03 Symmetry A2 KE= 8.843387812424D+01 Symmetry B1 KE= 3.989565122203D+02 Symmetry B2 KE= 7.682346547830D+02 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000450387 -0.000780093 0.000000000 2 17 0.019875614 -0.032628435 0.000000000 3 17 -0.038194861 0.000898569 0.000000000 4 35 0.018769634 0.032509960 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.038194861 RMS 0.018994117 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.038194861 RMS 0.024889862 Search for a local minimum. Step number 1 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Second derivative matrix not updated -- first step. The second derivative matrix: R1 R2 R3 A1 A2 R1 0.17088 R2 0.00000 0.17088 R3 0.00000 0.00000 0.08882 A1 0.00000 0.00000 0.00000 0.25000 A2 0.00000 0.00000 0.00000 0.00000 0.25000 A3 0.00000 0.00000 0.00000 0.00000 0.00000 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.25000 D1 0.00000 0.00373 ITU= 0 Eigenvalues --- 0.00373 0.08882 0.17088 0.17088 0.25000 Eigenvalues --- 0.25000 RFO step: Lambda=-2.69550177D-02 EMin= 3.72915881D-03 Linear search not attempted -- first point. Maximum step size ( 0.300) exceeded in Quadratic search. -- Step size scaled by 0.707 Iteration 1 RMS(Cart)= 0.10405457 RMS(Int)= 0.01111110 Iteration 2 RMS(Cart)= 0.00970942 RMS(Int)= 0.00000001 Iteration 3 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 8.83D-13 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.23299 -0.03819 0.00000 -0.13659 -0.13659 4.09639 R2 4.23299 -0.03819 0.00000 -0.13659 -0.13659 4.09639 R3 4.51645 -0.03754 0.00000 -0.22940 -0.22940 4.28705 A1 2.09440 -0.00254 0.00000 -0.00648 -0.00648 2.08792 A2 2.09440 0.00127 0.00000 0.00324 0.00324 2.09763 A3 2.09440 0.00127 0.00000 0.00324 0.00324 2.09763 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.038195 0.000450 NO RMS Force 0.024890 0.000300 NO Maximum Displacement 0.173599 0.001800 NO RMS Displacement 0.111452 0.001200 NO Predicted change in Energy=-1.353726D-02 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.441094 -0.183542 0.000000 2 17 0 -1.518867 1.697259 0.000000 3 17 0 1.726614 -0.176521 0.000000 4 35 0 -1.575398 -2.148214 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.167719 0.000000 3 Cl 2.167719 3.747559 0.000000 4 Br 2.268609 3.845889 3.845889 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.516385 2 17 0 0.000000 -1.873779 -1.606319 3 17 0 0.000000 1.873779 -1.606319 4 35 0 0.000000 0.000000 1.752224 --------------------------------------------------------------------- Rotational constants (GHZ): 2.0581116 1.1776709 0.7490547 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A1 symmetry. There are 8 symmetry adapted cartesian basis functions of A2 symmetry. There are 15 symmetry adapted cartesian basis functions of B1 symmetry. There are 24 symmetry adapted cartesian basis functions of B2 symmetry. There are 40 symmetry adapted basis functions of A1 symmetry. There are 8 symmetry adapted basis functions of A2 symmetry. There are 15 symmetry adapted basis functions of B1 symmetry. There are 24 symmetry adapted basis functions of B2 symmetry. 87 basis functions, 239 primitive gaussians, 87 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 418.5805686961 Hartrees. NAtoms= 4 NActive= 4 NUniq= 3 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.43D-03 NBF= 40 8 15 24 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 40 8 15 24 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\hm1017\Desktop\huishu comp lab\mhsmonomer.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (B2) (A1) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A2) (A2) (A2) (A2) (A2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) ExpMin= 5.57D-02 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=9325697. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -3734.74439065 A.U. after 12 cycles NFock= 12 Conv=0.11D-08 -V/T= 2.0053 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.003699841 0.006408312 0.000000000 2 17 0.012258756 -0.019083564 0.000000000 3 17 -0.022656229 0.001074612 0.000000000 4 35 0.006697632 0.011600640 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.022656229 RMS 0.010259579 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.022652630 RMS 0.013204217 Search for a local minimum. Step number 2 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 DE= -1.46D-02 DEPred=-1.35D-02 R= 1.08D+00 TightC=F SS= 1.41D+00 RLast= 3.00D-01 DXNew= 5.0454D-01 9.0000D-01 Trust test= 1.08D+00 RLast= 3.00D-01 DXMaxT set to 5.05D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.14635 R2 -0.02453 0.14635 R3 -0.00460 -0.00460 0.11092 A1 -0.00437 -0.00437 -0.00446 0.24980 A2 0.00218 0.00218 0.00223 0.00010 0.24995 A3 0.00218 0.00218 0.00223 0.00010 -0.00005 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.24995 D1 0.00000 0.00373 ITU= 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00373 0.10741 0.12470 0.17088 0.25000 Eigenvalues --- 0.25033 RFO step: Lambda=-1.87678490D-03 EMin= 3.72915881D-03 Quartic linear search produced a step of 0.66963. Iteration 1 RMS(Cart)= 0.08932499 RMS(Int)= 0.00034668 Iteration 2 RMS(Cart)= 0.00058183 RMS(Int)= 0.00000014 Iteration 3 RMS(Cart)= 0.00000014 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 2.78D-12 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 4.09639 -0.02265 -0.09147 -0.06308 -0.15454 3.94185 R2 4.09639 -0.02265 -0.09147 -0.06308 -0.15454 3.94185 R3 4.28705 -0.01340 -0.15361 0.08060 -0.07301 4.21404 A1 2.08792 -0.00314 -0.00434 -0.01403 -0.01837 2.06955 A2 2.09763 0.00157 0.00217 0.00702 0.00919 2.10682 A3 2.09763 0.00157 0.00217 0.00702 0.00919 2.10682 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.022653 0.000450 NO RMS Force 0.013204 0.000300 NO Maximum Displacement 0.152327 0.001800 NO RMS Displacement 0.089220 0.001200 NO Predicted change in Energy=-4.947592D-03 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.439773 -0.181254 0.000000 2 17 0 -1.460219 1.638041 0.000000 3 17 0 1.646005 -0.155339 0.000000 4 35 0 -1.554759 -2.112467 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.085940 0.000000 3 Cl 2.085940 3.586759 0.000000 4 Br 2.229972 3.751699 3.751699 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.510094 2 17 0 0.000000 -1.793380 -1.575427 3 17 0 0.000000 1.793380 -1.575427 4 35 0 0.000000 0.000000 1.719878 --------------------------------------------------------------------- Rotational constants (GHZ): 2.2467843 1.2229294 0.7918978 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A1 symmetry. There are 8 symmetry adapted cartesian basis functions of A2 symmetry. There are 15 symmetry adapted cartesian basis functions of B1 symmetry. There are 24 symmetry adapted cartesian basis functions of B2 symmetry. There are 40 symmetry adapted basis functions of A1 symmetry. There are 8 symmetry adapted basis functions of A2 symmetry. There are 15 symmetry adapted basis functions of B1 symmetry. There are 24 symmetry adapted basis functions of B2 symmetry. 87 basis functions, 239 primitive gaussians, 87 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 430.5899605047 Hartrees. NAtoms= 4 NActive= 4 NUniq= 3 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.42D-03 NBF= 40 8 15 24 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 40 8 15 24 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\hm1017\Desktop\huishu comp lab\mhsmonomer.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A2) (A2) (A2) (A2) (A2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) ExpMin= 5.57D-02 ExpMax= 5.74D+05 ExpMxC= 5.74D+03 IAcc=2 IRadAn= 4 AccDes= 0.00D+00 Harris functional with IExCor= 402 and IRadAn= 4 diagonalized for initial guess. HarFok: IExCor= 402 AccDes= 0.00D+00 IRadAn= 4 IDoV= 1 UseB2=F ITyADJ=14 ICtDFT= 3500011 ScaDFX= 1.000000 1.000000 1.000000 1.000000 FoFCou: FMM=F IPFlag= 0 FMFlag= 100000 FMFlg1= 0 NFxFlg= 0 DoJE=T BraDBF=F KetDBF=T FulRan=T wScrn= 0.000000 ICntrl= 500 IOpCl= 0 I1Cent= 200000004 NGrid= 0 NMat0= 1 NMatS0= 1 NMatT0= 0 NMatD0= 1 NMtDS0= 0 NMtDT0= 0 Petite list used in FoFCou. Keep R1 ints in memory in symmetry-blocked form, NReq=9325697. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. Integral accuracy reduced to 1.0D-05 until final iterations. Initial convergence to 1.0D-05 achieved. Increase integral accuracy. SCF Done: E(RB3LYP) = -3734.74848333 A.U. after 11 cycles NFock= 11 Conv=0.17D-08 -V/T= 2.0053 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.001992298 -0.003450762 0.000000000 2 17 -0.000492234 0.001644036 0.000000000 3 17 0.001669894 0.000395731 0.000000000 4 35 0.000814638 0.001410995 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.003450762 RMS 0.001426588 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.001674682 RMS 0.001178377 Search for a local minimum. Step number 3 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- RFO/linear search Update second derivatives using D2CorX and points 1 2 3 DE= -4.09D-03 DEPred=-4.95D-03 R= 8.27D-01 TightC=F SS= 1.41D+00 RLast= 2.32D-01 DXNew= 8.4853D-01 6.9457D-01 Trust test= 8.27D-01 RLast= 2.32D-01 DXMaxT set to 6.95D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.16243 R2 -0.00845 0.16243 R3 0.00976 0.00976 0.12189 A1 -0.00656 -0.00656 -0.00543 0.24931 A2 0.00328 0.00328 0.00272 0.00034 0.24983 A3 0.00328 0.00328 0.00272 0.00034 -0.00017 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.24983 D1 0.00000 0.00373 ITU= 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00373 0.11673 0.15726 0.17088 0.25000 Eigenvalues --- 0.25084 RFO step: Lambda=-5.31986768D-05 EMin= 3.72915881D-03 Quartic linear search produced a step of -0.03755. Iteration 1 RMS(Cart)= 0.00531828 RMS(Int)= 0.00000590 Iteration 2 RMS(Cart)= 0.00000999 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.62D-12 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.94185 0.00167 0.00580 0.00481 0.01062 3.95247 R2 3.94185 0.00167 0.00580 0.00481 0.01062 3.95247 R3 4.21404 -0.00163 0.00274 -0.01867 -0.01592 4.19811 A1 2.06955 -0.00099 0.00069 -0.00451 -0.00382 2.06573 A2 2.10682 0.00049 -0.00034 0.00225 0.00191 2.10873 A3 2.10682 0.00049 -0.00034 0.00225 0.00191 2.10873 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.001675 0.000450 NO RMS Force 0.001178 0.000300 NO Maximum Displacement 0.008604 0.001800 NO RMS Displacement 0.005316 0.001200 NO Predicted change in Energy=-3.461270D-05 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.442402 -0.185807 0.000000 2 17 0 -1.462110 1.640338 0.000000 3 17 0 1.648941 -0.155828 0.000000 4 35 0 -1.553175 -2.109722 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.091557 0.000000 3 Cl 2.091557 3.592332 0.000000 4 Br 2.221545 3.751166 3.751166 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.503884 2 17 0 0.000000 -1.796166 -1.575519 3 17 0 0.000000 1.796166 -1.575519 4 35 0 0.000000 0.000000 1.717661 --------------------------------------------------------------------- Rotational constants (GHZ): 2.2398191 1.2251507 0.7919596 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A1 symmetry. There are 8 symmetry adapted cartesian basis functions of A2 symmetry. There are 15 symmetry adapted cartesian basis functions of B1 symmetry. There are 24 symmetry adapted cartesian basis functions of B2 symmetry. There are 40 symmetry adapted basis functions of A1 symmetry. There are 8 symmetry adapted basis functions of A2 symmetry. There are 15 symmetry adapted basis functions of B1 symmetry. There are 24 symmetry adapted basis functions of B2 symmetry. 87 basis functions, 239 primitive gaussians, 87 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 430.6560748033 Hartrees. NAtoms= 4 NActive= 4 NUniq= 3 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.42D-03 NBF= 40 8 15 24 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 40 8 15 24 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\hm1017\Desktop\huishu comp lab\mhsmonomer.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A2) (A2) (A2) (A2) (A2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) Keep R1 ints in memory in symmetry-blocked form, NReq=9325697. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -3734.74851249 A.U. after 8 cycles NFock= 8 Conv=0.52D-08 -V/T= 2.0053 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 0.000128195 0.000222040 0.000000000 2 17 0.000362555 0.000044601 0.000000000 3 17 -0.000142652 0.000336282 0.000000000 4 35 -0.000348097 -0.000602922 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000602922 RMS 0.000260974 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000891393 RMS 0.000494909 Search for a local minimum. Step number 4 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Update second derivatives using D2CorX and points 1 2 3 4 DE= -2.92D-05 DEPred=-3.46D-05 R= 8.42D-01 TightC=F SS= 1.41D+00 RLast= 2.24D-02 DXNew= 1.1681D+00 6.7142D-02 Trust test= 8.42D-01 RLast= 2.24D-02 DXMaxT set to 6.95D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.17038 R2 -0.00050 0.17038 R3 -0.00501 -0.00501 0.15054 A1 0.01235 0.01235 -0.03109 0.23188 A2 -0.00617 -0.00617 0.01554 0.00906 0.24547 A3 -0.00617 -0.00617 0.01554 0.00906 -0.00453 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.24547 D1 0.00000 0.00373 ITU= 1 1 1 0 Use linear search instead of GDIIS. Eigenvalues --- 0.00373 0.13406 0.16336 0.17088 0.24582 Eigenvalues --- 0.25000 RFO step: Lambda=-6.14715083D-06 EMin= 3.72915881D-03 Quartic linear search produced a step of -0.11682. Iteration 1 RMS(Cart)= 0.00360808 RMS(Int)= 0.00000319 Iteration 2 RMS(Cart)= 0.00000291 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 3.51D-12 for atom 1. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.95247 -0.00014 -0.00124 0.00091 -0.00033 3.95214 R2 3.95247 -0.00014 -0.00124 0.00091 -0.00033 3.95214 R3 4.19811 0.00070 0.00186 0.00166 0.00352 4.20163 A1 2.06573 -0.00089 0.00045 -0.00392 -0.00347 2.06225 A2 2.10873 0.00045 -0.00022 0.00196 0.00174 2.11047 A3 2.10873 0.00045 -0.00022 0.00196 0.00174 2.11047 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000891 0.000450 NO RMS Force 0.000495 0.000300 NO Maximum Displacement 0.005164 0.001800 NO RMS Displacement 0.003608 0.001200 NO Predicted change in Energy=-3.594296D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.442926 -0.186715 0.000000 2 17 0 -1.459377 1.641048 0.000000 3 17 0 1.648188 -0.153106 0.000000 4 35 0 -1.554631 -2.112244 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.091385 0.000000 3 Cl 2.091385 3.588308 0.000000 4 Br 2.223409 3.754500 3.754500 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.503424 2 17 0 0.000000 -1.794154 -1.578088 3 17 0 0.000000 1.794154 -1.578088 4 35 0 0.000000 0.000000 1.719985 --------------------------------------------------------------------- Rotational constants (GHZ): 2.2448452 1.2216487 0.7911199 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A1 symmetry. There are 8 symmetry adapted cartesian basis functions of A2 symmetry. There are 15 symmetry adapted cartesian basis functions of B1 symmetry. There are 24 symmetry adapted cartesian basis functions of B2 symmetry. There are 40 symmetry adapted basis functions of A1 symmetry. There are 8 symmetry adapted basis functions of A2 symmetry. There are 15 symmetry adapted basis functions of B1 symmetry. There are 24 symmetry adapted basis functions of B2 symmetry. 87 basis functions, 239 primitive gaussians, 87 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 430.4730681100 Hartrees. NAtoms= 4 NActive= 4 NUniq= 3 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.42D-03 NBF= 40 8 15 24 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 40 8 15 24 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\hm1017\Desktop\huishu comp lab\mhsmonomer.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A2) (A2) (A2) (A2) (A2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) Keep R1 ints in memory in symmetry-blocked form, NReq=9325697. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -3734.74851763 A.U. after 7 cycles NFock= 7 Conv=0.70D-08 -V/T= 2.0053 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000090318 -0.000156435 0.000000000 2 17 0.000210038 0.000033099 0.000000000 3 17 -0.000076355 0.000198448 0.000000000 4 35 -0.000043366 -0.000075113 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000210038 RMS 0.000104313 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000526029 RMS 0.000248793 Search for a local minimum. Step number 5 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 5 DE= -5.14D-06 DEPred=-3.59D-06 R= 1.43D+00 TightC=F SS= 1.41D+00 RLast= 5.54D-03 DXNew= 1.1681D+00 1.6628D-02 Trust test= 1.43D+00 RLast= 5.54D-03 DXMaxT set to 6.95D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.17176 R2 0.00089 0.17176 R3 0.00179 0.00179 0.16238 A1 0.00281 0.00281 -0.00741 0.14810 A2 -0.00140 -0.00140 0.00370 0.05095 0.22452 A3 -0.00140 -0.00140 0.00370 0.05095 -0.02548 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.22452 D1 0.00000 0.00373 ITU= 1 1 1 1 0 Eigenvalues --- 0.00373 0.09557 0.16327 0.17088 0.17334 Eigenvalues --- 0.25000 En-DIIS/RFO-DIIS IScMMF= 0 using points: 5 4 RFO step: Lambda=-1.36165406D-06. DidBck=F Rises=F RFO-DIIS coefs: 1.75595 -0.75595 Iteration 1 RMS(Cart)= 0.00459165 RMS(Int)= 0.00000766 Iteration 2 RMS(Cart)= 0.00000704 RMS(Int)= 0.00000000 Iteration 3 RMS(Cart)= 0.00000000 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 5.80D-12 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.95214 -0.00007 -0.00025 -0.00005 -0.00029 3.95185 R2 3.95214 -0.00007 -0.00025 -0.00005 -0.00029 3.95185 R3 4.20163 0.00009 0.00266 -0.00249 0.00017 4.20181 A1 2.06225 -0.00053 -0.00263 -0.00276 -0.00538 2.05687 A2 2.11047 0.00026 0.00131 0.00138 0.00269 2.11316 A3 2.11047 0.00026 0.00131 0.00138 0.00269 2.11316 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000526 0.000450 NO RMS Force 0.000249 0.000300 YES Maximum Displacement 0.007227 0.001800 NO RMS Displacement 0.004594 0.001200 NO Predicted change in Energy=-2.153287D-06 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.444101 -0.188751 0.000000 2 17 0 -1.455553 1.641606 0.000000 3 17 0 1.646760 -0.149515 0.000000 4 35 0 -1.555852 -2.114359 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.091229 0.000000 3 Cl 2.091229 3.582242 0.000000 4 Br 2.223501 3.757303 3.757303 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.501495 2 17 0 0.000000 -1.791121 -1.580905 3 17 0 0.000000 1.791121 -1.580905 4 35 0 0.000000 0.000000 1.722006 --------------------------------------------------------------------- Rotational constants (GHZ): 2.2524544 1.2183593 0.7906788 Standard basis: 6-31G(d,p) (6D, 7F) There are 40 symmetry adapted cartesian basis functions of A1 symmetry. There are 8 symmetry adapted cartesian basis functions of A2 symmetry. There are 15 symmetry adapted cartesian basis functions of B1 symmetry. There are 24 symmetry adapted cartesian basis functions of B2 symmetry. There are 40 symmetry adapted basis functions of A1 symmetry. There are 8 symmetry adapted basis functions of A2 symmetry. There are 15 symmetry adapted basis functions of B1 symmetry. There are 24 symmetry adapted basis functions of B2 symmetry. 87 basis functions, 239 primitive gaussians, 87 cartesian basis functions 41 alpha electrons 41 beta electrons nuclear repulsion energy 430.4239973870 Hartrees. NAtoms= 4 NActive= 4 NUniq= 3 SFac= 1.78D+00 NAtFMM= 60 NAOKFM=F Big=F Integral buffers will be 131072 words long. Raffenetti 2 integral format. Two-electron integral symmetry is turned on. One-electron integrals computed using PRISM. NBasis= 87 RedAO= T EigKep= 1.42D-03 NBF= 40 8 15 24 NBsUse= 87 1.00D-06 EigRej= -1.00D+00 NBFU= 40 8 15 24 Initial guess from the checkpoint file: "\\icnas4.cc.ic.ac.uk\hm1017\Desktop\huishu comp lab\mhsmonomer.chk" B after Tr= 0.000000 0.000000 0.000000 Rot= 1.000000 0.000000 0.000000 0.000000 Ang= 0.00 deg. Initial guess orbital symmetries: Occupied (A1) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A1) (A2) (A2) (A2) (A2) (A2) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B1) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) (B2) Keep R1 ints in memory in symmetry-blocked form, NReq=9325697. Requested convergence on RMS density matrix=1.00D-08 within 128 cycles. Requested convergence on MAX density matrix=1.00D-06. Requested convergence on energy=1.00D-06. No special actions if energy rises. SCF Done: E(RB3LYP) = -3734.74851982 A.U. after 8 cycles NFock= 8 Conv=0.78D-09 -V/T= 2.0053 Calling FoFJK, ICntrl= 2127 FMM=F ISym2X=1 I1Cent= 0 IOpClX= 0 NMat=1 NMatS=1 NMatT=0. ***** Axes restored to original set ***** ------------------------------------------------------------------- Center Atomic Forces (Hartrees/Bohr) Number Number X Y Z ------------------------------------------------------------------- 1 13 -0.000023073 -0.000039963 0.000000000 2 17 -0.000006364 0.000020556 0.000000000 3 17 0.000020984 0.000004766 0.000000000 4 35 0.000008453 0.000014641 0.000000000 ------------------------------------------------------------------- Cartesian Forces: Max 0.000039963 RMS 0.000016687 GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Berny optimization. Using GEDIIS/GDIIS optimizer. FormGI is forming the generalized inverse of G from B-inverse, IUseBI=4. Internal Forces: Max 0.000021070 RMS 0.000014003 Search for a local minimum. Step number 6 out of a maximum of 20 All quantities printed in internal units (Hartrees-Bohrs-Radians) Mixed Optimization -- En-DIIS/RFO-DIIS Swapping is turned off. Update second derivatives using D2CorX and points 1 2 3 4 5 6 DE= -2.19D-06 DEPred=-2.15D-06 R= 1.02D+00 TightC=F SS= 1.41D+00 RLast= 6.61D-03 DXNew= 1.1681D+00 1.9830D-02 Trust test= 1.02D+00 RLast= 6.61D-03 DXMaxT set to 6.95D-01 The second derivative matrix: R1 R2 R3 A1 A2 R1 0.17161 R2 0.00073 0.17161 R3 -0.00062 -0.00062 0.14886 A1 0.00538 0.00538 -0.00961 0.14644 A2 -0.00269 -0.00269 0.00481 0.05178 0.22411 A3 -0.00269 -0.00269 0.00481 0.05178 -0.02589 D1 0.00000 0.00000 0.00000 0.00000 0.00000 A3 D1 A3 0.22411 D1 0.00000 0.00373 ITU= 1 1 1 1 1 0 Eigenvalues --- 0.00373 0.09123 0.15097 0.17088 0.17366 Eigenvalues --- 0.25000 En-DIIS/RFO-DIIS IScMMF= 0 using points: 6 5 4 RFO step: Lambda= 0.00000000D+00. DidBck=F Rises=F RFO-DIIS coefs: 1.04436 -0.07988 0.03551 Iteration 1 RMS(Cart)= 0.00010549 RMS(Int)= 0.00000001 Iteration 2 RMS(Cart)= 0.00000001 RMS(Int)= 0.00000000 ClnCor: largest displacement from symmetrization is 4.38D-12 for atom 3. Variable Old X -DE/DX Delta X Delta X Delta X New X (Linear) (Quad) (Total) R1 3.95185 0.00002 0.00000 0.00013 0.00013 3.95198 R2 3.95185 0.00002 0.00000 0.00013 0.00013 3.95198 R3 4.20181 -0.00002 -0.00012 0.00000 -0.00012 4.20169 A1 2.05687 -0.00001 -0.00012 -0.00003 -0.00015 2.05672 A2 2.11316 0.00001 0.00006 0.00002 0.00007 2.11323 A3 2.11316 0.00001 0.00006 0.00002 0.00007 2.11323 D1 3.14159 0.00000 0.00000 0.00000 0.00000 3.14159 Item Value Threshold Converged? Maximum Force 0.000021 0.000450 YES RMS Force 0.000014 0.000300 YES Maximum Displacement 0.000164 0.001800 YES RMS Displacement 0.000105 0.001200 YES Predicted change in Energy=-5.066749D-09 Optimization completed. -- Stationary point found. ---------------------------- ! Optimized Parameters ! ! (Angstroms and Degrees) ! -------------------------- -------------------------- ! Name Definition Value Derivative Info. ! -------------------------------------------------------------------------------- ! R1 R(1,2) 2.0912 -DE/DX = 0.0 ! ! R2 R(1,3) 2.0912 -DE/DX = 0.0 ! ! R3 R(1,4) 2.2235 -DE/DX = 0.0 ! ! A1 A(2,1,3) 117.8499 -DE/DX = 0.0 ! ! A2 A(2,1,4) 121.075 -DE/DX = 0.0 ! ! A3 A(3,1,4) 121.075 -DE/DX = 0.0 ! ! D1 D(2,1,4,3) 180.0 -DE/DX = 0.0 ! -------------------------------------------------------------------------------- GradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGradGrad Input orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 -0.444101 -0.188751 0.000000 2 17 0 -1.455553 1.641606 0.000000 3 17 0 1.646760 -0.149515 0.000000 4 35 0 -1.555852 -2.114359 0.000000 --------------------------------------------------------------------- Distance matrix (angstroms): 1 2 3 4 1 Al 0.000000 2 Cl 2.091229 0.000000 3 Cl 2.091229 3.582242 0.000000 4 Br 2.223501 3.757303 3.757303 0.000000 Stoichiometry AlBrCl2 Framework group C2V[C2(AlBr),SGV(Cl2)] Deg. of freedom 3 Full point group C2V NOp 4 Largest Abelian subgroup C2V NOp 4 Largest concise Abelian subgroup C2 NOp 2 Standard orientation: --------------------------------------------------------------------- Center Atomic Atomic Coordinates (Angstroms) Number Number Type X Y Z --------------------------------------------------------------------- 1 13 0 0.000000 0.000000 -0.501495 2 17 0 0.000000 -1.791121 -1.580905 3 17 0 0.000000 1.791121 -1.580905 4 35 0 0.000000 0.000000 1.722006 --------------------------------------------------------------------- Rotational constants (GHZ): 2.2524544 1.2183593 0.7906788 ********************************************************************** Population analysis using the SCF density. ********************************************************************** Orbital symmetries: Occupied (A1) (A1) (B2) (A1) (A1) (B1) (B2) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A2) (A1) (B2) (A1) (B1) (B2) (A1) (B1) (A1) (B2) (A1) (B1) (B2) (A2) (A1) (A1) (B2) (A1) (A1) (B2) (A1) (B1) (A1) (A2) (B2) (B1) (B2) Virtual (A1) (B1) (B2) (A1) (A1) (B1) (A1) (B2) (B1) (B2) (A1) (A1) (A2) (A1) (A1) (B2) (A2) (B1) (A2) (B2) (A1) (B1) (B2) (A1) (A1) (A1) (B2) (B1) (B2) (A2) (B2) (B1) (A1) (B1) (B2) (A2) (A1) (A1) (A1) (B2) (A1) (A1) (A1) (B2) (A1) (A1) The electronic state is 1-A1. Alpha occ. eigenvalues -- -482.93204-101.55381-101.55381 -61.89487 -56.41234 Alpha occ. eigenvalues -- -56.41058 -56.41037 -56.15520 -9.47240 -9.47239 Alpha occ. eigenvalues -- -8.60506 -7.23275 -7.23273 -7.22850 -7.22848 Alpha occ. eigenvalues -- -7.22764 -7.22764 -6.55429 -6.54809 -6.54701 Alpha occ. eigenvalues -- -4.23593 -2.79203 -2.78775 -2.78764 -2.67082 Alpha occ. eigenvalues -- -2.66915 -2.66830 -2.66335 -2.66331 -0.83988 Alpha occ. eigenvalues -- -0.82758 -0.78640 -0.46520 -0.40246 -0.39396 Alpha occ. eigenvalues -- -0.36545 -0.35033 -0.34600 -0.34287 -0.32883 Alpha occ. eigenvalues -- -0.31793 Alpha virt. eigenvalues -- -0.06343 -0.05503 0.04691 0.05744 0.08445 Alpha virt. eigenvalues -- 0.14484 0.16321 0.16777 0.30798 0.31581 Alpha virt. eigenvalues -- 0.32197 0.34244 0.35518 0.39439 0.42966 Alpha virt. eigenvalues -- 0.44840 0.45512 0.46755 0.46762 0.49700 Alpha virt. eigenvalues -- 0.51233 0.53548 0.54681 0.56624 0.60026 Alpha virt. eigenvalues -- 0.61983 0.62133 0.65728 0.71278 0.85261 Alpha virt. eigenvalues -- 0.85453 0.85604 0.85762 0.92544 0.94966 Alpha virt. eigenvalues -- 0.95544 0.96759 1.02919 1.20759 1.28167 Alpha virt. eigenvalues -- 1.65885 2.04896 4.24281 4.25028 8.71309 Alpha virt. eigenvalues -- 75.37951 Condensed to atoms (all electrons): 1 2 3 4 1 Al 11.260186 0.384516 0.384516 0.428819 2 Cl 0.384516 16.854035 -0.022126 -0.020445 3 Cl 0.384516 -0.022126 16.854035 -0.020445 4 Br 0.428819 -0.020445 -0.020445 34.762074 Mulliken charges: 1 1 Al 0.541962 2 Cl -0.195980 3 Cl -0.195980 4 Br -0.150002 Sum of Mulliken charges = 0.00000 Mulliken charges with hydrogens summed into heavy atoms: 1 1 Al 0.541962 2 Cl -0.195980 3 Cl -0.195980 4 Br -0.150002 Electronic spatial extent (au): = 1202.1211 Charge= 0.0000 electrons Dipole moment (field-independent basis, Debye): X= 0.0000 Y= 0.0000 Z= 0.6912 Tot= 0.6912 Quadrupole moment (field-independent basis, Debye-Ang): XX= -52.5255 YY= -59.8377 ZZ= -58.2583 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Traceless Quadrupole moment (field-independent basis, Debye-Ang): XX= 4.3483 YY= -2.9639 ZZ= -1.3844 XY= 0.0000 XZ= 0.0000 YZ= 0.0000 Octapole moment (field-independent basis, Debye-Ang**2): XXX= 0.0000 YYY= 0.0000 ZZZ= 54.3043 XYY= 0.0000 XXY= 0.0000 XXZ= 13.1994 XZZ= 0.0000 YZZ= 0.0000 YYZ= 18.7833 XYZ= 0.0000 Hexadecapole moment (field-independent basis, Debye-Ang**3): XXXX= -62.4339 YYYY= -556.5937 ZZZZ= -774.1118 XXXY= 0.0000 XXXZ= 0.0000 YYYX= 0.0000 YYYZ= 0.0000 ZZZX= 0.0000 ZZZY= 0.0000 XXYY= -104.9835 XXZZ= -142.3874 YYZZ= -226.4340 XXYZ= 0.0000 YYXZ= 0.0000 ZZXY= 0.0000 N-N= 4.304239973870D+02 E-N=-9.759810269706D+03 KE= 3.715167144722D+03 Symmetry A1 KE= 2.459380988939D+03 Symmetry A2 KE= 8.844163725431D+01 Symmetry B1 KE= 3.988800203940D+02 Symmetry B2 KE= 7.684644981345D+02 1|1| IMPERIAL COLLEGE-SKCH-135-004|FOpt|RB3LYP|6-31G(d,p)|Al1Br1Cl2|HM 1017|24-May-2019|0||# opt b3lyp/6-31g(d,p) geom=connectivity integral= grid=ultrafine||mhsm||0,1|Al,-0.4441013684,-0.1887506778,0.|Cl,-1.4555 527769,1.6416059284,0.|Cl,1.6467596547,-0.1495149856,0.|Br,-1.55585162 8,-2.1143586165,0.||Version=EM64W-G09RevD.01|State=1-A1|HF=-3734.74851 98|RMSD=7.766e-010|RMSF=1.669e-005|Dipole=-0.135977,-0.235519,0.|Quadr upole=-1.9100208,-1.322865,3.2328857,0.5084918,0.,0.|PG=C02V [C2(Al1Br 1),SGV(Cl2)]||@ IT CANNOT BE MY BEAUTY, FOR I HAVE NONE; AND IT CANNOT BE MY WIT, FOR HE HAS NOT ENOUGH TO KNOW THAT I HAVE ANY. -- CATHARINE SEDLEY, PUZZLED ABOUT WHY SHE WAS MISTRESS TO JAMES II Job cpu time: 0 days 0 hours 1 minutes 21.0 seconds. File lengths (MBytes): RWF= 6 Int= 0 D2E= 0 Chk= 2 Scr= 1 Normal termination of Gaussian 09 at Fri May 24 13:32:35 2019.